
Berkeley Seismological Laboratory

Annual Report July 2003 - June 2004

Contents

1	Dire	ector's Report	4
	1.	Background and Facilities	5
	2.	Highlights of 2003-2004	6
	3.	Acknowledgements	9
	4.	Glossary of Common Acronyms	10
2	Cali	ifornia Integrated Seismic Network	12
	1.	Introduction	12
	2.	CISN Background	12
	3.	2003-2004 Activities	13
	4.	Acknowledgements	21
	5.	References	21
3	Ber	keley Digital Seismic Network	22
	1.	Introduction	22
	2.	BDSN Overview	22
	3.	2003-2004 Activities	25
	4.	Acknowledgements	30
	5.	References	30
4	Nor	thern Hayward Fault Network	34
-	1.		34
	2.	NHFN Overview	34
	<u>-</u> . 3.	2003-2004 Activities	36
	4.	Acknowledgements	41
	1. 5.	References	41
	-		41
5	Parl	kfield Borehole Network	43
	1.	Introduction	43
	2.	HRSN Overview	43
	3.	2003-2004 Activities	47
	4.	Acknowledgements	52
	5.	References	54
6	Bay	Area Regional Deformation Network	55
	1.	Introduction	55
	2.	2003-2004 Activities	59
	3.	Data Analysis and Results	60
	4.	Real-Time Processing	62
	5.	Acknowledgements	63
	6.	References	63

7	Plate Boundary Deformation Project		64
	1. Introduction	••••	. 64
	2. Mini-PBO Station		
	Configuration		. 64
	3. Broadband Deformation Data		
	4. Acknowledgements		
8	Data Acquisition and Quality Control		70
	1. Introduction		. 70
	2. McCone Hall Facilities	 .	. 70
	3. Data Acquisition		. 71
	4. Seismic Noise Analysis		
	5. Sensor Testing Facility		
	6. Acknowledgements		
	7. References		
9	1 0		77
	1. Introduction	• • •	. 77
	2. Northern California		
	Management Center		
	3. 2003-2004 Activities		. 78
	4. Routine Earthquake Analysis		. 83
	5. Acknowledgements		. 88
	6. References		. 88
10	0 Northern California Earthquake Data Center		90
	1. Introduction		
	2. NCEDC Overview		
	3. 2003-2004 Activities		
	4. Data Collections		
	5. Data Quality Control		. 97
	6. User Interface Development	 .	. 97
	7. Database Development		. 99
	8. Data Distribution		. 100
	9. Acknowledgements		
11	1 Outreach and Educational Activities		101
	1. Introduction		
	2. Outreach Overview		
	3. 2003-2004 Activities		
	4. Acknowledgements		. 102
12	2 Research Studies		103
	1. Periodic Earthquake Rate Variations on the San Andreas Fault		
	2. Finite-Source Modeling of the 22 December 2003 San Simeon		
	Earthquake		. 108
	3. Coseismic Slip Distribution of the 22 December 2003 San Simeon Earthquake		
	 4. Measuring and Modeling Fluid Movements in Volcanoes: Insights from Continuous Broadband S 		
	4. Measuring and Modering Finite Movements in Volcanoes. Insights from Continuous Droadband S Monitoring at Galeras Volcano, Colombia		
	e i i i i i i i i i i i i i i i i i i i		
	5. The Orinda Earthquake Sequence		
	6. Non-Double-Couple Earthquakes in the Long Valley Volcanic Region		
	7. Observations of Infragravity Waves at the Monterey Ocean Bottom Broadband Station (MOBB)		
	8. Slicing up the San Francisco Bay Area: Block Kinematics from GPS-derived Surface Velocities		
	9. Active Tectonics of Northeast Asia: Using GPS Velocities and Block Modeling to Test Okhotsk		
	Motion Independent from North America		
	10. The Spatial Pattern of Active Uplift in Eastern Taiwan	 .	. 127

11.	Crustal Deformation Along the Northern San Andreas Fault System	129
12.	The Adriatic Region: An Independent Microplate within the Africa-Eurasia Collision Zone	131
13.	Bayesian Inference of Lower-Crustal Viscosity Near the Kunlun Fault Based on Geologic, Geomorphic,	
	and Geodetic Data	133
14.	Observations and Modeling of Microseisms in the	
	Santa Clara Valley, California	136
15.	Excitation of Earth's Incessant Free Oscillations by	
	Atmosphere-Ocean-Seafloor Coupling	138
16.	Episodic Tremor and Slip in the Southern Cascadia Subduction Zone	140
17.	A Three Dimensional Radially Anisotropic Model of Shear Velocity in the Whole Mantle	
18.	High Resolution Anisotropic Structure of the North American	
	Upper Mantle from Inversion of Body and Surface Waveform Data	143
19.	Tests of Normal Mode Asymptotic Approximations against	
	Computation Using the Spectral Element Method	145
20.	Finite Boundary Perturbation Theory for the Elastic Equation of Motion	
21.	Sharp lateral Boundaries in the D" Region	
22.	Hemispherical Transition of Seismic Attenuation at the Top of the Earth's Inner Core	
19 Apr	pendices	154
TO Abb	Jenuites	104

Chapter 1

Director's Report

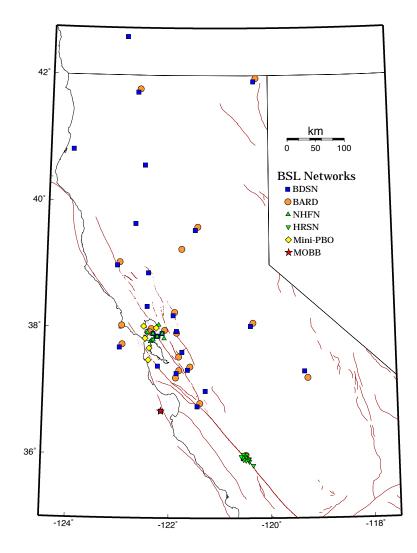


Figure 1.1: Map illustrating the distribution of stations in the BDSN, NHFN, HRSN, BARD, and Mini-PBO networks in northern and central California. A star indicates the location of the MOBB deployment.

1. Background and Facilities

The Berkeley Seismological Laboratory (BSL), formerly the Berkeley Seismographic Station (BSS), is the oldest Organized Research Unit (ORU) on the U. C. Berkeley campus. Its mission is unique in that, in addition to research and education in seismology and earthquake-related science, it is responsible for providing timely information on earthquakes (particularly those that occur in northern and central California) to the UC Berkeley constituency, the general public, and various local and state government and private organizations. The BSL is therefore both a research center and a facility/data resource, which sets it apart from most other ORUs. A major component of our activities is focused on developing and maintaining several regional observational networks, and participating, along with other agencies, in various aspects of the collection, analysis, archival and distribution of data pertaining to earthquakes, while maintaining a vigorous research program on earthquake processes and Earth structure. In addition, the BSL staff spends considerable time with public relations activities, including tours, talks to public groups, responding to public enquiries about earthquakes and, more recently, World-Wide-Web presence (http://www.seismo.berkeley.edu/seismo/).

U.C. Berkeley installed the first seismograph in the Western Hemisphere at Mount Hamilton (MHC) in 1887. Since then, it has played a leading role in the operation of state-of-the-art seismic instruments and in the development of advanced methods for seismic data analysis and interpretation. Notably, the installation, starting in 1927, of Wood-Anderson seismographs at 4 locations in northern California (BKS, ARC, MIN and MHC) allowed the accurate determination of local earthquake magnitude (M_L) from which a unique historical catalog of regional earthquakes has been maintained to this day, providing crucial input to earthquake probabilities studies.

Over the years, the BSS continued to keep apace of technological improvements. The first centrally telemetered network using phone lines in an active seismic region was installed by BSS in 1960. The BSS was the first institution in California to operate a 3-component "broadband" system (1963). Notably, the BSS played a major role in the early characterization of earthquake sources using "moment tensors" and source-time functions, and made important contributions to the early definitions of detection/discrimination of underground nuclear tests and to earthquake hazards work, jointly with UCB Engineering. Starting in 1986, the BSS acquired 4 state-of-the-art broadband instruments (STS-1), while simultaneously developing PC-based digital telemetry, albeit with limited resources. As the telecommunication and computer technology made rapid progress, in parallel with broadband instrument development, paper record reading could be completely abandoned in favor of largely automated digital data analysis.

The current modern facilities of BSL have been progressively built over the last 13 years, initiated by significant "upgrade" funding from U.C. Berkeley in 1991-1995. The BSL currently operates and acquires data, continuously and in real-time, from over 60 regional observatories, housing a combination of broadband and strong motion seismic instrumentation installed in vaults, borehole seismic instrumentation, permanent GPS stations of the BARD network, and electromagnetic instrumentation. The seismic data are fed into the BSL real-time processing and analysis system and are used in conjunction with data from the USGS NCSN network in the joint earthquake notification program for northern California, started in 1996. This program capitalizes on the complementary capabilities of the networks operated by each institution to provide rapid and reliable information on the location, size and other relevant source parameters of regional earthquakes. In recent years, a major emphasis in BSL instrumentation has been in densifying the stateof-the-art seismic and geodetic networks, while a major on-going emphasis in research has been the development of robust methods for quasi-real time automatic determination of earthquake source parameters and predicted strong ground motion, using a sparse network combining broadband and strong motion seismic sensors, as well as permanent geodetic GPS receivers.

The backbone of the BSL operations is a regional network of 25+ digital broadband and strong motion seismic stations, the Berkeley Digital Seismic Network (BDSN), with continuous telemetry to UC Berkeley. This network provides the basic regional data for the real-time estimation of location, size and rupture parameters for earthquakes of M 3 and larger in central and northern California, within our Rapid Earthquake Data Integration (REDI) program and is the Berkeley contribution to the California Integrated Seismic Network (CISN). It also provides a fundamental database for the investigation of three-dimensional crustal structure and its effects on regional seismic wave propagation, ultimately crucial for estimating ground shaking for future earthquakes. Most stations also record auxiliary temperature/pressure channels, valuable in particular for background noise quality control. Complementing this network is a 25 station "high-resolution" network of borehole seismic sensors located along the Hayward Fault (HFN) and under the Bay Area bridges, operated jointly with the USGS/Menlo Park and linked to the Bridge Safety Project of the California Department of Transportation (Caltrans). The latter has facilitated the installation of sensor packages at 15 bedrock boreholes along 5 east-bay bridges in collaboration with LLNL. A major science goal of this network is to collect high signal-to-noise data for micro-earthquakes along the Hayward Fault to gain insight into the physics that govern fault rupture and its nucleation. The BSL is also involved in the operation and maintenance of the 13 element Parkfield borehole seismic array (HRSN), which is yielding enlightening results on quasi-periodic behavior of micro-earthquake clusters and important new constraints on earthquake scaling laws and is currently playing an important role in the characterization of the site for the future San Andreas Fault Observatory at Depth (SAFOD). Since April 2002, the BSL is also involved in the operation of a permanent broadband ocean bottom station, MOBB, in collaboration with MBARI (Monterey Bay Aquarium Research Institute).

In addition to the seismic networks, the BSL is involved in data archival and distribution for the permanent geodetic BARD (Bay Area Regional Deformation) Network as well as the operation and maintenance, and data processing of 22 out of its 70+ sites. Whenever possible, BARD sites are collocated with BDSN sites in order to minimize telemetry costs. In particular, the development of analysis methods combining the seismic and geodetic data for the rapid estimation of source parameters of significant earthquakes has been one focus of BSL research.

Finally, two of the BDSN stations (PKD, SAO) also share data acquisition and telemetry with 5-component electromagnetic sensors installed with the goal of investigating the possibility of detection of tectonic signals. In 2002-2003, an automated quality control software was implemented to monitor the electromagnetic data.

Archival and distribution of data from these and other regional networks is performed at the Northern California Earthquake Data Center (NCEDC), operated at the BSL in collaboration with USGS/Menlo Park. The data reside on a mass-storage device (4.5+ Terabyte capacity), and are accessible "on-line" over the Internet (http://www.quake.geo.berkeley.edu). Among others, data from the USGS Northern California Seismic Network (NCSN), are archived and distributed through the NCEDC. The NCEDC also maintains, archives and distributes the ANSS/CNSS earthquake catalog.

Core University funding to our ORU has suffered from permanent budget cuts to research programs from the State of California, and currently provides salary support for 2 field engineers, one computer expert, 2 data analysts, 1 staff scientist and 2 administrative staff. This supports a diminishing portion of the operations of the BDSN and provides seed funding for our other activities. All other programs are supported through extramural grants primarily from the USGS and NSF, and in the past three years, the Governor's Office of Emergency Services (OES). We acknowledge valuable recent contributions from other sources such as Caltrans, the CLC program, PEER, as well as our Earthquake Research Affiliates.

2. Highlights of 2003-2004

2.1 Infrastructure and Earthquake Notification

In 2003-2004, BSL's activities have centered around two major projects: the continuation of CISN and the deployment in California of the BigFoot component of USArray/Earthscope. In this context, we have continued our efforts to expand the northern California broadband network while trying to reduce the costs of operation, in the wake of significant cuts to our University funding. In addition, we have continued the installation of the remaining "mini-PBO" sites and the expansion of the NCEDC database, and have taken the first steps towards designing an integrated telemetry link from Parkfield, CA, in particular in anticipation of our collecting and archiving data from the San Andreas Fault Observatory at Depth (SAFOD) program of Earthscope. The M 6.5 San Simeon earthquake of 12/22/03 was an opportunity to test the capabilities of CISN as well as those of the HRSN, and those of recently developed research tools, as will be described in the Research Section.

The main goal of the CISN (Chapter 2) is to ensure a more uniform system for earthquake monitoring and reporting in California. The highest priority, from the point of view of emergency responders in California, is to improve the robustness of statewide real-time notification and to achieve a uniform interface across the State to the California OES and other emergency responders. This represents a major challenge, as the CISN started as a heterogeneous collection of networks with disparate instrumentation, software systems and culture. Therefore, in the past year, as previously, the emphasis has been on software development. Notably, we have made significant progress on merging the USGS/Menlo Park and BDSN networks in northern California. We note also, that the coordinated software development across CISN partners over the last 3 years is bearing its fruits: for example, we now have a pool of staff members in the northern and southern processing centers that have a sufficient knowledge of each other's software to be in a position to help each other or serve as back-up in the case of a failure. This contributes to the improvement in the robustness of the statewide system.

Another goal of the CISN program is to improve the seismic infrastructure in northern California. Because funding is limited, this goal is continued at a slower pace. Nevertheless, we have started the construction of two new broadband/strong motion stations in 2003-2004 (Alder Springs and Marconi). These sites should be completed by the end of 2004, in spite of considerable delays due to the shortage of personnel.

BSL staff continue to spend considerable efforts in organizational activities for CISN, notably by participating in the CISN Project Management Group (Gee), which includes weekly 2 hour phone conferences, and the Standards Committee (Neuhauser-chair, Gee, Lombard), which strives to define and coordinate software development tasks. Romanowicz and Gee continue to serve on the CISN Steering Committee. The CISN also represents California as a designated region of ANSS (Advanced National Seismic System) and the BSL is actively involved in planning activities for the ANSS.

In the last two years, a major component of our activities has been coordinating with IRIS on the deployment in northern California of 50 temporary broadband stations of the BigFoot array of Earthscope. The BSL will contribute many (15+) of its existing sites to this effort and is involved in the joint siting of 10 new sites. These sites will be permitted by BSL and constructed by US-Array. When BigFoot leaves California in 2007, these sites will be available for permanent BSL installation, provided funding is found for the seismic instrumentation. In 2003-04, we have helped permit one station in the vicinity of the epicenter of the San Simeon earthquake. This station (located at the Hastings Reserve) is now operational. We are currently pursuing the permitting of other sites.

This past year has seen progress towards the completion of the *Mini-PBO* project (Chapter 7), a project supported partly by a grant from the NSF/MRI program, in collaboration with CIW, UCSD and USGS/Menlo Park, with matching from participating institutions (including UCB) as well as Caltrans (http://www.seismo.berkeley.edu/seismo/ bdsn/mpbo_overview.html). This project's focus is the installation of a network of multi-parameter stations in the San Francisco Bay Area to monitor the evolution of tectonic strain in time and space - a pilot project for the Plate Boundary Observatory (PBO) component of Earthscope (a national infrastructure program funded by NSF within its Major Research Equipment program). The installation of the 5 borehole strainmeters and seismomters, as well as auxiliary sensors (pore pressure, temperature and tilt) was completed in 2002-03, but 3 of the sites lacked GPS receivers as well as continuous telemetry to UC Berkeley for distribution through the NCEDC. Four sites are completed, while the remaining one is in the final stages of the installation of power and communications systems.

The *MOBB* (Monterey Ocean bottom Broad Band observatory) is a collaborative project between the BSL and MBARI and builds upon the experience gained in 1997 through the MOISE project, which involved the temporary deployment of a broadband ocean bottom system in Monterey Bay. MOBB is now a permanent installation and comprises a broadband seismic package (Guralp CMG-1), a battery and recording package, as well as auxiliary sensors: a current-meter and a DPG (differential Pressure Gauge). The system was assembled and tested at BSL in early 2002, and successfully deployed in April 2002 (Chapter 3). Extensive testing of seismometer insulation procedures, which were developed at Byerly Vault on the UCB campus prior to MOBB deployment (Chapter 8) have now been applied to three similar systems destined for the KECK project (Juan de Fuca plate), in collaboration with University of Washington at Seattle. In February 2004, we experienced the failure of one of our horizontal components. Thanks to the availability of one of the Keck instruments and the willingness of the MBARI crew, we were able to swap the seismic package in May 2004 and send it for repair. It has now been successfully reinstalled. The MOBB is scheduled to be hooked up to the MARS cable which will be installed in Monterey Bay in the Fall of 2005.

The BSL has continued to be involved in the coordination of site characterization for the SAFOD drilling project in the Parkfield area (Chapter 5). In particular, the HRSN has played a key role in providing seismic waveform data for a series of active source experiments conducted to characterize the SAFOD drilling site. These high quality waveform data are complementary to those, by nature more noisy, recorded by temporary deployments at the surface. Efforts have continued to reduce noise levels at the borehole sites to increase the detection level of magnitude -1.0 and lower earthquakes. The occurrence of the M6.5 San Simeon earthquake on 12/22/03, with its numerous aftershocks, has both significantly complicated the routine data processing task for HRSN and provided an opportunity to rethink the traditional processing schemes implemented more than 15 years ago.

The NHFN network project has focused on the development of new algorithms to lower the detection threshold of microseisms along the Hayward Fault (Chapter 4). This includes a pattern recognition approach, a phase coherency method and a phase onset time detector. Completion of the Bay Bridge sites has been hampered by the shortage of personnel, concurrent with the necessity to concentrate our efforts on the highly visible HRSN network and the intensive efforts in preparation for the SAFOD drilling.

The NCEDC (Chapter 10), continues archiving and distribution of on-line of data from expanding BDSN, NHFN, HRSN, BARD, Mini-PBO, and other networks and data collections in northern California and Nevada. A major accomplishment in the last year is making the entire collection of NCSN waveform data available (1984-2003) through the NCEDC archive (including instrument responses for all NSCN stations). These waveform data can now also be retrieved by a query based on event-id. There have also been notable enhancements in the $BREQ_FAST$ and NetDC data retrieval interfaces, that now provide access to NCSN waveform data in SEED format.

The BSLcontinues to collaborate with the USGS/Menlo Park in the generation of ShakeMap for northern California and to develop and implement successive upgrades to this system, integrated within the REDI environment (Chapter 9). ShakeMap is calculated routinely for magnitude 3.5 and larger events in northern California. Any magnitude 5.0 or larger will now also trigger the finite-fault processing. The 12/22/03 M6.5 San Simeon earthquake provided an opportunity to demonstrate the capabilities of the automatic finite fault processing system, which is triggered for M 5.0 and larger earthquakes.

Finally, through Dr Lind Gee's efforts, BSL has been actively involved in the preparation of UC Berkeley's participation in the commemoration activities of the centennial anniversary of the 1906 earthquake (Chapter 11). These activities include a joint SSA/EERI/DRC conference to be held in San Francisco in April 2006 as well as many exhibits, classes, and public lectures on the UC Berkeley Campus.

2.2 Research Accomplishments

Chapter 12 documents the main research contributions of the past year. Research at the BSL spans a broad range of topics, from the study of microseismicity at the local scale to global deep earth structure, and includes the use of seismological, geodetic and remote sensing (In-SAR) techniques.

The M6.5 San Simeon earthquake of 12/22/03 was an ideal opportunity to demonstrate the power of several approaches that have been pioneered at BSL over the last few years. The finite source modeling technique, developed by Dreger and his students to obtain directivity information for large regional earthquakes using a sparse set of regional distance broadband stations, provides information on the regional distribution of shaking, as well as on the the source process. The corresponding algorithm was implemented into the BSL real time analysis system two years ago, just in time to capture the San Simeon earthquake (12.2.) for which it provided significant information, since this event occurred in an area poorly covered by seismic, and particularly strong motion, stations. The combination of seismic and geodetic constraints, another approach in which BSL is a leader, provided a robust model for the corresponding slip distribution on the causative fault, confirming the marked south east progression of the rupture (12.3.). BSL researchers continue to study regional earthquakes and volcanic processes using broadband seismic data (12.4., 12.6.), microseismicity using data from our borehole networks (12.1., 12.5.), as well as regional deformation in California (12.8., 12.11.) and elsewhere in the world (12.9., 12.10., 12.12., 12.13.) using GPS and InSAR data.

We note an increasing interest in the study of seismic

background noise, which, it turns out, contains valuable information on 3D shallow structure, such as that of sedimentary basins (12.14.). At low frequencies, a fascinating component of the background noise is the Earth's "hum", discovered 6 years ago by Japanese scientists. A highlight of this past year's work at BSL is the development of an array-based method that has allowed us to locate the primary source of the "hum" in the oceans. This main source moves from the northern oceans in the northern hemisphere winter to the southern oceans in the summer, as wind-generated waves grow stronger in the winter in the respective hemispheres. This study has been published in Nature and received considerable media attention (12.15.). The existence of the BDSN which its regional distribution of very broadband STS-1 seismometers in high quality installations has been instrumental in this study. Indeed, BDSN is one of only two such suitable regional arrays in the world for which data have been continuously available for several years (the other one is in Japan). Data from our ocean floor MOBB station in Monterey Bay are also proving valuable, in conjunction with ocean buoy data, to investigate how short period ocean wave energy is converted into long period elastic waves (12.7.). Another area where "digging into the noise" has proven useful, is the discovery by Japanese and Canadian scientists of deep strain events along subduction zones manifested by signals in GPS associated with seismic tremors. Such signals appear to be present also in California, at the southern end of the northwest Pacific subduction zone (12.16.).

In the last year, we have sustained our investigations of global earth structure. Notably, we developed the first whole mantle radially anisotropic model, showing, in particular, the predominance of horizontal shear in the D" region near the core-mantle boundary, a study published in Science (12.17.). The anisotropic formalism developed over the last few years is being extended to more detailed studies at the continental scale, with the inclusion of azimuthal anisotropy (12.18.). Concurrently, we continue our efforts in the modeling of wave propagation in 3D structure at the global scale, using numerical and analytical approaches (12.21., 12.20., 12.19.). We also maintain an active program in the study of inner core structure, this year documenting the presence of large scale lateral variations in temperature at the top of the inner core (12.22.).

I am happy to announce the completion of two Ph.D theses in this past year: Matt d'Alessio has started a Mendenthal Postdoctoral fellowship at the USGS in Menlo Park, CA, while Mark Panning will stay as a post-doc at BSL for the next year. In the summer of 2003, post-doc and former student Yuancheng Gung returned to Taiwan where he joined the faculty at the National University of Taiwan, while visiting scientist Nozomu Takeuchi has returned to his post at the Earthquake Re-

search Institute in Tokyo. Post-doc George Hilley will join the faculty at Stanford University in January 2005.

3. Acknowledgements

I wish to thank our technical and administrative staff, scientists and students for their efforts throughout the year and their contributions to this annual report. Individual contributions to activities and report preparation are mentioned in the corresponding sections, except for the Appendix section, prepared by Christina Jordan and Eleanor Blair.

I also wish to specially thank the individuals who have regularly contributed to the smooth operation of the BSL facilities: André Basset, Sierra Boyd, Rich Clymer, Doug Dreger, John Friday, Lind Gee, Wade Johnson, Bill Karavas, Pete Lombard, Rick McKenzie, Mark Murray, Bob Nadeau, Doug Neuhauser, Charley Paffenbarger, David Rapkin, Bob Uhrhammer, and Stephane Zuzlewski. I particularly want to thank Doug Dreger for serving as Associate Director of the BSL.

To our regret, David Rapkin had to leave BSL in Fall of 2003. He now works for the Institute of Transportation Studies. André Basset and Wade Johnson left in the Spring of 2004 and, as employees of UNAVCO, they have joined the technical crews responsible for the deployment of PBO. We welcome the addition of Cédric de la Beaujardière, who joined the BSL staff in June 2004, assisting Mark Murray and Lind Gee in the data management and processing of BARD and BDSN data.

In 2003-2004, there have been some changes in the BSL administrative office. Eleanor Blair, Myriam Cotton and Christina Jordan continue to provide critical support to the administration of our lab. They have been assisted by part-time student employees Patty Villa and Loan Pham. In May 2004, Yolanda Andrade joined our staff as administrative assistant for the BSL

I also wish to thank our undergraduate assistants Charles Chiau, Alex Goines, Edwin Kwan, and Gabe Treves for their contributions to our research and operational activities.

As every year, I am particularly thankful to Lind Gee and Christina Jordan for their help in putting together this Annual Report.

The Annual Report of the Berkeley Seismological Laboratory is available on the WWW at http://www.seismo.berkeley.edu/seismo/annual_report/.

Barbara Romanowicz October 15, 2004

4. Glossary of Common Acronyms

A	Defention
Acronym	Definition
AGU	American Geophysical Union
ANSS	Advanced National Seismic System
BARD	Bay Area Regional Deformation
BDSN	Berkeley Digital Seismic Network
BSL	Berkeley Seismological Laboratory
BSS	Berkeley Seismographic Station
CISN	California Integrated Seismic Network
CGS	California Geological Survey
CLC	Campus Laboratory Collaboration
CNSS	Council of the National Seismic System
CSRC	California Spatial Reference Center
DRC	Disaster Resistent California
$\mathbf{E}\mathbf{M}$	Electromagnetic
EPRI	Electric Power Research Institute
EERI	Earthquake Engineering Research Institute
FBA	Force Balance Accelerometer
FIR	Finite Impulse Response
FRAD	Frame Relay Access Device
GPS	Global Positioning System
HFN	Hayward Fault Network
HRSN	High Resolution Seismic Network
IGS	International Geodetic Service
IMS	International Monitoring System
InSAR	Interferometric Synthetic Aperture Radar
IRIS	Incorporated Research Institutions for Seismology
ISC	International Seismological Center
ISTAT	Integrating Science, Teaching, and Technology
JPL	Jet Propulsion Laboratory
LBNL	Lawrence Berkeley National Laboratory
LLNL	Lawrence Livermore National Laboratory
MBARI	Monterey Bay Aquarium Research Institute
MHH	Murdock, Hutt, and Halbert
MOBB	Monterey Ocean Bottom Broadband observatory
MOISE	Monterey Bay Ocean Bottom International Seismic Experiment
MPBO	Mini-Plate Boundary Observatory
MRI	Major Research Initiative
MRE	Major Research Equipment
MT	Magnetotelluric
NCEDC	Northern California Earthquake Data Center
NCSN	Northern California Seismic Network
NEHRP	National Earthquake Hazards Reduction Program
NEIC	National Earthquake Information Center
NHFN	Northern Hayward Fault Network
NGS	National Geodetic Survey
NSF	National Science Foundation
NSN	National Science Foundation National Seismic Network
OES	Office of Emergency Services
ORU	
	Organized Research Unit Plate Boundary Observatory
PBO	Plate Boundary Observatory

Table 1.1: Standard abbreviations used in this report.

continued on next page

Acronym	Definition					
PEER	Pacific Earthquake Engineering Center					
PH	Pilot Hole					
PPE	Parkfield Prediction Experiment					
PREM	Preliminary Reference Earth Model					
PSD	Power Spectral Density					
REDI	Rapid Earthquake Data Integration					
SAF	San Andreas Fault					
SAFOD	San Andreas Fault Observatory at Depth					
SAR	Synthetic Aperture Radar					
SCEC	Southern California Earthquake Center					
SCEDC	Southern California Earthquake Data Center					
SCIGN	Southern California Integrated GPS Network					
SEED	Standard for the Exchange of Earthquake Data					
SEM	Spectral Element Method					
SHFN	Southern Hayward Fault Network					
SIO	Scripps Institutions of Oceanography					
SNCL	Station Network Channel Location					
SSA	Seismological Society of America					
STP	Seismogram Transfer Program					
UCB	University of California at Berkeley					
UNAVCO	University NAVSTAR Consortium					
UrEDAS	Urgent Earthquake Detection and Alarm System					
USGS	United States Geological Survey					

Table 1.1: *continued*

Chapter 2

California Integrated Seismic Network

1. Introduction

Advances in technology have made it possible to integrate separate earthquake monitoring networks into a single seismic system as well as to unify earthquake monitoring instrumentation. In California, this effort was initiated under the TriNet Project in southern California, where Caltech, the then California Division of Mines and Geology, and the USGS combined their efforts to create a unified seismic system for southern California. With major funding provided by FEMA, OES, and the USGS, the TriNet project provided the opportunity to upgrade and expand the monitoring infrastructure, combining resources in federal, state, university partnership. More recently, the California Geological Survey, Caltech, UC Berkeley, USGS Menlo Park, and the USGS Pasadena have agreed to cooperate on a statewide basis because of the obvious benefit to the state.

In the 2000-2001 Annual Report, we described the initial efforts to create this collaboration through the establishment of a memorandum of agreement and the development of the CISN strategic and implementation plans. The CISN is now in its fourth year of collaboration and its third year of funding from the California Governor's Office of Emergency Services.

2. CISN Background

2.1 Organization

The core CISN institutions (California Geological Survey, Caltech, UC Berkeley, USGS Menlo Park, and USGS Pasadena) and OES have signed a MOA (included in the 2000-2001 Annual Report) that describes the CISN organizational goals, products, management, and responsibilities of member organizations. To facilitate coordination of activities among institutions, the CISN has formed three management centers:

- Southern California Management Center: Caltech/USGS Pasadena
- Northern California Management Center: UC Berkeley/USGS Menlo Park

• Engineering Strong Motion Data Center: California Geological Survey/USGS National Strong Motion Program

A goal of the CISN is for the Northern and Southern California Management Centers to operate as twin statewide earthquake processing centers while the Engineering Strong Motion Data Center has the responsibility for producing engineering data products and distributing them to the engineering community.

The Steering Committee oversees CISN projects and is comprised of two representatives from each core institution and a representative from OES. The position of chair rotates among the institutions; Mike Riechle is the current chair of the Steering Committee.

An external Advisory Committee, representing the interests of structural engineers, seismologists, emergency managers, industry, government, and utilities, has been formed for review and oversight. The Advisory Committee is chaired by Bruce Clark of the California Seismic Safety Commission, although in the past year, Ron Tognazinni of LA Department of Water and Power has served as acting chair. The Advisory committee last met in September 2003 and the next meeting is planned for October 2004.

The Steering Committee has formed other committees, including a Program Management Group to address planning and coordination, a Strong Motion Working Group to focus on issues related to strong-motion data, and a Standards Committee to resolve technical design and implementation issues.

In addition to the core members, several organizations contribute data that enhances the capabilities of the CISN. Contributing members of the CISN include: University of California, Santa Barbara; University of California, San Diego; University of Nevada, Reno; University of Washington; California Department of Water Resources; Lawrence Livermore National Lab; and Pacific Gas and Electric.

2.2 CISN and ANSS

The USGS Advanced National Seismic System (ANSS) is being developed along a regionalized model. 8 regions have been organized, with the CISN representing California. David Oppenheimer of the USGS serves as the CISN representative to the ANSS National Implementation Committee.

Over the last 5 years, ANSS funding in California has been directed primarily to the USGS Menlo Park to expand the strong-motion instrumentation in the San Francisco Bay Area. As a result, instruments at over 100 sites have been installed or upgraded, significantly improving the data available for ShakeMaps.

As the ANSS moves forward, committees and working groups are being established to address issues of interest. In the last year, Lind Gee joined the Technical Integration Committee (TIC), which oversees technical issues for the ANSS. Other BSL faculty and staff have been involved in several TIC working groups, including Doug Dreger, Pete Lombard, Doug Neuhauser, Bob Uhrhammer, and Stephane Zuzlewski.

2.3 CISN and OES

The California Governor's Office of Emergency Services has had a long-term interest in coordinated earthquake monitoring. The historical separation between northern and southern California and between strongmotion and weak-motion networks resulted in a complicated situation for earthquake response.

OES has been an advocate of increased coordination and collaboration in California earthquake monitoring and encouraged the development of the CISN Strategic and Implementation Plans. In FY01/02, Governor Gray Davis requested support for the CISN, to be administered through OES. Funding for the California Geological Survey, Caltech and UC Berkeley was made available in spring 2002, officially launching the statewide coordination efforts.

Following the first year of funding, OES support led to the establishment of 3-year contracts to the UC Berkeley, Caltech, and the California Geological Survey for CISN activities. Although at a reduced level of support from the previous year, these funds are critical to continued efforts in statewide integration.

3. 2003-2004 Activities

The CISN funding from OES facilitated a number of activities at the BSL during the past year. However, the late award of the funding (the amended contract was received by UC Berkeley on May 13, 2004) complicated some aspects of the BSL activities, particularly those related to station installations and the development of the earthquake information distribution system.

3.1 San Simeon Earthquake

The December 22, 2003, San Simeon earthquake provided the first significant test of CISN capabilities since the initiation of the statewide collaboration. The event highlighted some known issues and illuminated some areas where additional effort is required, particularly with respect to ShakeMaps. The PMG report (*Gee et al.*, 2004a) documents the CISN response in detail.

Overall, the CISN performance for the distribution of information following the San Simeon earthquake was good. Automatic information about the location was available within 30 seconds and a final location with a reliable magnitude was released about 4.5 minutes after the event. The first ShakeMap was issued 8 minutes after origin time and distributed to OES and multiple Web servers. During the next 24 hours, additional information about aftershock probabilities, the fault rupture, and seismological/engineering aspects of interest were made available by the CISN.

However, one of the most challenging aspects of this event was the lack of modern stations with communication capabilities in the vicinity of the earthquake. This compromised the quality of the ShakeMaps for the mainshock and aftershocks and posed limitations in our ability to obtain reliable locations and magnitudes for the smaller events. Although the greater Los Angeles area and the San Francisco Bay region are approaching sufficient station density to provide data-driven ShakeMaps, significant portions of California lack the necessary coverage.

More information about the San Simeon earthquake is available in Chapter 9 on Northern California earthquake monitoring and in Chapter 12 in research contributions 12.2. and 12.3.

3.2 Expanded Instrumentation

In 2001-2002, the BSL purchased equipment for 5 BDSN stations, including STS-2 seismometers, Episensors, and Q4120 data loggers, and initiated efforts to identify potential sites, considering such factors as the current distribution of stations, private versus public property, location of power and telecommunications, and geologic materials. This equipment allowed the BSL to add two broadband stations in 2002-2003 (PACP and MNRC, Figure 3.1).

In the past year, the BSL initiated the installation of a site at Alder Springs (GASB), California. This site has been under discussion for a number of years, initially as part of the National Tsunami Hazards Program. The efforts for site preparation and installation are more fully described in Chapter 3.

In the fall of 2004, the BSL will install a site near Pt. Reyes, at the Marconi Conference Center. This site will be partially funded by IRIS (part of the permanent component of USArray) and OES.

3.3 Network Operations

As part of the CISN project, the BSL purchased 23 upgrade kits for their Q4120 data loggers with the goal of improving remote diagnostic capabilities last year. Three different kits were purchased – power board only, calibration board only, and combined power and calibration boards – in order to ensure that every Q4120 has a power board and that every 8-channel Q4120 also has a calibration board. The power boards provide the capability to monitor battery voltage, allowing staff to discriminate between power and telemetry problems remotely. The calibration boards provide the capability to monitor mass position as well as allow remote calibration of the seismic sensors. Both boards also record data logger temperature.

Successful upgrade of the dataloggers requires a site visit to remove the datalogger and bring it back to the lab, installation of the boards, replacement of lattices on the CPU board, construction of new cables to transmit the mass position signals, and redeployment of the datalogger in the field. Of the 23 kits purchased, all but three have been installed as of June 30th, although a few sites still require new cables or replacement of the lattices.

3.4 Collaboration with USArray

In late 2003, the CISN concluded a memorandum of agreement with the Incorporated Research Institutions in Seismology (IRIS) covering the duration of the USArray project in California. In early 2004, Caltech and the BSL completed agreements with IRIS for the contribution of their stations to USArray. As a result 19 stations operated by the BSL and 41 stations operated by Caltech are part of USArray during its California deployment.

Both Caltech and the BSL needed to modify some aspects of their station operation in order to meet the US-Array specifications. In particular, USArray calls for BH data sampling at 40 Hz, rather than the 20 Hz rate that has been standard in California. In the case of the BSL, all surface broadband stations were converted to 40 Hz over June 15-16th. The collaboration between the BSL and USArray is discussed more fully in Chapters 3 and 8.

3.5 Statewide Communications

One of the major accomplishments in FY01/02 was the design and initial implementation of a CISN communications infrastructure. Doug Neuhauser of the BSL took the lead in investigating options and the CISN partners decided to establish a "ring" of T1 communication links (Figure 2.1) with dual routers at each node.

As described last year, the CISN ring is up and operational. It is being used to transmit seismic waveform data and parametric data, including strong motion parameters, between the management centers and to distribute

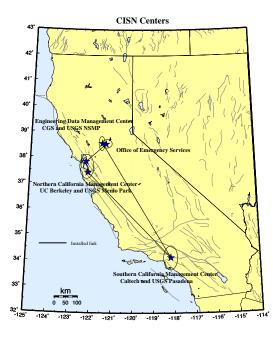


Figure 2.1: Map showing the geographical distribution of the CISN partners and centers. The communications "ring" is shown schematically with installed links (solid lines).

ShakeMaps to OES. It is also used to support mirroring of the CISN Web server.

During the last year, the CISN performed a test to verify the failover and redundancy capabilities of the CISN ring. The goals of the test were to 1) verify that if a single segment of the CISN ring fails, the backbone routers will detect the outage in a timely fashion and will reroute traffic to all CISN sites around the remaining CISN ring segments, and 2) verify that if a site is completely disconnected from the CISN ring, the backbone routers will detect the outage in a timely fashion and will reroute traffic to/from that site over the backup Internet tunnels between the disconnected site and all other CISN sites.

The test conducted demonstrated that the CISN routers and ring are performing according to design. However, the CISN OES routers do NOT have public Internet connections yet, so they have no Internet tunnel connections. If the CISN T1 circuits were to go down at OES, OES would be completely isolated from the CISN network and all CISN partners. This continues to be an issue of major concern.

The CISN intends to test the failover capabilities of the ring regularly. The full report of the May 21 test is available at the CISN Web site, under the reports of the Standards Committee.

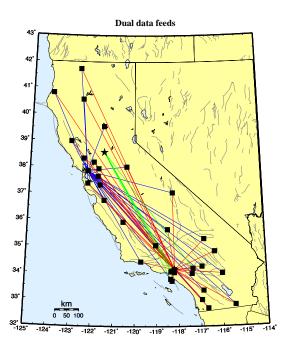


Figure 2.2: Map showing the 30 stations selected to send data directly to the Northern and Southern California processing centers, and the 5 stations that send data directly to the Engineering Data Center and the Southern California processing center.

3.6 Northern California Management Center

As part of their effort within the CISN, the BSL and the USGS Menlo Park have begun to plan for the next generation of the northern California joint notification system. Chapter 9 describes the operations of the existing Management Center and reports on design discussions.

Communications Infrastructure

In order to move ahead with plans for restructuring the northern California earthquake monitoring system, the USGS Menlo Park and BSL have been working to improve their communications infrastructure.

At present, the BSL and the USGS Menlo Park are connected by two dedicated T1 circuits. One circuit is a component of the CISN ring, while the second circuit was installed last year (Figure 2.3) to support the anticipated level of dedicated traffic between Berkeley and Menlo Park above and beyond that associated with the CISN.

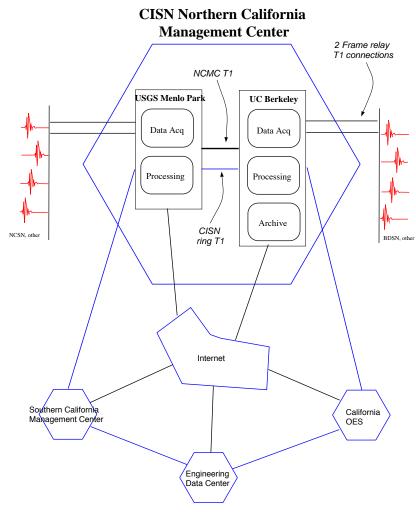
The installation of the second dedicated T1 between Berkeley and Menlo Park freed up a frame-relay connection deployed by the BSL as part of the CalREN project in mid-1990s. In the past year, the BSL has been reconfiguring the frame-relay circuit to serve as a second data acquisition link. The plan is to distribute the BDSN data acquisition between the two frame-relay T1 circuits, eliminating what had been a single point of failure. A second component of the plan is to establish an additional Permanent Virtual Circuit (PVC) at each BDSN site so that each station has connections to both T1s. This configuration will allow the BSL to migrate acquisition from one T1 to the other if a failure occurs. These changes (which are still underway and will be completed in the fall of 2004) will improve the robustness of the BSL operations.

In the long term, the BSL and USGS Menlo Park hope to have a high-bandwidth microwave or satellite connection in addition to the current land lines. Unfortunately, we have not been able to obtain funding for this additional communication link at this time.

3.7 Statewide Integration

BSL staff are involved in many elements of the statewide integration effort. The Standards Committee continues to define and prioritize projects necessary to develop a prototype system and establish working groups to address them (see the minutes from meetings and conference calls at http://www.cisn.org/standards/meetings.html).

Dual Station Feeds


One of the major accomplishments in the first few years has been the establishment of "dual station feeds" at 30 stations (15 in northern California and 15 in southern California) (Figure 2.2). To achieve this, the BSL and Caltech both ordered the DLCIs (data link connection identifier) that allow the 2nd center to establish a PVC (permanent virtual circuit) to each station using the frame-relay network.

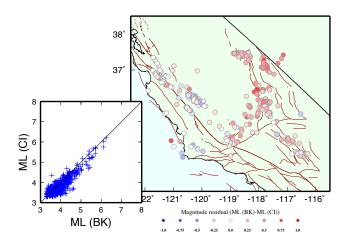
The Northern California Management Center is using data from the Southern California stations to estimate magnitudes on a routine basis. A subset of these stations are being used for the moment tensor inversions, a computation that is more sensitive to the background noise level.

Data Exchange

Pick exchange was initiated between the Northern and Southern California Management Centers in 2001-2002. Although the CISN has developed software to exchange the reduced amplitude timeseries, this aspect of data exchange has been delayed while certain problems in the codes that generate the time series are addressed.

The CISN partners completed the final stage of a system to exchange peak ground motion data this year. Using a common format, the CISN partners are exchanging observations with one another following an event or a trigger. This step increases the robustness of generating products such as ShakeMap, since all CISN partners are now exchanging data directly with one another. It also

CISN Communications Ring


Figure 2.3: Schematic diagram illustrating the connectivity between the real-time processing systems at the USGS Menlo Park and UC Berkeley, forming the northern California Management Center, and with other elements of the CISN.

improves the quality of ShakeMaps on the boundary between northern and southern California, such as the San Simeon earthquake, by allowing all data to be combined in a single map. Finally, it is a necessary step toward the goal of generating statewide ShakeMaps.

Software Calibration

The CISN partners are working together on the problem of software calibration, particularly as it pertains to automated earthquake processing. Currently, the software implemented in the Northern and Southern California Management Centers is very different. Eventually, there may be standardization of software across the management centers, but in the short term, the focus is on calibrating the software to produce the same answers, given the same input data.

In 2002-2003, effort was focused on phase pickers (pick-ew), the association algorithm (binder), the location algorithm (hypoinverse), and magnitude estimation (various). In the last year, magnitude estimation continued to be a significant area of focus, as well as ShakeMap configuration, metadata exchange, and

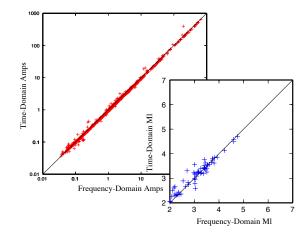


Figure 2.4: Comparison of the estimates of M_L reported by Caltech and Berkeley for 480 earthquakes of M3.5 and higher from 1981-2003. Focusing on an area that spans the boundary between the networks, we observe a systematic bias between the estimates, with a strong apparent geographic signal.

database standardization.

At this point, the issues of a statewide detection and location system are largely addressed. Configuration files have been standardized and a statewide system has been running in Menlo Park for nearly a year. It performed well during the December 2003 San Simeon sequence.

In contrast, the calibration of magnitude has proven to be a more difficult problem, particularly local magnitude, M_L . Last year, we reported initial results from two separate inversions of Wood Anderson amplitudes from the BDSN to estimate local magnitude adjustments. Bob Uhrhammer of the BSL and Jascha Polet of Caltech compared their independent results as a first step to determine a common set of adjustments. Jascha's method estimates the adjustments and attenuation relationship simultaneously, while Bob's uses a differential approach while fixing the attenuation relationship. The good agreement between the estimates of the adjustments provided confidence in the first step of the process.

However, efforts to combine BDSN and TriNet data in a single inversion have been challenging (*Gee et al.*, 2003; 2004b). After much probing, it appears as if there is a bias between the northern and southern California magnitude estimates (Figure 2.4), as illustrated by the three lines of evidence. First, a comparison of nearly 500 earthquakes over a 20 year period in central California recorded by both networks shows a bias of 0.14 magnitude units, with NC magnitudes higher than SC magni-

Figure 2.5: Left: Comparison of time domain and frequency domain estimates of Wood Anderson synthetic amplitudes. In general, there is good agreement, although the frequency domain amplitudes are consistently larger than the time domain amplitudes. Right: Comparison between M_L estimates based on the two different amplitude types.

tudes. Second, efforts to invert Wood Anderson amplitudes using a differential approach, a constraint that the BKS and PAS adjustments sum to zero, and fixing the attenuation relationship to one determined by *Kanamori* (1993), indicates a bias of 0.14. Finally, an independent inversion of a different dataset (absolute approach, a different set of station constraints, and simultaneous inversion for attenuation) suggests a bias of 0.20.

Efforts to understand this issue were hampered by the lack of a good statewide dataset. We now have a good set of 86 events, but some effort remains to clean up the data set and remove observations of multiple channels at the same site for a given earthquake (that is, observations from the BH, HH, and HL channels for a single station) as this multiplicity results in overweighting of some stations. Potential sources of the magnitude discrepancy are drift in station adjustments, differences in the attenuation functions, and other path effects.

In parallel, the BSL has been working on other issues related to magnitude. We have installed a version of the TriNet software that processes waveforms to produce resampled timeseries of amplitudes as well as codes to compute magnitudes and peak ground motions from these timeseries. The system has been running since late 2003. In general, the amplitudes computed by the timedomain approach agree very well with the frequency domain approach that has been the core of the REDI system since 1994. However, the frequency domain amplitudes are consistently higher than the time domain amplitudes (Figure 2.5). The slight difference (the mean amplitude ratio is 1.05 from 781 observations) may be due to differences in using the full versus simplified instrument responses.

Magnitudes from the time-domain approach agree well with the frequency-domain method, although there is some scatter at lower magnitudes. This is due to differences in the window selection, use of signal to noise ratios to select stations, and differences in the attenuation relations.

Another issue facing the magnitude Working Group is the difference in the station distribution. In southern California, the density of broadband stations permits the computation of M_L for every earthquake. In northern California, the more sparse station distribution does not allow the reliable estimate of M_L below magnitude 3. As a result, the Working Group is looking into the necessary steps to implement M_d on a statewide basis.

A final component of the magnitude efforts is the designation of a magnitude reporting hierarchy. There is general agreement at the low end and at the high end, but the working group is still reviewing issues related to transition points from one magnitude type to another. More details about the magnitude calibration effort are documented in Chapter 9.

In addition to the efforts in standardizing earthquake locations and magnitudes, a CISN working group has been addressing issues related to ShakeMaps. At present, ShakeMaps are currently generated on 5 systems within the CISN. 2 systems in Pasadena generate "SoCal" Shakemaps; 2 systems in the Bay area generate "No-Cal" Shakemaps; and 1 system in Sacramento generates ShakeMaps for all of California. The Sacramento system uses QDDS to provide the authoritative event information for northern and southern California.

Over last 6 months, the Working Group has addressed a number of issues in the standardization of ShakeMap. Initially focusing on the look and feel of the maps (topography, geology, faults, road, lake outlines, cities, and fonts), the Working Group has just started to review a comprehensive compilation of the differences in configuration among the 3 implementations. The remaining differences between the centers range from the small (URL used in the "addon" message) to the significant (use of regressions, linear versus log amplitude weighting). This effort will move the CISN forward toward having fully standardized ShakeMaps.

The lack of stations in the near source region of the 2003 San Simeon earthquake raised a number of issues related to ShakeMap and how to measure the quality of the product as well as quantify the uncertainty. Over the past 6 months, a subset of the Working Group has been working on this issue, based on the work of *Hok and Wald* (2003). One of the first projects has been to make a map to illustrate current CISN capabilities, based on the existing station distribution. The next step is to look

at calculating uncertainty for some example earthquakes and comparing the uncertainty estimates with different realizations of the ShakeMap produced by using various subsets of the data. Once the method to quantify the uncertainty is validated, then we can use this information to determine a grade.

Location Codes

The CISN adopted a standard for the use of "location" codes (part of the Standard for the Exchange of Earthquake Data (SEED) nomenclature to describe a timeseries based on network-station-channel-location) in the late fall of 2003. Over the past few months, USGS and UC Berkeley developers have been working to modify the Earthworm software to support the use of location codes. This effort is nearly complete and the centers are working on a plan to begin migration to the modified codes.

Metadata Exchange

The CISN is also working on issues related to metadata exchange. This is an important component of CISN activities, as correct metadata are required to insure valid interpretation of data. A Standards Working Group has developed and initiated testing of a model for database replication of metadata, and is currently reviewing how much of the schema to exchange and how to address metadata from partners such as CGS, who do not currently maintain their metadata in a database.

Last year, the Metadata Working Group compiled a list of metadata necessary for data processing and developed a model for exchanging metadata. In this model, each CISN member is responsible for the metadata of their stations and other stations that enter into CISN processing through them. For example, Menlo Park is responsible for the NSMP, Tremor, and PG&E stations and Caltech is responsible for the Anza data. The Working Group believes that metadata exchange should proceed on a timely basis, not just when data are generated, and is testing an approach using database replication.

For database exchange, the Working Group proposed that each group or organization have a working or interim database as a staging area (a private sandbox) and a master database. The interim database would contain snapshots of the master tables (that the group/organization is responsible for) and the changes would be pushed manually to the master database by snapshot replication. Changes would be propagated among the master databases by multi-master replication.

To start this off, the Working Group agreed to test replication with a limited number of tables, focusing initially on tables relevant to the real-time system (but not sufficient for archiving). In order to test this solution, the NCMC and SCMC needed to resolve some inconsistencies in the database implementations. This included both differences in the physical schema as well as differences in use of the schema. The Working Group initiated a pilot test in early 2004, using the tables SimpleResponse and StaMapping and a test database at the NCMC and SCMC. The initial results were successful and the effort has expanded to other tables. As of June 2004, 11 tables are being replicated between the test databases. The next step for the Working Group is to validate the use of the metadata in the real-time system. When this is done, the database replication can be migrated to the primary databases.

In parallel, the Working Group has developed a plan for importing metadata from CGS. Their metadata is not currently stored in a database and is maintained in simple files. Their policy is to distribute the metadata as part of a waveform package and the V0 format was developed to allow for that. The Working Group developed the concept of a "dataless" V0 format (analogous to the dataless SEED files) which will be used to distribute the metadata. In the current plan, CGS will initially prepare and distribute dataless V0 files providing the current metadata for ShakeMap quality stations (i.e., with channels meeting CISN Reference Station or better standards) in the CGS network. These current-information metadata files for the stations will be distributed (probably using a mechanism like sendfile/getfile) and will also be placed at the CGS FTP site. As agreed, the comment field in the V0 header will be used to define the valid time period for the metadata. Each dataless V0 file will contain the 3 channels of the reference sensor at the site. The Working Group plan includes the ability to handle corrections, as well as updates as stations are serviced.

In order to make use of the dataless V0 file, tools have been developed to parse the file and write an XML file containing the information (an expansion of capabilities of the v02ms program). The NCMC has taken advantage of previously existing tools to create a system where the XML is converted into a spreadsheet format and then imported into the database. This plan will be further tested as CGS generates more dataless V0 files and the database is populated.

As part of this process, the issue of mapping the sensor orientation into the SEED channel nomenclature has come up. The v02ms program now uses the same algorithm for generating channel names as used by CGS.

3.8 Earthquake Information Distribution

In response to a request from the PMG, USGS and OES management established an *Ad Hoc* panel in May 2003 to develop specifications for an earthquake information system and to review existing systems as well as systems under development. Lind Gee of the BSL and David Oppenheimer of the USGS were asked to co-chair this panel and to provide a written report within 90 days. The panel met on July 9-10th at the BSL and the re-

port was published on September 16 (Ad Hoc Panel on Earthquake Information Distribution, 2003). The panel reviewed the three major existing or planned distribution systems (QDDS, QuakeWatch, and ShakeCast) and noted that none of the systems addressed all the current needs for earthquake information distribution. In particular, firewalls are a growing problem for systems relying on socket-based connections. The panel recommended that a new system be developed, and outlined preliminary specifications for such as system.

Following the publication of the report, OES asked to BSL to write a proposal for the development of the Earthquake Information Distribution System or EIDS. OES approved the proposal and forwarded it to FEMA for review. FEMA agreed to provide \$100,000 toward the development of the system out of the 2002 Emergency Management Program Grant to the State of California.

The award from FEMA was combined with the OES funding of the CISN and the contract was received by UC Berkeley on May 13th. In parallel, Lind Gee and David Oppenheimer worked with the members of the *Ad Hoc* panel to develop detailed specifications – appropriate for a Request For Proposal or RFP – based on the September 2003 report. The specifications were completed in late June and submitted to UC Berkeley Purchasing on July 6, 2004. Unfortunately, the late award of the funding combined with the difficulties of issuing an RFP are complicating efforts to award the funding in a timely fashion. The FEMA contract will terminate on September 30th, 2004.

[Update: In mid-August, the BSL decided to proceed with a sole source award to Instrumental Software Technologies, Inc (ISTI). Paul Friberg of ISTI was one of two vendors who made presentations to the AdHoc Panel in July of 2003 regarding an earthquake information distribution system. On September 28, the BSL was notified that an extension from FEMA has been awarded. Development is now under way.]

3.9 Outreach

There has been significant progress at www.cisn.org in FY03/04. A year ago, the CISN shared the Web server at the Northern California Earthquake Data Center. With the purchase of new, dedicated Web computers, the CISN Web site is now supported by two servers located at Berkeley and Caltech. The Web servers are set up so that the load can be distributed between them, providing improved access during times of high demand.

With the increased robustness provided by the new servers, the CISN has begun to provide access to certain earthquake products directly from www.cisn.org. For example, ShakeMaps are now served directly from the CISN Web site, in addition to being available from several USGS Web servers and the CGS.

In early December, the CISN began offering a sign-

Figure 2.6: Screenshot of the myCISN Web site, as personalized for Lind Gee. The interface allows users to select and organize the earthquake information they want to see. New modifications under development also allow users to create a section of personalized links.

up for earthquake notifications by email. Although both northern and southern California have offered individual sign-ups in the past, the new service provides uniform notification messages for earthquakes of M3.5 and higher in California. In addition, users can sign up to be notified when ShakeMaps are generated.

Design and content of www.cisn.org continues to evolve. The Web site is an important tool for CISN outreach as well as for communication and documentation among the CISN partners.

Also in FY03/04, the CISN established a Web site dedicated for emergency managers. Following a suggestion from the Advisory Committee, we have designed a Web site to provide personalized access to earthquake information. Known at "myCISN", the Web site is available at eoc.cisn.org (Figure 2.6). Access to the Web site is limited to registered users in order to provide highly reliable access.

At present, "myCISN" is a single Web server located at UC Berkeley. However, modifications to the database are underway to allow for multiple servers in the future. A second computer was purchased with FY03/04 funds and will either be installed in Sacramento or in southern California.

4. Acknowledgements

CISN activities at the BSL are supported by funding from the Governor's Office of Emergency Services.

Barbara Romanowicz and Lind Gee are members of the CISN Steering Committee. Lind Gee is a member of the CISN Program Management Committee and she leads the CISN project at the BSL. Doug Neuhauser is chair of the CISN Standards Committee, which includes Lind Gee and Pete Lombard as members.

Because of the breadth of the CISN project, many BSL staff have been involved including: John Friday, Lind Gee, Wade Johnson, Bill Karavas, Pete Lombard, Doug Neuhauser, Charley Paffenbarger, Dave Rapkin, and Stephane Zuzlewski. Lind Gee contributed to this chapter. Additional information about the CISN is available through reports from the Program Management Committee (*Hauksson et al.*, 2003).

5. References

Ad Hoc Panel on Earthquake Information Distribution (L. Gee and D. Oppenheimer, chairs), Requirements for an Earthquake Information Distribution System, http: //www.cisn.org/ahpeid/ahpeid_final.pdf, 2003.

Gee, L., D. Dreger, G. Wurman, Y, Gung, B. Uhrhammer, and B. Romanowicz, A Decade of Regional Moment Tensor Analysis at UC Berkeley, *EOS Trans. AGU*, 84(46), Fall Meet. Suppl., Abstract S52C-0148, 2003.

Gee, L., D. Oppenheimer, T. Shakal, D. Given, and E. Hauksson, Performance of the CISN during the 2003 San Simeon Earthquake, http://www.cisn.org/docs/ CISN_SanSimeon.pdf, 2004a.

Gee, L., J. Polet, R. Uhrhammer, and K. Hutton, Earthquake Magnitudes in California, *Seism. Res. Lett.*, 75(2), 272, 2004b.

Hauksson, E., L. Gee, D. Given, D. Oppenheimer, and T. Shakal, Report to the CISN Advisory and Steering Committees, #5, http://www.cisn.org/oes/2003.05. 30.pdf, 2003.

Hok, S., and D. J. Wald, Spatial Variability of Peak Strong Ground Motions: Implications for ShakeMap Interpolations, *EOS. Trans. AGU*, *84(46)*, F1121, 2003.

Kanamori, H., J. Mori, E. Hauksson, T. Heaton, L. Hutton, and L. Jones, Determination of earthquake energy release and M_L using TERRASCOPE, *Bull. Seis.* Soc. Am., 83, 330-346, 1993.

Chapter 3

Berkeley Digital Seismic Network

1. Introduction

The Berkeley Digital Seismic Network (BDSN) is a regional network of very broadband and strong motion seismic stations spanning northern california and linked to UC Berkeley through continuous telemetry (Figure 3.1 and Table 3.1). This network is designed to monitor regional seismic activity at the magnitude 3+ level as well as to provide high quality data for research projects in regional and global broadband seismology.

The network upgrade and expansion initiated in 1991 has continued, and it has grown from the original 3 broadband stations installed in 1986-87 (BKS, SAO, MHC) to 27 stations in 2004, including the ocean-bottom seismometer in Monterey Bay. One new station was added in the past year (GASB).

We take particular pride in high quality installations, which often involve lengthy searches for appropriate sites away from sources of low-frequency noise, as well as continuous improvements in installation procedures and careful monitoring of noise conditions at existing stations.

Future expansion of our network is contingent on the availability of funding and coordination with other institutions for the development of a denser state-of-theart strong motion/broadband seismic network and joint earthquake notification system in this seismically hazardous region.

2. BDSN Overview

Twenty-five of the BDSN sites are equipped with 3 component broadband seismometers and strong-motion accelerometers, and a 24-bit digital data acquisition system or data logger. Two additional sites (RFSB and SCCB) consist of a strong-motion accelerometer and a 24-bit digital data logger. Data from all BDSN stations are transmitted to UC Berkeley using continuous telemetry. In order to insure against data loss during utility disruptions, each site has a 3-day supply of battery power and is accessible via a dialup phone line. The combination of high-dynamic range sensors and digital data loggers ensures that the BDSN has the capability to record the full range of earthquake motion for source and structure studies. Table 3.2 lists the instrumentation at each site.

Most BDSN stations have Streckeisen three-component broadband sensors (Wielandt and Streckeisen, 1982; Wielandt and Steim, 1986). Guralp CMG-3T downhole broadband sensors contributed by LLNL are deployed in post-hole installations at BRIB and FARB. The strongmotion instruments are Kinemetrics FBA-23 or FBA-ES-T with ± 2 g dynamic range. The recording systems at all sites are either Q730, Q680, Q980 or Q4120 Quanterra data loggers, with 3, 6, 8, or 9 channel systems. The Quanterra data loggers employ FIR filters to extract data streams at a variety of sampling rates. In general, the BDSN stations record continuous data at .01, 0.1, 1.0, 20.0 or 40.0, and 80 or 100 samples per second, although some sites send triggered data at the highest sampling rate using the Murdock, Hutt, and Halbert event detection algorithm (Murdock and Hutt, 1983) (Table 3.3). In addition to the 6-channels of seismic data, signals from thermometers and barometers are recorded at nearly every site (Figure 3.2).

In parallel with the upgrade of the broadband network, a grant from the CalREN Foundation (California Research and Education Network) in 1994 enabled the BSL to convert data telemetry from analog leased lines to digital frame-relay connections. The frame-relay network uses digital phone circuits that can support 56 Kbit/s to 1.5 Mbit/s throughput. Since frame-relay is a packet-switched network, a site may use a single physical circuit to communicate with multiple remote sites through the use of "permanent virtual circuits". Frame Relay Access Devices (FRADs), which replace modems in a frame-relay network, can simultaneously support multiple interfaces such as RS-232 async ports, synchronous V.35 ports, and ethernet connections. In practical terms, the upgrade to frame relay communication provides faster data telemetry between the remote sites and the BSL, remote console control of the data loggers, additional services such as FTP and telnet to the data loggers, data transmission to multiple sites, and the ability to com-

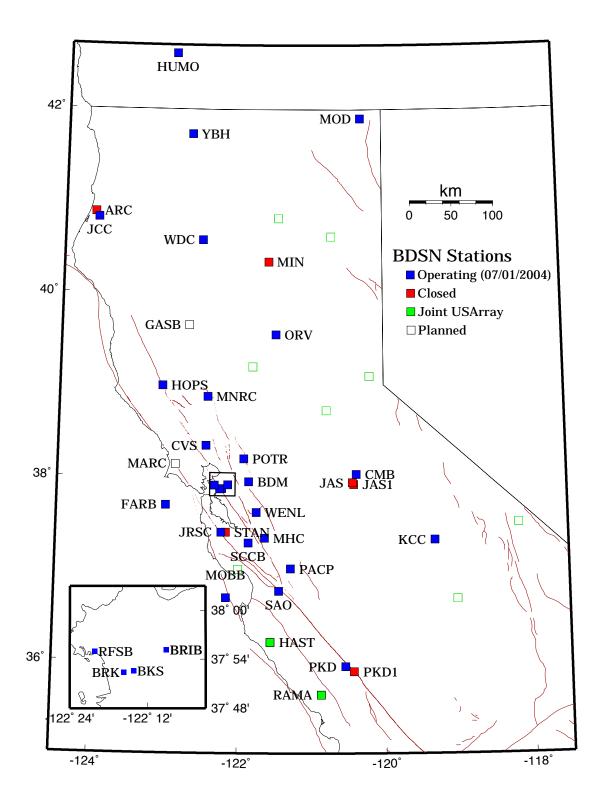


Figure 3.1: Map illustrating the distribution of operational (filled squares), planned (open squares), and closed (grey squares) BDSN stations in northern and central California. The open squares (except for the one labelled GASB) indicate sites developed in collaboration with USArray.

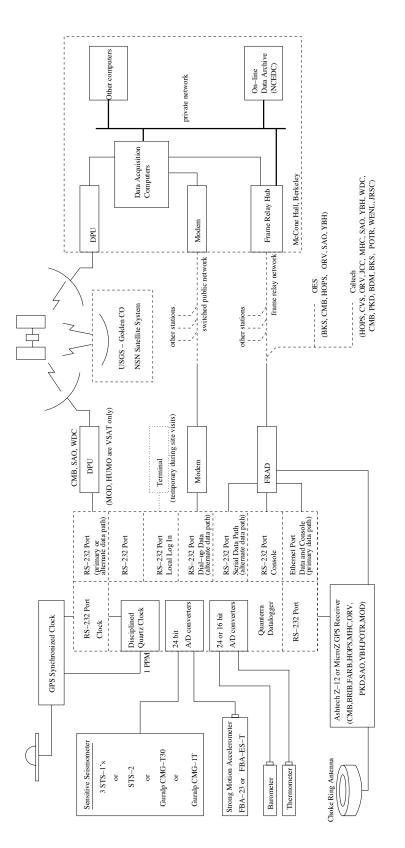


Figure 3.2: Schematic diagram showing the flow of data from the sensors through the data loggers to the central acquisition facilities of the BSL.

municate and transmit data from multiple instruments such as GPS receivers and/or multiple data loggers at a single site. Today, 23 of the BDSN sites use frame-relay telemetry for all or part of their communications system.

As described in Chapter 8, data from the BDSN are acquired centrally at the BSL. These data are used for rapid earthquake reporting as well as for routine earthquake analysis (Chapters 2 and 9). As part of routine quality control (Chapter 8), power spectral density analyses are performed weekly and Figure 3.3 shows a summary of the results for 2003-2004. The occurrence of a significant teleseism also provides the opportunity to review station health and calibration. Figure 3.4 displays BDSN waveforms for a M_w 6.8 deep focus earthquake in the Primor'ye, Russia region on July 27, 2003.

BDSN data are archived at the Northern California Earthquake Data Center. This is described in detail in Chapter 10.

Sensor	Channel	Rate (sps)	Mode	FIR
Broadband	UH?	0.01	С	Ac
Broadband	VH?	0.1	С	Ac
Broadband	LH?	1	С	Ac
Broadband	BH?	20/40	С	Ac
Broadband	HH?	80/100	С	Ac/Ca
\mathbf{SM}	LL?	1	С	Ac
\mathbf{SM}	BL?	20/40	С	Ac
\mathbf{SM}	HL?	80/100	С	Ac/Ca
Thermometer	LKS	1	С	Ac
Barometer	LDS	1	С	Ac

Table 3.3: Typical data streams acquired at BDSN stations, with channel name, sampling rate, sampling mode, and the FIR filter type. SM indicates strong-motion; C continuous; T triggered; Ac acausal; Ca causal. The LL and BL strong-motion channels are not transmitted over the continuous telemetry but are available on the Quanterra disk system if needed. The HH channels are recorded at two different rates, depending on the dataloger type. Q4120s provide 100 sps and causal filtering; Q680/980s provide 80 sps and acausal filtering. The BH channels were changed from 20 to 40 sps this year as described below.

2.1 Electromagnetic Observatories

In 1995, the BSL installed two well-characterized electric and magnetic field measuring systems at two sites along the San Andreas Fault which are part of the Berkeley Digital Seismic Network in collabration with Dr. Frank Morrison. Since then, magnetotelluric (MT) data have been continuously recorded at 40 Hz and 1 Hz and archived at the NCEDC (Table 3.4). At least one set of orthogonal electric dipoles measures the vector horizon-

Sensor	Channel	Rate (sps)	Mode	FIR
Magnetic	VT?	0.1	С	Ac
Magnetic	LT?	1	\mathbf{C}	Ac
Magnetic	BT?	40	\mathbf{C}	Ac
Electric	VQ?	0.1	С	Ac
Electric	LQ?	1	\mathbf{C}	Ac
Electric	BQ?	40	С	Ac

Table 3.4: Typical MT data streams acquired at SAO and PKD, with channel name, sampling rate, sampling mode, and FIR filter type. C indicates continuous; T triggered; Ac acausal.

tal electric field, E, and three orthogonal magnetic sensors measure the vector magnetic field, B. These reference sites, now referred to as electromagnetic (EM) observatories, are co-located with seismographic sites so that the field data share the same time base, data acquisition, telemetry and archiving system as the seismometer outputs.

The MT observatories are located at Parkfield (PKD1, PKD) 300 km south of the San Francisco Bay Area and Hollister (SAO), halfway between San Francisco and Parkfield (Figure 3.1). In 1995, initial sites were established at PKD1 and SAO, separated by a distance of 150 km, and equipped with three induction coils and two 100 m electric dipoles. PKD1 was established as a temporary seismic site, and when a permanent site (PKD) was found, a third MT observatory was installed in 1999 with three induction coils, two 100 m electric dipoles, and two 200 m electric dipoles. PKD and PKD1 ran in parallel for one month in 1999, and then the MT observatory at PKD1 was closed.

Data at the MT sites are fed to Quanterra data loggers, shared with the collocated BDSN stations, synchronized in time by GPS and sent to the BSL via dedicated communication links.

3. 2003-2004 Activities

3.1 USArray

As mentioned in Chapter 2, the BSL concluded an agreement with IRIS during 2003-2004 to contribute 19 stations of the BDSN to USArray while the experiment is deployed in California. This includes 17 existing stations: CMB, CVS, FARB, HOPS, HUMO, JCC, JRSC, KCC, MNRC, MOD, ORV, PACP, PKD, POTR, WDC, WENL, and YBH as well as two sites currently under construction: GASB and MARC.

The 19 BDSN sites provide USArray with a running start in northern California. In June of 2004, the BSL set up the software necessary to exchange data with USArray and made modifications to the dataloggers to change the

Code	Net	Latitude	Longitude	Elev (m)	Over (m)	Date	Location
BDM	BK	37.9540	-121.8655	219.8	34.7	1998/11 -	Black Diamond Mines, Antioch
BKS	BK	37.8762	-122.2356	243.9	25.6	1988/01 -	Byerly Vault, Berkeley
BRIB	BK	37.9189	-122.1518	219.7	2.5	1995/06 -	Briones Reservation, Orinda
BRK	BK	37.8735	-122.2610	49.4	2.7	1994/03 -	Haviland Hall, Berkeley
CMB	BK	38.0346	-120.3865	697.0	2	1986/10 -	Columbia College, Columbia
CVS	BK	38.3453	-122.4584	295.1	23.2	1997/10 -	Carmenet Vineyard, Sonoma
FARB	BK	37.6978	-123.0011	-18.5	0	1997/03 -	Farallon Island
GASB	BK	39.65	-122.72	TBD	TBD	2004/06 -	Alder Springs
HOPS	BK	38.9935	-123.0723	299.1	3	1994/10 -	Hopland Field Stat., Hopland
HUMO	BK	42.6071	-122.9567	554.9	50	2002/06 -	Hull Mountain, Oregon
JCC	BK	40.8175	-124.0296	27.2	0	2001/04 -	Jacoby Creek
JRSC	BK	37.4037	-122.2387	70.5	0	1994/07 -	Jasper Ridge, Stanford
KCC	BK	37.3236	-119.3187	888.1	87.3	1995/11 -	Kaiser Creek
MHC	BK	37.3416	-121.6426	1250.4	0	1987/10 -	Lick Obs., Mt. Hamilton
MNRC	BK	38.8787	-122.4428	704.8	3	2003/06 -	McLaughlin Mine, Lower Lake
MOBB	BK	36.6907	-122.1660	-1036.5	1	2002/04 -	Monterey Bay
MOD	BK	41.9025	-120.3029	1554.5	5	1999/10 -	Modoc Plateau
ORV	BK	39.5545	-121.5004	334.7	0	1992/07 -	Oroville
PACP	BK	37.0080	-121.2870	844	0	2003/06 -	Pacheco Peak
PKD	BK	35.9452	-120.5416	583.0	3	1996/08 -	Bear Valley Ranch, Parkfield
POTR	BK	38.2026	-121.9353	20.0	6.5	1998/02 -	Potrero Hill, Fairfield
RFSB	BK	37.9161	-122.3361	-26.7	0	2001/02 -	RFS, Richmond
SAO	BK	36.7640	-121.4472	317.2	3	1988/01 -	San Andreas Obs., Hollister
SCCB	BK	37.2874	-121.8642	98	0	2000/04 -	SCC Comm., Santa Clara
WDC	BK	40.5799	-122.5411	268.3	75	1992/07 -	Whiskeytown
WENL	BK	37.6221	-121.7570	138.9	30.3	1997/06 -	Wente Vineyards, Livermore
YBH	BK	41.7320	-122.7104	1059.7	60.4	1993/07 -	Yreka Blue Horn Mine, Yreka

Table 3.1: Currently operating stations of the Berkeley Digital Seismic Network. Each BDSN station is listed with its station code, network id, location, operational dates, and site description. The latitude and longitude (in degrees) are given in the WGS84 reference frame and the elevation (in meters) is relative to the WGS84 reference ellipsoid. The elevation is either the elevation of the pier (for stations sited on the surface or in mining drifts) or the elevation of the well head (for stations sited in boreholes). The overburden is given in meters. The date indicates either the upgrade or installation time.

BH sampling rate from 20 Hz to 40 Hz. This is discussed more extensively in Chapter 8.

In addition, the BSL is collaborating with USArray to identify other sites that may be suitable to become BDSN stations. During the past year, BSL staff have been working to identify 8 potential sites for USArray/BDSN instrumentation, many at UC reserves and field stations (shown in Figure 3.1). One of these sites is the Hastings Reserve.

The BSL identified the Hastings Biological Field Station as a potential site of interest over five years ago, but did not have the funding to proceed. Hastings is a biological field station of the University of California, located in the Carmel Valley. The occurrence of the 12/22/2003 San Simeon earthquake, 70 km to the SW, provided additional motiviation for establishing this station.

Bob Uhrhammer visited Hastings in April 2004 and met with Mark Stromberg, the reserve director. They identified two potential sites for broadband instrumentation. Bob Busby, the USArray field manager, made the final selection and the station was installed in July 2004 by a USArray field team.

In the coming year, BSL staff will be working to permit other sites of interest in northern and central California.

3.2 Station Maintenance

Given the remoteness of the off-campus stations, BDSN data acquisition equipment and systems have been designed, configured, and installed for both cost effectiveness and reliability. As a result, the need for regular station visits has been reduced. Most station visits are necessitated by some catastrophic failure. The 2003-2004 fiscal year was no exception, with the additional complication of a reduction in staff.

Code	Broadband	Strong-motion	Data logger	T/B	GPS	Other	Telemetry	Dial-up
BDM	STS-2	FBA-23	Q4120	Х			FR	
BKS	STS-1	FBA-23	Q980	Х		Baseplates	\mathbf{FR}	Х
BRIB	CMG-3T	FBA-23	Q980		Х	Vol. Strain	FR	Х
BRK	STS-2	FBA-23	Q680				POTS	
CMB	STS-1	FBA-23	Q980	Х	Х	Baseplates	FR/NSN	Х
CVS	STS-2	FBA-23	Q4120	Х			\mathbf{FR}	
FARB	CMG-3T	FBA-23	Q4120	Х	Х		R- FR/R	
GASB	STS-2	FBA-ES-T	Q4120	Х			TBD	
HOPS	STS-1	FBA-23	Q980	Х	Х	Baseplates	FR	Х
HUMO	STS-2	FBA-ES-T	Q4120	Х			NSN	Х
JCC	STS-2	FBA-23	Q980	Х			FR	Х
JRSC	STS-2	FBA-23	Q680				FR	Х
KCC	STS-1	FBA-23	Q980	Х		Baseplates	R-Mi-FR	Х
MHC	STS-1	FBA-23	Q980	Х	Х		\mathbf{FR}	Х
MNRC	STS-2	FBA-ES-T	Q4120	Х			None	Х
MOBB	CMG-1T		GEOSense			Current meter, DPG	None	
MOD	STS-1	FBA-ES-T	Q980	Х	Х	Baseplates	NSN	Х
ORV	STS-1	FBA-23	Q980	Х	Х	Baseplates	FR	Х
PACP	STS-2	FBA-ES-T	Q4120	Х			Mi/FR	
PKD	STS-2	FBA-23	Q980	Х	Х	EM	R-FR	Х
POTR	STS-2	FBA-ES-T	Q4120	Х	Х		FR	Х
RFSB		FBA-ES-T	Q730				FR	
SAO	STS-1	FBA-23	Q980	Х	Х	Baseplates, EM	FR/NSN	Х
SCCB		FBA-ES-T	Q730		Х		\mathbf{FR}	
WDC	STS-2	FBA-23	Q980	Х			FR/NSN	Х
WENL	STS-2	FBA-23	Q4120	Х			\mathbf{FR}	
YBH	STS-1 & STS-2	FBA-23	Q980	Х	Х	Baseplates	FR	Х

Table 3.2: Instrumentation of the BDSN as of 06/30/2003. Every BDSN station consists of collocated broadband and strong-motion sensors, with the exception of PKD1, RFSB and SCCB which are strong-motion only, with a 24-bit Quanterra data logger and GPS timing. Additional columns indicate the installation of a thermometer/barometer package (T/B), collocated GPS receiver as part of the BARD network (GPS), and additional equipment (Other) such as warpless baseplates or electromagnetic sensors (EM). The obs station MOBB also has a current meter and differential pressure gauge (DPG). The main and alternate telemetry paths are summarized for each station. FR - frame relay circuit, R - radio, Mi - microwave, POTS - plain old telephone line, NSN - USGS NSN satellite link, None - no telemetry at this time. An entry like R-Mi-FR indicates multiple telemetry links, in this case, radio to microwave to frame relay.

NSN VSAT modifications

The BSL cooperates with the US NSN on the following sites in northern California: SAO, CMB, WDC, MOD, and HUMO. At each of these sites, the NSN has provided a VSAT to support a communications link. The MOD and HUMO sites are sufficiently remote that the VSAT is the only communications link available.

In 2003, the US NSN began to replace the older VSAT systems and, in February 2004, the USGS turned off the original satellite system. Prior to the end of Feburary, BSL staff traveled to HUMO and MOD to work with USGS contractors on the installation of the new VSAT system. Fortunately, these two installations were completed just before the older system was turned off, avoiding the loss of communications.

Unfortunately, we have not completed the VSAT modifications at the three remaining sites. Hopefully this task will be completed during FY04/05, as the VSATs provide an important secondary communication link at these stations. At this time, data from the non-upgraded stations is provided to NEIC via the BSL data acquisition.

In May, the USGS contractors installed an NSN VSAT at McCone Hall. The replacement of the older VSAT restored the capability of the BSL to receive data directly from the satellite system, rather than over the Internet.

Problems with accelerometers

The San Simeon earthquake highlighted problems with the FBA-23s and Episensors at several BDSN sites. JRSC (FBA-23), MHC (FBA-23), WENL (FBA-23), and RFSB (Episensor) showed problems with the San Simeon recording (primilarly poor response to ground motions). Thus far, we have replaced the sensors at WENL and the JRSC sensor has been sent for repair.

PKD telemetry

At the time the station PKD was installed in 1996, continuous telemetry from the site was achieved by interconnection of a digital spread spectrum radio (900 MHz) with the frame-relay circuit at Carr Hill. Radios in this spectrum have the advantage of not requiring federal licensing or permits. The BSL installation in 1996 was the first use of such equipment in Parkfield. At least two other investigating groups in Parkfield subsequently installed similar radios, ultimately causing interference and a reduction in data bandwidth. In December of 2003, BSL and USGS engineers went to Parkfield to coordinate frequencies, align antennas, and replace and move radio equipment in order to minimize future interference. Over two days, the telemetry path from the PKD vault to the Carr hill site was redirected to a repeater site operated by UCSD. RF signal levels were tested and confirmed. In January of 2004 however, the signal levels on the new path had faded as much as 20 db, apparently due to the increased water absorbtion by vegetation within the direct line of site. During a January trip by BSL engineers, antennas were once again this time redirecting the data path directly to Carr Hill. Unfortunately, that solution was short lived as the signal level fell again faded more than 10 db in the following two weeks. During a third trip, BSL engineers installed a solar powered radio repeater. This solar powered radio repeater has continued to operate satisfactorily through the dry summer months. A replacement for this repeater is planned at a location with will further improve the radio signal level pending permission from the local landowner.

Other maintenance

At KCC, we replaced all the batteries, removing over 1600 lbs of worn out batteries.

The ownership of the POTR site has changed and we are in the process of negotiating with the new owner.

A landslide at WDC resulted in flooding in the tunnel and water entering the dome. As part of bringing the station back online, the dome was opened (for the first time in over 7 years) and the sensors were replaced.

An optoisolator and a DC-DC converter were installed at YBH to reduce the noise.

3.3 New Installations

In the past year, two installations were completed and one new site was started. The installations at PACP and MNRC were completed and a new site at Alder Springs was started. A fourth site, Marconi, is in the process of being permitted and installation will start soon.

Pacheco Peak

The Pacheco Peak site was installed in June 2003. In the initial installation, the seismometers were temporarily placed on the floor in the communications building. During 2003-2004, a pier and vault were constructed. The seismometers were relocated to the vault in September, 2003.

McLaughlin Mine

With the conclusion of mining operations, the McLaughlin Mine in Lake and Yolo counties will be managed as a UC Reserve by UC Davis. The site is on property owned and formerly operated by Homestake Mining Company as a surface gold mine. The site is located approximately 20 kilometers east of the town of Lower Lake, California in an area of Franciscan sandstone with volcanic precipitates forming the gold deposit.

Last year, a steel and concrete vault from a shipping container similar to those found at stations JCC, PKD, and HOPS was constructed. Power and telephone lines were trenched approximately 300 meters to the site. Because of the remoteness of the site, digital telephone data circuits are not available. During 2003-2004, BSL engineers permitted, designed, prefabricated and installed a two-hop wireless radio bridge to a State of California radio and microwave facility on Mt Saint Helena twenty-five kilometers away. From the Mt Saint Helena site, data are relayed to the California Department of Forestry and Fire Protection (CDF) command center in the Napa Valley, where a connection to the frame-relay network is made. A dial up connection is also available for data downloading or communicating with the McLaughlin Mine site.

Alder Springs

The Alder Springs site located approximately 35 kilometers west of the central valley town of Willows. Local geology is mostly serpentine and Franciscan. Previously, a short period observatory has been operated at the Alder Springs site by the California Department of Water Resources.

In June 2004, construction began on a steel and concrete seismographic vault similar to those at JCC, PKD, HOPS, and MNRC. On site excavation was contracted. Inmates from the CDF Valley View Conservation Camp provided labor for the concrete pour and back filling of the excavation. BSL engineers built the forms and framing for the concrete, as well as all electrical wiring at the site. The site is permit was provided by the US Forest Service, Mendocino National Forest.

Continuous telemetry is planned for the site. Again, the remote nature of the site will necessitate a combination of radios and digital circuits. Our initial investigations and efforts to relay the data via the same Mt Saint Helena radio connection as the McLaughlin Mine site proved impossible. We expect to achieve continuous telemetry in the second quarter of 2004-05. This site has been named GASB by the BSL.

Marconi

We permitted a site at the Marconi Conference Center, near Marshall, CA. The conference center is operated by the State of California. This site will be installed in collaboration with the USGS and will form part of the ANSS backbone network. Installation will take place in the fall of 2004.

3.4 MOBB: An Ocean Floor Broadband Station

The Monterey Ocean Bottom Broadband observatory (MOBB) is a collaborative project between the Monterey Bay Aquarium Research Institute (MBARI) and the BSL. Supported by funds from the Packard Foundation to MBARI, NSF/OCE funds and UC Berkeley funds to BSL, its goal has been to install and operate a permanent seafloor broadband station as a first step towards extending the on-shore broadband seismic network in northern California, to the seaside of the North-America/Pacific plate boundary, providing better azimuthal coverage for regional earthquake and structure studies. It also serves the important goal of evaluating background noise in near-shore buried ocean floor seismic systems, such as may be installed as part of temporary deployments of "leap-frogging" arrays (e.g. Ocean Mantle Dynamics Workshop, September 2002). In this context, evaluating the possibility of a posteriori noise deconvolution using auxiliary data (e.g. current meter, differential pressure gauge) as well as comparison with land based recordings (see section 7. in Chapter 12). BSL staff put significant effort in the development of procedures to minimize instrumental noise caused by air circulation inside the seismometer package casing (see 2001-2002 and 2002-2003 BSL Annual Reports). These procedures were later applied to the preparation of 3 similar packages destined for installation on the Juan de Fuca plate in the framework of University of Washington's Keck project.

This project follows the 1997 MOISE experiment, in which a three component broadband system was deployed for a period of 3 months, 40 km off shore in Monterey Bay, with the help of MBARI's "Point Lobos" ship and ROV "Ventana" (Figure 3.5). MOISE was a cooperative program sponsored by MBARI, UC Berkeley and the INSU, Paris, France (*Stakes et al.*, 1998; *Romanowicz*)

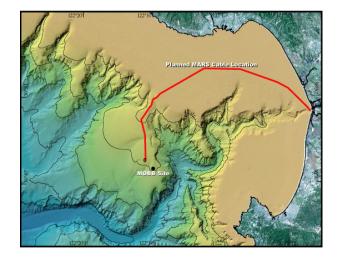


Figure 3.5: Location of the MOBB station in Monterey Bay, California, against seafloor and land topography. The projected path of the MARS cable is indicated by the solid line.

et al., 1999; Stutzmann et al., 2001). During the MOISE experiment, valuable experience was gained on the technological aspects of such deployments, which contributed to the success of the present MOBB installation.

The successful MOBB deployment took place April 9-11, 2002 and the station is currently recording data autonomously (e.g. Romanowicz et al., 2003). Eleven "dives" involving the MBARI ship "Point Lobos" and ROV "Ventana" have so far taken place to exchange data loggers and battery packages. In February 2004, the N/S component seismometer failed. It was temporarily replaced, from 05/19/04 to 07/09/04 by one of the Keck seismometer packages which was conveniently available at that time. The original seismometer was sent back to Guralp Inc. for repair and successfully reinstalled on 07/09/04. Unfortunately, we are continuing to experience problems with the data from the Differential Pressure Gauge (DPG, Cox et al., 1984), which are crucial for the development and implementation of a posteriori noise deconvolution procedures to help counteract the large contribution of infragravity noise in the period range $20-200 \sec (Figure 3.6)$.

With input from BSL staff, MBARI engineers are currently working on hardware and software developments needed to connect the MOBB sensors to the MARS (Monterey Accelerated Research System; http://www. mbari.org/mars/) cable, which is scheduled to be deployed in Fall 2005 (Figure 3.5). This will provide access to real-time, continuous seismic data from MOBB to be merged with the rest of the northern California real-time seismic system.

4. Acknowledgements

Under Barbara Romanowicz's general supervision, Lind Gee and Doug Neuhauser oversee the BDSN data acquisition operations and Bill Karavas is head of the engineering team. John Friday, Dave Rapkin, and Bob Uhrhammer contribute to the operation of the BDSN. Sierra Boyd has been responsible for the operation of the EM observatories. Bill Karavas, Bob Uhrhammer, and Lind Gee contributed to the preparation of this chapter.

The California Governor's Office of Emergency Services provided funding toward the development of sites MNRC, PACP, and GASB as part of the CISN.

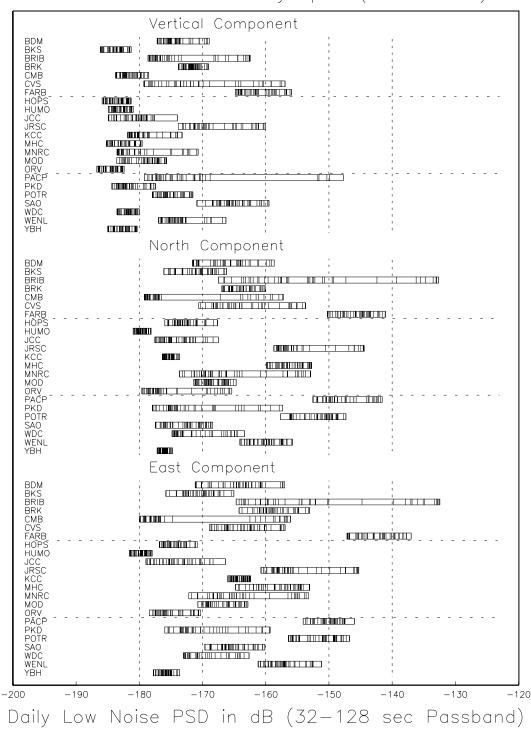
MOBB is a collaboration between the BSL and MBARI, involving Barbara Romanowicz, Bob Uhrhammer, and Doug Neuhauser from the BSL and Debra Stakes and Paul McGill from MBARI. The MBARI team also includes Steve Etchemendy (Director of Marine Operations), Jon Erickson, John Ferreira, Tony Ramirez and Craig Dawe. The MOBB effort at the BSL is supported by funds from NSF/OCE and UC Berkeley. The MOBB seismometer package was funded by NSF/OCE grant #9911392.

5. References

Cox, C., T. Deaton and S. Webb, A deep-sea differential pressure gauge, *J. Atm. Ocean. Tech.*, *1*, 237-245, 1984.

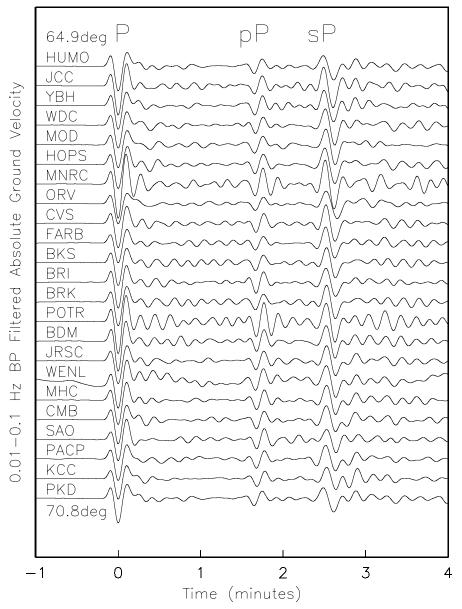
Murdock, J., and C. Hutt, A new event detector designed for the Seismic Research Observatories, USGS Open-File-Report 83-0785, 39 pp., 1983.

Peterson, J. R., Observations and modeling of seismic background noise, U. S. Geological Survey Open File Report, 93-322, 94 pp., 1993.


Romanowicz, B., D. Stakes, J. P. Montagner, P. Tarits, R. Uhrhammer. M. Begnaud, E. Stutzmann, M. Pasyanos, J.F. Karczewski, S. Etchemendy, MOISE: A pilot experiment towards long term sea-floor geophysical observatories, *Earth Planets Space*, 50, 927-937, 1999.

Romanowicz, B., D. Stakes, R. Uhrhammer, P. McGill, D. Neuhauser, T. Ramirez and D. Dolenc, The MOBB experiment: a prototype permanent off-shore ocean bottom broadband station, *EOS Trans. AGU*, Aug 28 issue, 2003.

Stakes, D., B. Romanowicz, J.P. Montagner, P. Tarits, J.F. Karczewski, S. Etchemendy, D. Neuhauser, P. McGill, J-C. Koenig, J.Savary, M. Begnaud and M. Pasyanos, MOISE: Monterey Bay Ocean Bottom International Seismic Experiment, *EOS Trans. AGU*, 79, 301-309, 1998.


Stutzmann, E., J.P. Montagner et al., MOISE: a prototype multiparameter ocean-bottom station, *Bull. Seism. Soc. Am.*, *81*, 885-902, 2001.

Wielandt, E., and J. Steim, A digital very broad band seismograph, Ann. Geophys., 4, 227-232, 1986. Wielandt, E., and G. Streckeisen, The leaf spring seismometer: design and performance, *Bull. Seis. Soc. Am.*, 72, 2349-2367, 1982.

BDSN PSD Low Noise Synopsis (2003-2004)

Figure 3.3: PSD noise analysis for BDSN stations, by channel, in the period range from 32-128 sec from 7/1/2003-6/30/2004. BRIB (situation in a shallow vault that is prone to tilting) and FARB (located on the Farallon Islands) stand out as sites with high noise levels. HUMO (located in an abandoned mine) stands out as an exceptionally quiet site.

2003.208.06:25 Mw 6.8, h=470km, BK.BHZ Waveforms

Figure 3.4: BDSN broadband vertical-component waveforms for a M_w 6.8 deep focus earthquake (470 km) which occurred in the Primor'ye, Russia region on July 27, 2003. This earthquake was felt in Hokkaido and Honshu, Japan. The waveforms were deconvolved to absolute ground velocity, 0.01-0.1 Hz band pass filtered, and plotted in order of increasing distance from HUMO at 64.9 degrees to PKD at 70.8 degrees. Shown are the P, pP, and sP body wave phases. Note that the body waves are highly similar across the BK network and that most noticeable diff erences are in the coda detail and the absolute amplitudes. This provides confirmation that the station transfer function and polarities are correct. The stations MNRC and POTR especially stand out in that their amplitudes are significantly larger than is observed at the other BDSN stations, owing primarily to their siting in the proximity of thick alluvial deposits which amplify the ground motions.

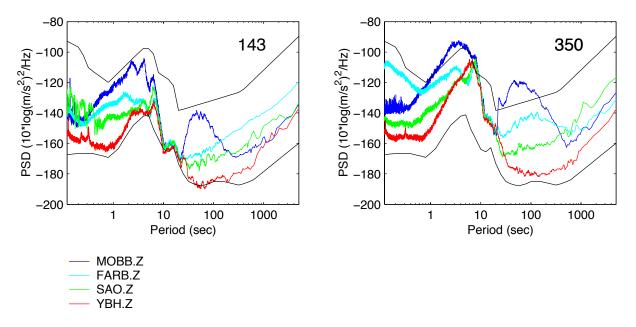


Figure 3.6: Comparison of noise recorded at MOBB and 3 other stations of the BDSN network, on two days in 2002 when no significant earthquake signals were recorded: a "quiet day" (143,left), and a "stormy" day (350,right), as assessed by the mean wave height recordings at a nearby NOAA buoy, located in Monterey Bay. Spectra were calculated using 4 hours of data. The USGS high- and low-noise models for land stations are shown in black (*Peterson*, 1993). Increased noise levels for periods between 20 and 300 sec, are observed at MOBB on both quiet and stormy days, as well as at the island station FARB on the stormy day. The noise level at MOBB between 10 and 20 sec is comparable to the land station YBH, one of the quietest stations of the BDSN. Note how the height and also the width of the infragravity noise band increases on stormy days.

Chapter 4

Northern Hayward Fault Network

1. Introduction

Complementary to the regional broadband network, a deployment of borehole-installed, wide-dynamic range seismographic stations is being established along the Hayward Fault and throughout the San Francisco Bay toll bridges network. This network is a cooperative development of the BSL and the USGS, with support from USGS, Caltrans, EPRI, the University of California Campus/Laboratory Collaboration (CLC) program, LLNL, and LBNL (Figure 4.1 and Table 4.1). Efforts at ongoing development of the network have also recently been enhanced by through coordinated efforts with the Mini-PBO project (Chapter 7, which is partially funded by NSF and by the member institutions of that project).

The purpose of the network is threefold: 1) to lower substantially the threshold of microearthquake detection, 2) to increase the recorded bandwidth for events along the Hayward fault, and 3) to obtain bedrock ground motion signals at the bridges from small earthquakes for investigating bridge responses to stronger ground motions. A lower detection threshold increases the resolution of the fault-zone seismic structure; allows seismologists to monitor the spatial and temporal evolution of seismicity at magnitudes down to $M \sim > -1.0$, where earthquake rates are many times higher than those captured by surface sites; allows researchers to look for pathologies in seismicity patterns that may be indicative of the nucleation of large damaging earthquakes; and allows scientists to investigate fault and earthquake scaling, physics and processes in the San Francisco Bay Area. This new data collection will also contribute to improved working models for the Hayward fault. The bedrock ground motion recordings are also being used to provide input for estimating the likely responses of the bridges to large, potentially damaging earthquakes. Combined with the improved Hayward fault models, source-specific response calculations can be made, as well.

The Hayward Fault Network (HFN) consists of two parts. The Northern Hayward Fault Network (NHFN) is operated by the BSL and currently consists of 25 stations, including those located on Bay Area bridges and at borehole sites of the Mini-PBO (MPBO) project. This network is considered part of the BDSN and uses the network code BK. The Southern Hayward Fault Network (SHFN) is operated by the USGS and currently consists of 5 stations. This network is considered part of the NCSN and uses the network code NC. This chapter is primarily focused on the NHFN and activities associated with the BSL operations.

2. NHFN Overview

The five MPBO sites have 3-component borehole geophone packages. All the remaining HFN sites have sixcomponent borehole sensor packages. The packages were designed and fabricated at LBNL's Geophysical Measurement Facility by Don Lippert and Ray Solbau, with the exception of site SFAB. For the HFN sites, three channels of acceleration are provided by Wilcoxon 731A piezoelectric accelerometers and three channels of velocity are provided by Oyo HS-1 4.5 Hz geophones. Velocity measurements for the MPBO sites are provided by Mark Products L-22 2 Hz geophones (Table 4.2). The 0.1-400 Hz Wilcoxon accelerometers have lower self-noise than the geophones above about 25-30 Hz, and remain on scale and linear to 0.5 g. In tests performed in the Byerly vault at UC Berkeley, the Wilcoxon is considerably quieter than the FBA-23 at all periods, and is almost as quiet as the STS-2 between 1 and 50 Hz.

Sensors are generally installed at depths of about 100 m, but several sites have sensors emplaced at depths of over 200 m and the Dumbarton bridge sites have sensors at multiple depths (Table 4.1). During initial stages of the project, the NHFN sensors provided signals to on-site Quanterra Q730 and RefTek 72A-07 data loggers.

Today, twelve of the NHFN sites currently have Quanterra data loggers with continuous telemetry to the BSL. Similar to BDSN sites, these stations are capable of onsite recording and local storage of all data for more than one day and have batteries to provide backup power. Signals from these stations are digitized at a variety of data rates up to 500 Hz at 24-bit resolution (Table 4.3). In contrast to the BDSN implementation, the NHFN data

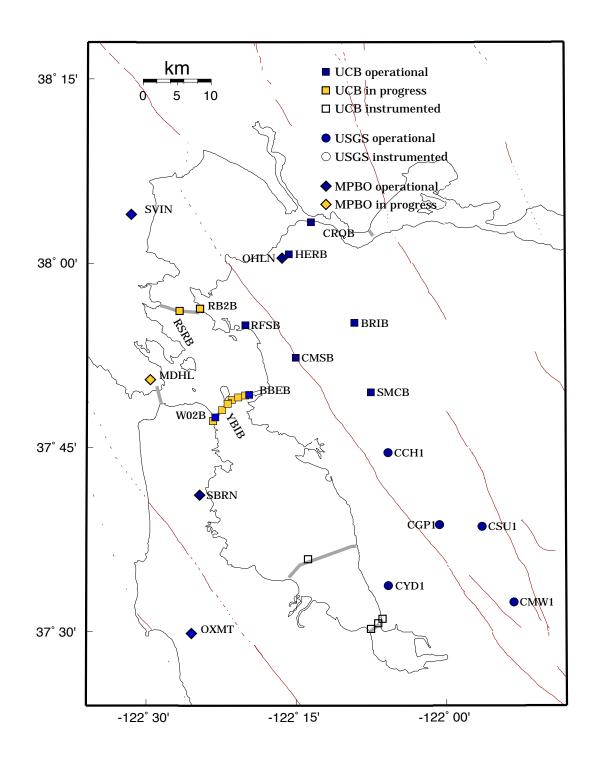


Figure 4.1: Map showing the locations of the HFN stations operated by the BSL (NHFN - squares) and the USGS (SHFN - circles) and Mini-PBO stations (diamonds) in the San Francisco Bay Area. Operational sites are filled, while sites in progress are grey. Other instrumented boreholes are indicated as open symbols.

loggers employ casual FIR filters at high data rates and acausal FIR filters at lower data rates. Because of limitations in telemetry bandwidth and disk storage, 8 of these sites transmit triggered data at 500 sps, using the Murdock, Hutt, and Halbert (MHH) event detection algorithm (*Murdock and Hutt*, 1983), and continuous data at reduced rates (100, 20 and 1 sps) to the BSL, while the four MPBO sites transmit continuous data at 100 sps (one MPBO site does not have telemetry yet).

The remaining 12 sites of the NHFN have in the past recorded data using RefTek data loggers. These sites do not have continuous telemetry for acquisition and required visits from BSL staff for data recovery. Collection of data from these sites has been discontinued, but efforts are underway to upgraded them with Quanterra Q4120 data loggers and continuous telemetry.

Signals from the 5 SHFN stations are digitized by Nanometrics data loggers at 100 sps and transmit continuous data to Menlo Park by radio. These digital data streams are processed by the Earthworm system with the NCSN data and waveforms are saved when the Earthworm detects an event.

Experience has shown that the MHH detector does not provide uniform triggering across the NHFN on the smallest events of interest. In order to insure the recovery of 500 sps data for these earthquakes, a central-site controller has recently been implemented at the BSL using the 500 sps vertical component geophone data for event detection. Originally the 100 sps vertical component geophone data was used for event detection but the bandwidth proved to be inadequate for detection of the smaller events where most of the seismic wave energy was at frequencies above 40 Hz. Triggers from this controller are being used to recover the 500 sps data from the NHFN data loggers.

Data from the NHFN and SHFN are archived at the NCEDC. At this time, the tools are not in place to archive the Hayward fault data together. The NHFN data are archived with the BDSN data, while the SHFN are archived with the NCSN data (Chapter 10). However, the new central-site controller will provide the capability to both include SHFN data in the event detection and extract SHFN waveforms for these events in the future.

As originally planned, the Hayward Fault Network was to consist of 24 to 30 stations, 12-15 each north and south of San Leandro, managed respectively by UCB and USGS. This is not happening quickly, although west of the fault, Caltrans has provided sites along the Bay bridges. This important contribution to the Hayward Fault Network has doubled the number of sites with instrumentation. At times, Caltrans provides holes of opportunity away from the bridges (e.g., HERB), so we have plans for additional stations that will bring the network geometry to a more effective state for imaging and real-time monitoring of the fault.

Sensor	Channel	Rate (sps)	Mode	FIR
Accelerometer	CL?	500.0	Т	Ca
Accelerometer	HL?	100.0	\mathbf{C}	Ca
Accelerometer	BL?	20.0	\mathbf{C}	Ac
Accelerometer	LL?	1.0	\mathbf{C}	Ac
Geophone	DP?	500.0	Т	Ca
Geophone	$\mathrm{EP}?$	100.0	\mathbf{C}	Ca
Geophone	BP?	20.0	С	Ac
Geophone	LP?	1.0	\mathbf{C}	Ac

Table 4.3: Typical data streams acquired at each NHFN site, with channel name, sampling rate, sampling mode and FIR filter type. C indicates continuous; T triggered; Ca causal; and Ac acausal. The 100 sps channels (EP & HL) are only archived when the 500 sps channels are not available.

As a check on the calibration and an example of the capabilities of a borehole installed network, we compare the bandpass filtered (0.4-4 Hz) ground velocity data recorded at NHFN and MPBO stations for a M 7.3 deep focus teleseism that occurred in the vicinity of the Fiji Islands at a depth of 582 km. in Figure 4.2.

3. 2003-2004 Activities

In addition to routine maintenance, operations and data collection; activities of the NHFN project over the past year have also included numerous efforts at network expansion, quality assurance, performance enhancement and catalog development.

3.1 Station Maintenance

Shown in Figure 4.3 are power spectral density (PSD) distributions of background noise for a sample of 8 NHFN land and bridge site stations. In general, background noise levels of the borehole HFN stations is more variable and generally higher than that of the Parkfield HRSN borehole stations (Figure 5.2). This is due in large part to the significantly greater level of cultural noise in the Bay Area, and to the fact that noise reduction efforts on the much more recently installed NHFN stations are still underway. For example the two noisiest stations (i.e. BBEB and W02) are located on the Bay Bridge which is currently undergoing earthquake retrofit and east span reconstruction. These stations have also only recently come back on-line with upgraded infrastructure and instrumentation, so the full complement of noise reduction modifications have not vet been completed.

On average the MPBO NHFN sites are more consistent and quieter (Figure 7.4). This is due in large part to the greater depth of the MPBO sensors, the locations of MPBO stations in regions of generally less industrial and other cultural noise sources, and possibly to the absence

Code	Net	Latitude	Longitude	Elev (m)	Over (m)	Date	Location
CRQB	BK	38.05578	-122.22487	-25.0	38.4	1996/07 - current	СВ
HERB	BK	38.01250	-122.26222	-25.0	217.9	2000/05 - current	Hercules
BRIB	BK	37.91886	-122.15179	219.7	108.8	1995/07 - current	BR, Orinda
RFSB	BK	37.91608	-122.33610	-27.3	91.4	1996/01 - current	RFS, Richmond
CMSB	BK	37.87195	-122.25168	94.7	167.6	1994/12 - current	CMS, Berkeley
SMCB	BK	37.83881	-122.11159	180.9	3.4	1997/12 - current	SMC, Moraga
SVIN	BK	38.03325	-122.52638		158.7	2003/08 - current	MPBO, St. Vincent's school
OHLN	BK	38.00742	-122.27371		196.7	2001/07 - current	MPBO, Ohlone Park
MDHL	BK	37.84227	-122.49374		160.6	in progress	MPBO, Marin Headlands
SBRN	BK	37.68562	-122.41127		157.5	2001/08 - current	MPBO, San Bruno Mtn.
OXMT	BK	37.498	-122.425		194.2	2003/12 - current	MPBO, Ox Mtn.
BBEB	BK	37.82167	-122.32867		150.0	2002/05 - current	BB, Pier E23
E17B	BK	37.82086	-122.33534		160.0	1995/08 - current *	BB, Pier E17
E07B	BK	37.81847	-122.34688		134.0	1996/02 - current *	BB, Pier E7
YBIB	BK	37.81420	-122.35923	-27.0	61.0	1997/12 - current *	BB, Pier E2
YBAB	BK	37.80940	-122.36450		3.0	1998/06 - current *	BB, YB Anchorage
W05B	BK	37.80100	-122.37370		36.3	1997/10 - current *	BB, Pier W5
W02B	BK	37.79120	-122.38525		57.6	2003/06 - current	BB, Pier W2
SFAB	BK	37.78610	-122.3893		0.0	1998/06 - current *	BB, SF Anchorage
RSRB	BK	37.93575	-122.44648	-48.0	109.0	1997/06 - current *	RSRB, Pier 34
RB2B	BK	37.93	-122.41		133.8	2003/07 - current *	RSRB, Pier 58
SM1B	BK	37.59403	-122.23242		298.0	not recorded	SMB, Pier 343
DB3B	BK	37.51295	-122.10857		1.5	1994/09 - 1994/11	DB, Pier 44
					62.5	1994/09 - $1994/09$	
					157.9	1994/07 - current \ast	
DB2B	BK	37.50687	-122.11566			1994/07 - current *	DB, Pier 27
					189.2	1992/07 - 1992/11	
DB1B	BK	37.49947	-122.12755		0.0	1994/07 - $1994/09$	DB, Pier 1
					1.5	1994/09 - $1994/09$	
					71.6	1994/09 - $1994/09$	
					228.0	1993/08 - current *	
CCH1	NC	37.7432	-122.0967	226		1995/05 - current	Chabot
CGP1	NC	37.6454	-122.0114	340		1995/03 - current	Garin Park
CSU1	NC	37.6430	-121.9402	499		1995/10 - current	Sunol
CYD1	NC	37.5629	-122.0967	-23		2002/09 - current	Coyote
CMW1	NC	37.5403	-121.8876	343		1995/06 - current	Mill Creek

Table 4.1: Stations of the Hayward Fault Network. Each HFN station is listed with its station code, network id, location, operational dates, and site description. The latitude and longitude (in degrees) are given in the WGS84 reference frame. The elevation of the well head (in meters) is relative to the WGS84 reference ellipsoid. The overburden is given in meters. The start dates indicate either the upgrade or installation time. The abbreviations are: BB - Bay Bridge; BR - Briones Reserve; CMS - Cal Memorial Stadium; CB - Carquinez Bridge; DB - Dumbarton Bridge; MPBO - mini-Plate Boundary Observatory RFS - Richmond Field Station; RSRB - Richmond-San Rafael Bridge; SF - San Francisco; SMB - San Mateo Bridge; SMC - St. Mary's College; and, YB - Yerba Buena. The * for stations indicates that the stations are not currently recording data. RSRB is shut down while Caltrans is retrofitting the Richmond-San Rafael bridge (as of April 19, 2001) and YBIB has been off-line since August 24, 2000 when power cables to the site where shut down. Other off-line stations are in the process of being upgraded as funding for equipment becomes available. The table also includes 2 MPBO stations which became operational in the last 2 years, and 3 MPBO borehole sensors that have recently been installed.

of powered sensors (i.e. accelerometers) in their borehole sensor packages.

tions equipped with the Q4120 data loggers is power line noise (60 Hz and its harmonics at 120, 180, and 240 Hz). This noise reduces the sensitivity of the MHH detectors.

One of the most pervasive problems at NHFN sta-

Site	Geophone	Accelerometer	Z	H1	h2	Data logger	Notes	Telem.
CRQB	Oyo HS-1	Wilcoxon 731A	-90	251	341	Q4120		\mathbf{FR}
HERB	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Q4120		\mathbf{FR}
BRIB	Oyo HS-1	Wilcoxon 731A	-90	79	349	Q4120	Acc. failed, Dilat.	\mathbf{FR}
RFSB	Oyo HS-1	Wilcoxon 731A	-90	256	346	Q4120		\mathbf{FR}
CMSB	Oyo HS-1	Wilcoxon 731A	-90	19	109	Q4120		\mathbf{FR}
SMCB	Oyo HS-1	Wilcoxon 731A	-90	76	166	Q4120	Posthole	\mathbf{FR}
SVIN	Mark L-22		-90	298	28	Q4120	Tensor.	FR/Rad.
OHLN	Mark L-22		-90	313^{*}	43^{*}	Q4120	Tensor.	\mathbf{FR}
MDHL	Mark L-22		-90	TBD	TBD	None at present	Tensor.	
SBRN	Mark L-22		-90	347	77	Q4120	Tensor.	\mathbf{FR}
OXMT	Mark L-22		-90	163	253	Q4120	Tensor.	\mathbf{FR}
BBEB	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Q4120	Acc. failed	Radio
E17B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
E07B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
YBIB	Oyo HS-1	Wilcoxon 731A	-90	257	347	None at present	Z geop. failed	FR/Rad.
YBAB	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
W05B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
W02B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Q4120		Radio
SFAB	None	LLNL S-6000	TBD	TBD	TBD	None at present	Posthole	
RSRB	Oyo HS-1	Wilcoxon 731A	-90	50	140	None at present	2 acc. failed	\mathbf{FR}
RB2B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present	1 acc. failed	
SM1B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
DB3B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present	Acc. failed	
DB2B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present		
DB1B	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	None at present	Acc. failed	
CCH1	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Nanometrics HRD24	Dilat.	Radio
CGP1	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Nanometrics HRD24	Dilat.	Radio
CSU1	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Nanometrics HRD24	Dilat.	Radio
CYD1	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Nanometrics HRD24	Dilat.	Radio
CMW1	Oyo HS-1	Wilcoxon 731A	-90	TBD	TBD	Nanometrics HRD24	Dilat.	Radio

Table 4.2: Instrumentation of the HFN as of 06/30/2004. Every HFN downhole package consists of co-located geophones and accelerometers, with the exception of MPBO sites. 6 HFN sites also have dilatometers (Dilat.) and the 5 MPBO sites have tensor strainmeters (Tensor.) 12 NHFN sites have Quanterra data loggers with continuous telemetry to the BSL. The remaining sites are being upgraded to Quanterra data loggers. The 5 SHFN sites have Nanometrics data loggers with radio telemetry to the USGS. The orientation of the sensors (vertical - Z, horizontals - H1 and H2) are indicated where known or identified as "to be determined" (TBD). The azimuths of the horizontal component geophones have a 180 degree ambiguity owing to the dead vertical component geophone.

Whenever a NHFN station is visited, the engineer at the site and a seismologist at the BSL work together to expedite the testing process, especially when attempting to identify and correct ground-loop faults which generally induce significant 60, 120, 180, and 240 Hz seismic signal contamination due to stray power line signal pickup, generally inductively coupled and aggravated by the presence of ground loops.

Below is a synopsis of maintenance efforts performed over the past year for several NHFN stations that gives some idea of the ongoing maintenance and performance enhancing measures that we are continuing to implement.

Geophone Calibrations

Comparisons of the inferred ground accelerations generated by local earthquakes, from co-sited HFN geophone and accelerometer pairs, shows that the waveforms generally are quite coherent in frequency and phase response but that their inferred ground accelerations differ significantly. At times the amplitudes differ by up to a factor of 2 while the times of the peak amplitudes are identical. This implies that the free period and damping of the geophones are well characterized and also that the generator constant is not accurate (assuming that the corresponding ground accelerations inferred from the accelerometers are accurate).

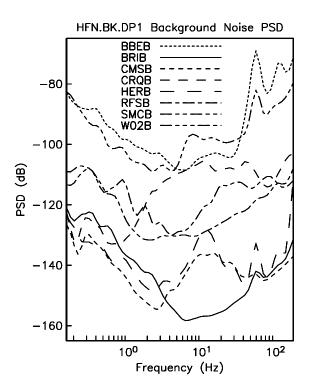


Figure 4.3: Plot showing the HFN.BK.DP1 background noise, PSD, for 8 of the NHFN stations. Plotted are the background low-noise PSD estimates. Ten minutes of .BK.DP1 data starting at 2003.225.0900 (2 AM PDT) were used in the analysis. Note that there is considerable variation in the general level and structure of the individual station background noise PSD estimates. Some of the stations show peaks at 60 Hz and its harmonics while others have a high average background level. The two bridge sites, BBEB and W02B are the noisiest while land site BRIB in Briones Regional Park (well away from the heavy cultural noise of the more populated region of the Bay Area) is the quietest. Two stations, CMSB and HERB show a peak in the 20-30 Hz range. The peak at CMSB is probably due to excitation of modes in the open bore hole and the peak at HERB is due to excitation of the local structure by the adjacent railway line and highways 4 and 80. The three stations in the middle of the group (RFSB, SMCB and CRQB) are responding to the local cultural noise. There are numerous ongoing experiments at the Richmond Field Station which are affecting the noise level at RFSB, CRQB is sited near a sewage treatment plant and the Carquinez bridge, and SMCB is currently only installed at post hole depth (3.5 m) on the St. Mary's campus.

Generally speaking, the accelerometers, being an active device, are more accurate and also more stable that the geophones so it is reasonable to assume that the most likely reason for the difference is that the assumed generator constants for the geophones are not accurate. *Rodgers* et al. (1995) describe a way to absolutely calibrate the geophones in situ and to determine their generator constant, free period and fraction of critical damping. The only external parameter that is required is the value of the geophones inertial mass.

We have built a calibration test box which allows us to routinely perform the testing described by *Rodgers et al.* whenever site visits are made. The box drives the signal coil with a known current step and rapidly switches the signal coil between the current source and the data logger input. From this information, expected and actual sensor response characteristics can be compared and corrections applied. Also, changes in the sensor response over time can be evaluated so that adjustments can be made and pathologies arising in the sensors due to age can be identified. Once a geophone is absolutely calibrated, we can also check the response of the corresponding accelerometer.

We are now performing the initial calibration tests and response adjustments for all NHFN stations as sites are visited for routine maintenance. We also plan a scheduled re-tests of all sites to monitor for sensor responses changes through time.

NHFN Station Maintenance Synopsis

The NHFN station hardware has proven to be quite reliable and half of the currently operating stations (BRIB, CMSB, CRQB and SMCB) did not require a site visit during the past year. The following stations were visited to perform various maintenance and/or repair operations.

BBEB: Prepped BBEB hardware for installation of station at pier E7. Data will be telemetered from pier E7 to BBEB via FreeWave 900 MHz radio and forwarded by the Q4120 to the BSL via 2.4 GHz radio along with the BBEB data. Ran Wilan radio tests on simultaneous links to BBEB and W02B.

HERB: Revamped the FRAD power supply and installed a twist-lock plug on the input power cable.

RFSB: Upgraded Q4120 data logger with installation of Q730PWR board and new software. Set battery charge voltage to 13.6 Vdc. Upgraded Q730 with software version is MS001122AL.bo, and config version is mscfg011004.lzh. Changed Q730 datalogger configuration of the B?? channels from 20 Hz to 40 Hz in support of USArray.

W02B: Installed grounding clamp and changed wiring to reduce 60 Hz noise on velocity channel. Extended DC cables of AC adapters for the FRAD and Cylink radio so that they will reside in the battery box instead of the electronics box. Replaced blown fuse on battery positive cable with a 7.5A. Realigned and securely clamped antenna at McCone roof end of the W02B telemetry link to stop it from moving in high winds. Changed the AC power adapter on the McCone master Cylink radio. Encountered problems with GPS clock not locking and subsequently fixed problem using Quanterra supplied procedure to reset the GPS clock.

3.2 New Installations

San Francisco-Oakland Bay Bridge

The infrastructure at seven stations along the San Francisco-Oakland Bay Bridge (SFAB, W02B, W05B, YBAB, E07B, E17B, and BBEB) was upgraded with the installation of weatherproof boxes, power, and telemetry in anticipation of installing Q4120 data loggers and telemetering the data back to Berkeley. BBEB was brought on-line in May of 2002, and W02B in June of 2003.

Land Sites

Agreements with Caltrans and St. Mary's college have been made to replace the post hole installation at St. Mary's college (SMCB) with a deep borehole installation. The hole is to be drilled by Caltrans as a hole of opportunity when the schedule of a Caltrans drilling crew has an opening. The site has been reviewed by UCB, Caltrans and St. Mary's college personnel, and we are now in the drilling queue. Depending on the geology at borehole depth, this site my either become a MPBO site (w/o accelerometers) or a standard land site installation including both geophones and accelerometers.

Caltrans has also provided funding for instrumentation of several other land sites which we will install as future Caltrans drill time becomes available. Currently we are considering sites for these additional holes-of-opportunity at Pt. Pinole, on Wildcat Mtn. in the north Bay. We are in the process of obtaining permission from the East Bay Regional Park District (EBRPD) to site a HFN station at the Point Isabel Regional Shoreline.

Mini-PBO

The stations of the Mini-PBO project (Chapter 7) are equipped with borehole seismometers. As these stations have become operational, they augment HFN coverage (Figure 4.1). In the last year, SVIN and SBRN have added coverage to the north bay and east side of the south bay, respectively.

3.3 Data Analysis and Results

Combined Catalog

We are building a HF-specific data archive from the existing waveform data that have been collected by the heterogeneous set of recording systems in operation along the Hayward fault (i.e. the NHFN, SHFN, NCSN, and BDSN continuous and triggered waveforms). Recently we have taken the NHFN triggers collected during operations between 1995.248 and 1998.365 (recorded on portable RefTek recorders) and origin times from the Northern California catalog for this time period and undertaken a massive association of event and trigger times. The purpose of the effort is to compile a relatively uniform catalog of seismic data to low magnitudes and extending back in time to the beginning of reliable HFN data collection. The process has reduced nearly a million individual time segments to 316 real events along the Hayward fault during the period–an increase in the number of events of a factor of about 2.5 to 3 over the Northern California catalog alone in the same area.

Event Detection

As noted in the Introduction, one of the purposes of the HFN is to lower the threshold of microearthquake detection. Towards this goal, we have been developing new algorithms: a pattern recognition approach to identify small events; a phase onset time detector with sub-sample timing resolution, and; a phase coherency method for single component identification of highly similar events.

Pattern Recognition: In order to improve the detection and analysis of small events (down to $M_L \sim$ -1.0) some specialized algorithms are being developed. The Murdock-Hutt detection algorithms used by MultiSHEAR, which basically flags an event whenever the short-term average exceeds a longer-term average by some threshold ratio, is neither appropriate for nor capable of detecting the smallest seismic events. One solution is to use a pattern recognition approach to identify small events associated with the occurrence of an event which was flagged by the REDI system. Tests have indicated that the pattern recognition detection threshold is $M_L \sim -1.0$ for events occurring within ~ 10 km of a NHFN station. The basic idea is to use a quarter second of the initial P-wave waveform, say, as a master pattern to search for similar patterns that occur within \pm one day, say, of the master event. Experimentally, up to six small CMSB recorded events, at the $M_L \sim -1.0$ threshold and occurring within \pm one day of a master pattern, have been identified.

The pattern recognition method is CPU intensive, however, and it will require a dedicated computer to handle the pattern recognition tasks. To expedite the auto-correlation processing of the master pattern, an integer arithmetic cross-correlation algorithm has been developed which speeds up the requisite processing by an order of magnitude.

Phase Onset Time Detection: The phase onset time detector makes use of the concept that the complex spectral phase data, over the bandwidth of interest (i.e., where the SNR is sufficiently high), will sum to a minimum at the onset of an impulsive P-wave. The algorithm searches for the minimum phase time via phase shifting in

the complex frequency domain over the bandwidth where the SNR is above 30 dB, say, to identify the onset time of the seismic phase. The algorithm requires that the recorded waveforms be deconvolved to absolute ground displacement. This implicitly requires that any acausality in the anti-aliasing filtration chain, such as the FIR filters used in the BDSN Quanterra data loggers, be removed. The algorithm typically resolves P-wave onset times to one-fiftieth of the sample interval or better.

Phase Coherency: A spectral phase coherency algorithm was developed to facilitate high resolution quantification of the similarities and differences between highly similar Hayward fault events which occur months to years apart. The resolution of the complex spectral phase coherency methodology is an order of magnitude better that the cross correlation method which is commonly used to identify highly similar events with resolution of order a few meters. This method, originally developed using NHFN borehole data, is now being applied as well to data from another borehole network (the HRSN) to provide more rapid and objective identification of the large fraction (approx. 40%) of characteristically repeating microearthquakes that occur at Parkfield, CA.

Orinda Sequence

On October 19 and 20, 2003, two earthquakes with M_L 3.5 and 3.4 occurred ENE of Orinda, CA. Fortuitously, their hypocenters were located almost directly below the northern HFN borehole station at Briones (BRIB). While the automatic system report depths of approximately 10 km for these two events, the S-P times at BRIB indicates that they must be located at depths of less than 5 km. More than 4000 fore- and aftershocks were recorded, during the first week of the sequence, with magnitudes down to -2. At the beginning of December, 2003 the aftershocks were continuing at a rate of six per day with a M_d 2.9 occurring on January 1, 2004.

This sequence, which has events spanning six orders of magnitude, is ideal for tesing the pattern recognition, phase onset time detection and phase coherence algorithms discussed above.

4. Acknowledgements

Thomas V. McEvilly, who passed away in February 2002, was instrumental in developing the Hayward Fault Network, and without his dedication and hard work the creation and continued operation of the NHFN would not have been possible.

Under Bob Nadeau's, Bob Uhrhammer's and Doug Dreger's general supervision, Rich Clymer, Wade Johnson, Doug Neuhauser, Bill Karavas, John Friday, and Dave Rapkin all contribute to the operation of the NHFN. Bob Nadeau, Bob Uhrhammer and Lind Gee contributed to the preparation of this chapter. Partial support for the NHFN is provided by the USGS through the NEHRP external grant program. Expansion of the NHFN has been made possible through generous funding from Caltrans, with the assistance of Pat Hipley. Larry Hutchings of LLNL has been an important collaborator on the project.

5. References

Rogers, P.W., A.J. Martin, M.C. Robertson, M.M. Hsu, and D.B. Harris, Signal-Coil Calibration of Electromagnetic Seismometers, *Bull. Seism. Soc. Am.*, 85(3), 845-850, 1995.

Murdock, J., and C. Hutt, A new event detector designed for the Seismic Research Observatories, USGS Open-File-Report 83-0785, 39 pp., 1983.

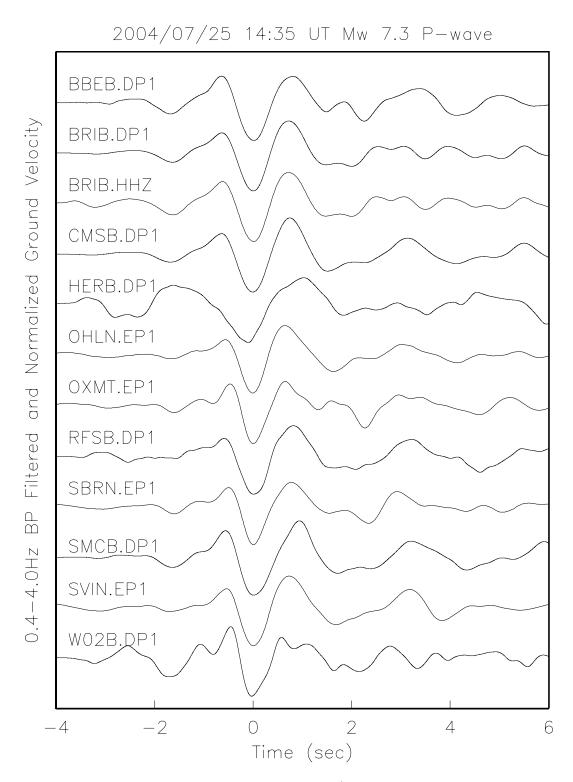


Figure 4.2: Plot of the P-wave waveforms, recorded by the NHFN/MPBO borehole stations, for a major deep focus Fiji Islands earthquake $(2004/07/25,14:35 \text{ UT}; 582 \text{ km} \text{ deep}; M_w 7.3; 8514 \text{ km} S55W \text{ of Berkeley})$. The waveform data were deconvolved to ground velocity, 0.4-4.0 Hz band pass filtered to enhance the P-wave signal and normalized prior to plotting. For comparison, the traces were time shifted to align the P-wave on the dominant trough (at 0 seconds) except at HERB and W02B where the time shift was estimated from the apparent slowness of the P-wave. The waveforms are highly similar at all stations except HERB where the geophone response is problematic and W02B where there the trace was inverted for plotting. For reference, the BRIB.HHZ (surface) broadband recorded waveform (third trace) is also shown.

Chapter 5

Parkfield Borehole Network

1. Introduction

The operation of the High Resolution Seismic Network (HRSN) at Parkfield, California began in 1987, as part of the U.S. Geological Survey initiative known as the Parkfield Prediction Experiment (PPE) (*Bakun and Lindh*, 1985).

Figure 5.1 shows the location of the network, its relationship to the San Andreas fault, sites of significance from previous and ongoing research using the HRSN, double-difference relocated earthquake locations from 1987-1998.5, routine locations of seismicity since August 2002, and the epicenter of the 1966 M6 earthquake that motivated the PPE. The HRSN records exceptionally high-quality data, owing to its 13 closely spaced threecomponent borehole sensors (generally emplaced in the extremely low attenuation and background noise environment at 200 to 300 m depth (Table 5.1)), its highfrequency wide bandwidth recordings (0-100 Hz), and its low magnitude detection threshold (below magnitude -1.0).

Several aspects of the Parkfield region make it ideal for the study of small earthquakes and their relationship to tectonic processes. These include the fact that the network spans the expected nucleation region of a repeating magnitude 6 event and a significant portion of the transition from locked to creeping behavior on the San Andreas fault, the availability of three-dimensional P and S velocity models (*Michelini and McEvilly*, 1991), the existing long-term HRSN seismicity catalogue that is complete to very low magnitudes and that includes at least half of the M6 seismic cycle, a well-defined and simple fault segment, and a homogeneous mode of seismic energy release as indicated by the earthquake source mechanisms (over 90% right-lateral strike-slip).

In a series of journal articles and Ph.D. theses, we have presented the cumulative, often unexpected, results of U.C. Berkeley's HRSN research efforts (see: http://www.seismo.berkeley.edu/seismo/faq/ parkfield_bib.html). They trace the evolution of a new and exciting picture of the San Andreas fault zone responding to its plate-boundary loading, and they are forcing new thinking on the dynamic processes and conditions within the fault zone at the sites of recurring small earthquakes.

More recently, the Parkfield area hasbecome an area of focus of the Earthscope Project (http://www.earthscope.org) through the San Andreas Fault Observatory at Depth (SAFOD) experiment (http://www.icdp-online.de/sites/sanandreas/ news/news1.html). SAFOD is a comprehensive project to drill into the hypocentral zone of repeating M ~ 2 earthquakes on the San Andreas Fault at a depth of about 3 km. The goals of SAFOD are to establish a multi-stage geophysical observatory in close proximity to these repeating earthquakes, to carry out a comprehensive suite of downhole measurements in order to study the physical and chemical conditions under which earthquakes occur and to exhume rock and fluid samples for extensive laboratory studies (Hickman et al., 2004).

2. HRSN Overview

$2.1 \quad 1986 - 1998$

Installation of the HRSN deep (200-300m) borehole sensors initiated in 1986 and recording of triggered 500 sps earthquake data began in early 1987. The HRSN sensors are 3-component geophones in a mutually orthogonal gimbaled package. This ensures that the sensor corresponding to channel DP1 is aligned vertically and that the others are aligned horizontally. In November 1987, the Varian well vertical array was installed and the first VSP survey was conducted, revealing clear Swave anisotropy in the fault zone (Daley and McEvilly, 1990). During 1988, the original 10 station network was completed which included a deep (572 m) sensor from the Varian well string. Data from network stations was telemetered into a central detection/recording system operating in triggered mode. Also in 1988 the Varian string system was slaved, for about two years, to the Vibroseis control signals, allowing simultaneous recording of vibrator signals on both systems. For several years beginning in 1991, low-gain event recorders (from PASSCAL) were installed at several of the sites to extend the dynamic range from about M_L 1.5 to M_L about 4.5.

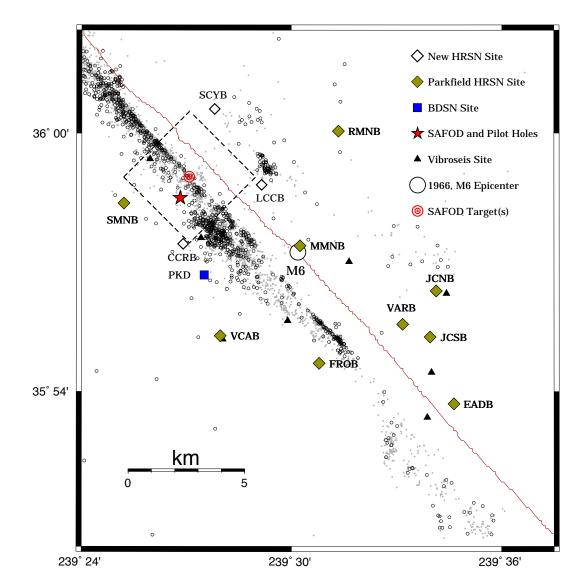


Figure 5.1: Map showing the San Andreas Fault trace, the location of the original 10 Parkfield HRSN stations (filled diamonds) and the 3 new sites (open diamonds) installed to enhance coverage around the SAFOD facility. Station GHIB (Gold Hill, not shown) is located on the San Andreas Fault about 8 km to the Southeast of station EADB. The location of the BDSN broadband station PKD is also shown (filled square). The location of the SAFOD pilot hole and main drill site are shown by the filled star. Location of the 2 alternative M2 repeating earthquake targets (70 meters apart) are shown as concentric circles. Because of the SAFOD experiment, the 4 km by 4 km dashed box surrounding the SAFOD zone is a region of particular interest to BSL researchers. The epicenter of the 1966 M6 Parkfield main shock is located at the large open circle. Routine locations of events recorded by the earlier vintage 10 station HRSN, relocated using an advanced 3-D double-differencing algorithm applied to a cubic splines interpolated 3-D velocity model (*Michelini and McEvilly*, 1991), are shown as gray points. The locations of the 8 source points for the Vibroseis wave propagation monitoring experiment (*Karageorgi et al.*, 1992, 1997) are represented by small black triangles.

The data acquisition system operated quite reliably until late 1996, when periods of unacceptably high down time developed. During this period, as many as 7 of the remote, solar-powered telemetered stations were occasionally down simultaneously due to marginal solar generation capacity, old batteries, and recording system outages of a week or more were not uncommon. In July 1998, the original data acquisition system failed permanently. This system was a modified VSP recorder acquired from LBNL, based on a 1980- vintage LSI-11 cpu and a 5 MByte removable Bernoulli system disk with a 9-track tape drive, configured to record both triggered microearthquake and Vibroseis data (Vibroseis discontinued in 1994, Karageorgi et al., 1997). The system was remote and completely autonomous, and data tapes were mailed about once a month to Berkeley for processing and analysis. The old system also had a one-sample timing uncertainty and a record length limitation because the tape write system recovery after event detection was longer than the length of the record, leaving the system off-line after record termination and until write recovery was completed.

2.2 1998 - 1999

In December 1998, the original HRSN acquisition system was replaced by 10 stand-alone PASSCAL RefTek systems with continuous recording. To process these data, development of a major data handling procedure will be required, in order to identify the microearthquakes down to M = -1, since continuous telemetry to the Berkeley Seismological Laboratory (BSL) and application of a central site detection scheme was not an option at that time.

In July 1999, the network was reduced to four RefTeks at critical sites that would ensure continuity in monitoring at low magnitudes and the archive of characteristic events for studying the evolution of their recurrence intervals. Properties of the 10 original sites are summarized in Table 5.2.

2.3 Upgrade and SAFOD Expansion

Thanks to emergency funding from the USGS NEHRP, we replaced the original 10-station system with a modern 24-bit acquisition system (Quanterra 730 4-channel digitizers, advanced software using flash disk technology, spread-spectrum telemetry, Sun Ultra 10/440 central processor at the in-field collection point, with 56K frame-relay connectivity to Berkeley) in 2001. The new system is now online and recording data continuously at a central site located on California Department of Forestry (CDF) fire station property in Parkfield.

We have also added three new borehole stations, with NSF support, at the NW end of the network as part of the SAFOD project to improve resolution of the structure,

Sensor	Channel	Rate (sps)	Mode	FIR
Geophone	DP?	250.0	T and C	Ca
Geophone	BP?	20.0	\mathbf{C}	Ac

Table 5.3: Data streams currently being acquired at each HRSN site. Sensor type, channel name, sampling rate, sampling mode, and type of FIR filter are given. C indicates continuous; T triggered; Ac acausal; Ca causal. "?" indicates orthogonal vertical and 2 horizontal components.

kinematics and monitoring capabilities in the SAFOD drill-path and target zones. Figure 5.1 illustrates the location of the drill site, the new borehole sites, and locations of earthquakes recorded by the initial and up-graded/expanded HRSN.

The three new SAFOD stations have a similar configuration as the original upgraded 10 station network and include an additional channel for electrical signals. Station descriptions and instrument properties are summarized in Tables 5.1 and 5.2. All HRSN Q730 data loggers employ FIR filters to extract data at 250 and 20 Hz (Table 5.3).

The remoteness of the drill site and new stations required an installation of an intermediate data collection point at Gastro Peak, with a microwave link to the CDF facility. The HRSN stations use SLIP to transmit TCP and UDP data packets over bidirectional spreadspectrum radio links between the on-site data acquisition systems and the central recording system at the CDF. Six of the sites transmit directly to a router at the central recording site. The other seven sites transmit to a router at Gastro Peak, where the data are aggregated and transmitted to the central site over a 4 MBit/second digital 5.4 GHz microwave link. All HRSN data are recorded to disk at the CDF site.

The upgraded and expanded system is compatible with the data flow and archiving common to all the elements of the BDSN/NHFN and the NCEDC, and is providing data with better timing accuracy and longer records, which are to eventually flow seamlessly into NCEDC. The new system also solves the problems of timing resolution, dynamic range, and missed detections, in addition to providing the added advantage of conventional data flow (the old system recorded SEGY format).

Because of limitations in bandwidth, a modified version of the REDI system (Chapter 9) is used to detect events in the HRSN data, extract waveform triggers, and transmit the waveform segments to the BSL. However, the December 22, 2003 San Simeon earthquake and its aftershocks sent the HRSN into nearly continuous triggering. As a result, BSL staff disabled the transmission of triggered data.

Site	Net	Latitude	Longitude	Surf. (m)	Depth (m)	Date	Location
EADB	BP	35.89525	-120.42286	466	245	01/1988 -	Eade Ranch
FROB	BP	35.91078	-120.48722	509	284	01/1988 -	Froelich Ranch
GHIB	BP	35.83236	-120.34774	400	63	01/1988 -	Gold Hill
JCNB	BP	35.93911	-120.43083	527	224	01/1988 -	Joaquin Canyon North
JCSB	BP	35.92120	-120.43408	455	155	01/1988 -	Joaquin Canyon South
MMNB	BP	35.95654	-120.49586	698	221	01/1988 -	Middle Mountain
RMNB	BP	36.00086	-120.47772	1165	73	01/1988 -	Gastro Peak
SMNB	BP	35.97292	-120.58009	699	282	01/1988 -	Stockdale Mountain
VARB	BP	35.92614	-120.44707	478	572	01/1988 - 08/19/2003	Varian Well
VARB	BP	35.92614	-120.44707	478	298	08/25/2003 -	Varian Well
VCAB	BP	35.92177	-120.53424	758	200	01/1988 -	Vineyard Canyon
CCRB	BP	35.95718	-120.55158	595	251	05/2001 -	Cholame Creek
LCCB	BP	35.98005	-120.51424	640	252	08/2001 -	Little Cholame Creek
SCYB	BP	36.00938	-120.53660	945	252	08/2001 -	Stone Canyon

Table 5.1: Stations of the Parkfield HRSN. Each HRSN station is listed with its station code, network id, location, date of initial operation, and site description. The latitude and longitude (in degrees) are given in the WGS84 reference frame, the surface elevation (in meters) is relative to mean sea level, and the depth to the sensor (in meters) below the surface. Coordinates and station names for the 3 new SAFOD sites are given at the bottom.

Site	Sensor	Z	H1	H2	RefTek 24	RefTek 72-06	Quanterra 730
EADB	Mark Products L22	-90	170	260	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
FROB	Mark Products L22	-90	338	248	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
GHIB	Mark Products L22	90	failed	unk	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
JCNB	Mark Products L22	-90	0	270	01/1988 - 12/1998	12/1998 - 06/2001	03/2001 -
JCSB	Geospace HS1	90	300	210	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
MMNB	Mark Products L22	-90	175	265	01/1988 - 12/1998	12/1998 - 06/2001	03/2001 -
RMNB	Mark Products L22	-90	310	40	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
SMNB	Mark Products L22	-90	120	210	01/1988 - 12/1998	12/1998 - 06/2001	03/2001 -
VARB	Litton 1023	90	15	285	01/1988 - 12/1998	12/1998 - 07/1999	03/2001 -
VCAB	Mark Products L22	-90	200	290	01/1988 - 12/1998	12/1998 - 06/2001	03/2001 -
CCRB	Mark Products L22	-90	N45W	N45E	-	-	05/2001 -
LCCB	Mark Products L22	-90	N45W	N45E	-	-	08/2001 -
SCYB	Mark Products L22	-90	N45W	N45E	-	-	08/2001 -

Table 5.2: Instrumentation of the Parkfield HRSN. Most HRSN sites have L22 sensors and were originally digitized with a RefTek 24 system. After the failure of the WESCOMP recording system, PASSCAL RefTek recorders were installed. In July of 1999, 6 of the PASSCAL systems were returned to IRIS and 4 were left at critical sites. The upgraded network uses a Quanterra 730 4-channel system. For the three new stations (bottom) horizontal orientations are approximate (N45W and N45E) and will be determined more accurately as available field time permits.

At present, all continuous 20 sps data streams and 7 vertical component channels at 250 sps are telemetered to the BSL and archived on the NCEDC in near-realtime. All continuous 250 sps data are migrated periodically from HRSN computer in Parkfield to DLT tape. These tapes are then mailed periodically to the BSL and then are processed for archiving at the NCEDC.

A feature of the new system that has been particularly useful both for routine maintenance and for pathology identification has been the internet connectivity of the central site processing computer and the station data loggers with the computer network at BSL. Through this connection, select data channels and on-site warning messages from the central site processor are sent directly to BSL for evaluation by project personnel. If, upon these evaluations, more detailed information on the HRSN's performance is required, additional information can also be remotely accessed from the central site processing computer at Parkfield. Analysis of this remotely acquired information has been extremely useful for trouble shooting by allowing field personnel to schedule and plan the details of maintenance visits to Parkfield. The connectivity also allows certain data acquisition parameters to be modified remotely when needed, and commands can be sent to the central site computer and data loggers to modify or restart processes when necessary.

The network connectivity also allows remote monitoring of the background noise levels being recorded by the HRSN stations. For example shown in Figure 5.2 are power spectral density plots of background noise for vertical components of the 7 HRSN stations that are most critical for monitoring seismicity in the region containing SAFOD. The PSD analysis gives a rapid assessment of the HRSN seismometer responses across their wide bandwidth. By routinely generating these plots with data telemetered from Parkfield, changes in the seismometer responses, often indicating problems with the acquisition system, can be easily identified, and corrective measures can then be planned and executed on a relatively short time-frame.

3. 2003-2004 Activities

Over the past year, activities associated with the operation of the HRSN primarily involved five components: 1) routine operations and maintenance of the network, 2) enhancement of the network's performance for detection and recording of very low amplitude seismic signals, 3) repair of the severed 48 pair cable at the VARB site, 4) collaborative integration and analysis of HRSN and SAFOD's temporary deployments for refining the structure and target location estimates in the SAFOD drill path, 5) data processing and analysis of the pre-San Simeon, and post-San Simeon data.

3.1 Operations and Maintenance

In addition to the routine maintenance tasks required to keep the HRSN in operation, various refinements and adjustments to the networks infrastructure and operational parameters have been needed this year to enhance the HRSN's performance and to correct for pathologies that continue to manifest themselves in the recently upgraded and expanded system.

Smaller scale maintenance issues addressed this year include cleaning and replacement of corroded electrical connections, grounding adjustments, cleaning of solar panels, re-seating, resodering and replacement of faulty pre-amp circuit cards, and the testing and replacement of failing batteries. Larger efforts included the implementation of periodic emergency generator tests, replacement of the central site air conditioning unit, a major insulation, painting and power enhancement effort at our Gastro Peak repeater site to address problems with outages and low power during cold weather, and a switch to an alternative sensor on the VARB station deep string due to the failure of one of the 1877' deep sensor components.

3.2 Enhancing HRSN Performance

Over the past year significant efforts were made to identify and reduce noise problems arising from the new and expanded data acquisition system. Detection, monitoring, and high-resolution recording of earthquakes down to the smallest possible magnitudes with the highest possible signal-to-noise (especially in the region of the proposed SAFOD drilling) is a major objective of the HRSN data collection effort. Consequently, elimination of all sources of unnaturally occurring system noise is a primary goal. The minimization of data loss due to station outages and data-dropouts is also critical to this objective.

The HRSN data acquisition involves integration of a number of distinct components at each station (i.e., sensor, pre-amp, solar panels, solar regulator, batteries, Freewave radio, antenna, lightening arresters, and associated cabling, connectors and grounds) and radio telemetry apparatus between the seismic stations, telemetry relay stations, and the central processing site on the CDF site in Parkfield.

This complex integration of station and communication components combined with a variety of associated concerns (e.g., ground loops, cable resistances, radio feedback into recording equipment at stations, radio interference between stations, marginal line of site paths, cloud cover and solar power, the integration of older (pre-upgrade) hardware components with new components, old component deterioration and failures, and malfunctioning and unexpected performance characteristics of newer components) all make identification of specific causes of network generated (i.e. artificial) noise difficult to identify.

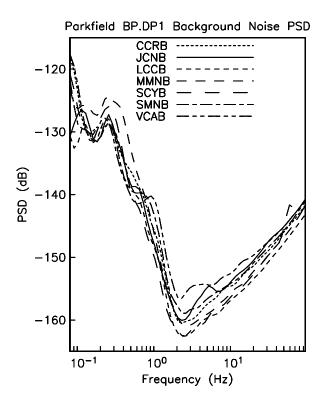


Figure 5.2: Background noise PSD plot for the seven continuously telemetered BP.DP1 data streams from Parkfield. The data are 20 minute samples starting at 2003.225.0900 (2 AM PDT). The plots show the background noise PSD as a function of frequency for the highest available sampling rate (250 sps) vertical component data which are continuously telemetered to Berkeley. Note the relatively low PSD levels and the overall consistency for all the HRSN stations. By comparison, the PSD curves among the borehole Northern Hayward Fault Network land and bridge stations are much more variable and show a generally higher background noise level (Figure 4.3). On the other hand, PSD curves for the MPBO stations of the NHFN are much more consistent with the HRSN PSD's (Figure 7.4). The differences among the various station PSD's can, in large part, be explained by the relative cultural noise levels at the various stations, by the depth of the borehole sensors, and by whether the boreholes remain open holes (noisier) or have been filled with cement. The 2 Hz minimum in the PSD plots for the HRSN sensor results from the 2 Hz sensors used at these sites. Below 2 Hz, noise levels rise rapidly and the peak at 3 sec (.3 Hz) is characteristic of teleseismic noise observed throughout California. In the 2 to 5 Hz range, VCAB and JCNB have historically shown higher background noise which is believed to result from excitation modes in the local structure. A small 60 Hz blip can be seen in the SCYB curve due to its close proximity to a power-line.

Exhaustive and iterative testing of HRSN performance has identified two primary causes for observed artificial noise remaining in the system (i.e. solar regulator spiking and pre-amp self-noise generation). Over the past year we have designed and have implemented fixes for these problems.

Solar Regulators

Regularly occurring spikes occurring during the daylight hours were observed in the continuous data streams and found to be due to the solar regulators. We have tested a variety of solar regulator designs and have identified the Prostar 30 as having the optimal cost-benefit. We have purchased and installed several of these devices at several of the HRSN sites with the ultimate goal of installing the Prostar's at all the HRSN stations as time and funding permit.

Pre-amplifier Noise

We found that a significant source of artificial noise was coming from the station pre-amplifiers. In the upgraded system, pre-amps from the older network were used. During integration of the older pre-amps with the increased dynamic range capabilities of the 24-bit Quanterra system, gain settings of the pre-amps were reduced from x10,000 to x80 in order to match signal sensitivity of the new system with the older one. While these lower pre-amp gain levels are still within the operational design of the pre-amps, they are no longer in their optimal range and a significant contribution of preamp's self-generated noise is present in the recorded seismograms. Initially, this was not expected to be a significant problem. However, we have subsequently found that even the small increase in pre-amp noise that results from the pre-amp gain reduction significantly impacts the sensitivity of the network for detecting and recording the smallest locatable events.

Figure 5.3 shows the pre-amp noise reduction effect observed on background noise signals at three vertical components of the HRSN when gains are raised from x80 to x1,000. Considerable signal hash is seen at gain levels of x80 (top waveform in each station pair), and significantly reduced when gains are increased to x1,000 (lower waveforms). Since we are also interested in recording large earthquakes on-scale, simply increasing gain levels on all stations is not the preferred solution, since doing so causes the recording system to saturate at much lower magnitudes. Instead we are attempting to redesign the pre amps using modern components to reduce the noise levels at the lower gain levels. However our attempts at redesign have not yet yielded satisfactory results.

Since a primary objective of the HRSN is to monitor the evolving patterns of the numerous small earthquakes that occur at very low magnitudes, and since this objective also complements the scientific objectives

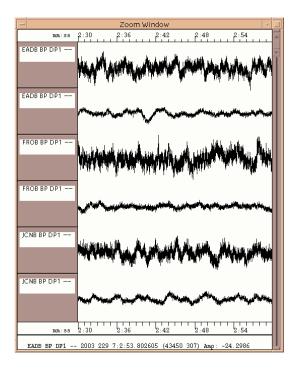


Figure 5.3: Preamp noise reduction test. Shown are 30 seconds of vertical background signal recorded at stations EADB, FROB and JCNB on day 229 of 2003 at 0700 UTC (top of station pairs, recorded at x80 gain and scaled up by 1000/80 for comparison to the x1000 preamp gain levels) and 0700 UTC on day 233 (bottom of station pairs, recorded at x1000 preamp gain). Note the substantial reduction in background noise, due primarily to the lower preamp generated noise at higher preamp gain.

of the recently funded SAFOD experiment, the pre-amp noise problem was a priority maintenance item. We have opted, therefore, to raise the gain levels for the near-term on all the station pre-amps from x80 to x1,000. By early October of 2003, these gain changes were implemented at all 13 HRSN stations. Plans are to continue investigating pre-amp redesigns until a suitable alternative is found at which time we will install the new pre-amps and lower the pre-amp gain back to x80–allowing both the increased detection of small events and the on-scale recording of events up to about magnitude 4 to 4.5.

3.3 Repairs at VARB

In August 2003, we observed problems with the recording of data at VARB, located at the Varian well site. After contacting the USGS field technician at Parkfield we learned that the sensor cable to the seismic string down the Varian well had been severed as part of a cleanup effort at the site. This activity not only cut the connection to the 1877' deep sensor, but also severed connection to the full seismic string of functional seismometers and accelerometers that existed down the deep VARB borehole.

During joint planning of the cleanup effort, we made it clear that it was important to retain connectivity to the seismic sensors at VARB, and the importance of this fact was acknowledged by the USGS personnel managing the effort. Subsequent plans for the cleanup specified coordination of the effort with field personnel from UC Berkeley. Unfortunately, BSL staff were not notified of the cleanup date, nor the specifics of the cleanup plan (which apparently included severing the deep strings cable at the well head and of course we would have loudly objected to).

Because VARB has the deepest HRSN borehole sensor and is centrally located within the network, it is a critical site for the HRSN. In addition at that time, we were in the process of preparing VARB and all the HRSN stations to make high-gain recordings of the controlled source shots from the SAFOD related 50 km line experiment to aid in characterizing the velocity and Fault Zone Guided Wave propagation structure in the region around SAFOD. Needless to say, the loss of VARB severely hampered these efforts. The situation was further complicated by the details of how the Varian well cable disconnect was made.

It was important for a number of scientific reasons to reconnect our VARB acquisition system to a sensor of known depth. However, there are 48 pairs of wires in the severed seismic string cable, and unfortunately, the mapping of these wires to their corresponding sensors was not documented when the cable was severed. In addition because the cable was severed at the well head, some 100' of trenching and cable was needed to reconnect the sensor and recording installation.

The estimated cost for the additional man-hours, parts, travel and lodging needed to do the necessary repairs at VARB was several thousand dollars. With emergency funding from NEHRP and assistance from the USGS field technician at Parkfield, we put VARB back on-line and made the high-gain HRSN adjustments in time for the 50 km line experiment shots.

3.4 SAFOD Collaboration

An intensive and ongoing effort by the SAFOD target event location working group is underway with its goals being: 1) the characterization of the detailed velocity and seismicity structure in the crustal volume containing the SAFOD main hole and 2) to determine the most accurate estimates of the absolute locations of SAFOD's target events. As part of this effort, a series of coincident active and passive source seismic experiments was performed during Oct. - Nov. of 2003. The HRSN data played a key role in this effort by providing complementary seismic

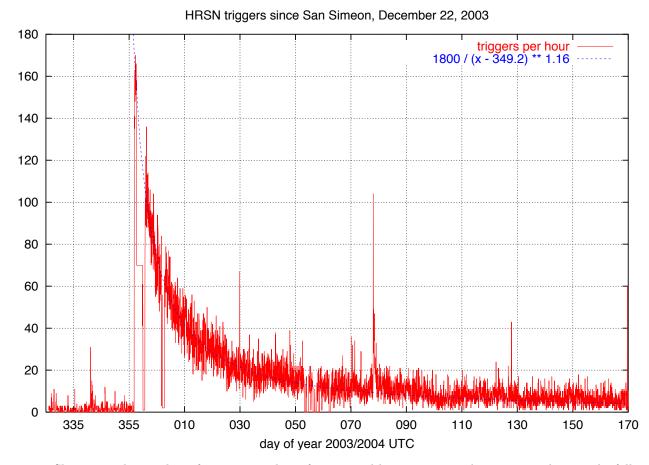


Figure 5.4: Shown are the number of triggers per hour for a period between 1 month prior to and 6 months following the San Simeon earthquake, and an "eyeball" fit of the decay curve (dashed curve). The cumulative number of HRSN triggers in the first 5 months following San Simeon exceeds 70,000 and trigger levels continued to be over 200 triggers per day through June of 2004. Extrapolation of the decay curve fit indicates that daily trigger levels will not return to near pre-San Simeon levels untell well into 2005 (assuming no other large earthquakes in the area occur).

waveform data from the active sources and by providing a backbone of earthquake detection, waveform, and location data from the numerous microearthquakes that occurred within the SAFOD local zone during the Oct. 15 through Nov. 11 experimental period (256 events within 5 km of the SAFOD target(s)).

In a special section of Geophysical Research Letters from May of 2004, several papers make significant use of the HRSN data for characterizing the SAFOD area and illustrate the role that the HRSN data have played in the SAFOD effort over the past year (e.g., *Oye et al.*, 2004; *Roecker et al.*, 2004; *Thurber et al.*, 2004; *Nadeau et al.*, 2004).

3.5 Data Analysis and Results

Monitoring the evolution of microseismicity, particularly in the SAFOD drilling and target zone, is a primary objective of the HRSN project. In addition, the contin-

ued analysis of the HRSN data for determining detailed seismic structure, for the study of similar and characteristic microearthquake systematics, for estimation of deep fault slip rate evolution, and for various studies of fault zone and earthquake physics is also of great interest to seismologists. Before advanced studies of the Parkfield microseismicity can take place, however, initial processing, analysis and routine cataloging of the earthquake data must be done. An integral part of this process is quality control of the processed data, including a final check of the routine catalog results. The numerous aftershocks from the M6.5 San Simeon earthquake (Figure 5.4) have seriously complicated the tasks of initial processing, analysis and location of the routine event catalog. And, a significant revision of the "traditional" processing scheme we have used since 1987 will be required to deal with the post-San Simeon data. We have requested funding for this effort in a proposal to EarthScope, and if granted our intent is to more fully develop, test and implement the new procedures for processing of these data.

Most of our efforts during the 2000-2002 were spent on implementing the emergency upgrade and SAFOD expansion of the HRSN, and routine processing of the data collected during that period was deferred until after upgrade and installation efforts were completed. In 2003 we began in earnest the task of routine processing of the ongoing data that was being collected. Our initial focus was on refining and developing our processing procedures to make the task more efficient and to ensure quality control of the processed catalogs. We also began working back in time to fill in the gap that developed during the deferment period. Because routine processing of the post-San Simeon data is effectively impossible at this time, because of the overwhelming number of aftershocks, we have suspended our efforts at processing the ongoing data and focused our efforts at filling in the complete gap of unprocessed data (i.e., back to March of 2001). Outlined below in the "Pre-San Simeon Processing" subsection are the procedures and issues related to this effort. In the subsequent subsection we illustrate and discuss briefly the issues that need to be addressed in order to process the post-San Simeon event data.

Pre-San Simeon Processing

Initial Processing. Continuous data streams on all 38 HRSN components are recorded at 20 and 250 sps on disk on the local HRSN computer at the CDF facility. The 20 sps data are transmitted continuously to the Berkeley Seismological Laboratory (BSL) over a frame-relay link and then archived at the NCEDC. In addition, the vertical component channels for the 7 stations critical to resolving seismicity in the SAFOD area are also being transmitted continuously to the BSL at 250 sps over the frame relay-circuit for purposes of quality control and fine tuning the triggering algorithm for the detection of the smallest possible events around SAFOD. These telemetered 250 sps data are archived on disk for only about 1 week at the BSL and are then deleted. When the local HRSN computer disk space is full, the continuous 250 sps data on the HRSN local computer are migrated onto DLT tape, and the tapes sent to Berkeley for long-term storage and for data upload to the NCEDC archive in some cases.

Shortly after being recorded to disk on the central site HRSN computer, event triggers for the individual station data are determined and a multi-station trigger association routine then processes the station triggers and identifies potential earthquakes. For each potential earthquake that is detected, a unique event identification number (compatible with the NCEDC classification scheme) is assigned. Prior to San Simeon earthquake of December 22, 2003, 30 second waveform segments were then collected for all stations and components and saved to local disk as an event gather, and event gathers were then periodically telemetered to BSL and included directly into the NCEDC earthquake database (dbms) for analysis and processing.

An ongoing effort has been the development of a new earthquake detection scheme, with the goal of routinely detecting SAFOD area events to magnitudes below -1.0. A first cut version of the new scheme has been implemented and is currently detecting real earthquakes at an increased rate-nearly 3 times the number of earthquakes detected before the upgrade. In order to facilitate the processing and archiving of the increased number of potential earthquakes (~ 350 per month), the BSL has recently developed a Graphical User Interface (GUI). The GUI is integrated with the NCEDC dbms and allows review of the waveforms from every potential event. Initial analysis of the data using the GUI involves review of the waveforms and classification of the event as an earthquake or non-earthquake. The GUI also allows the analyst to log potential network problems that become apparent from the seismograms. The HRSN analyst then classifies the earthquakes as either a local, distant-local, regional, or teleseismic event and then systematically hand picks the P- and S-phases for the local and distant local events (for the period Sept. 2002 - Aug. 2003 the number of picked events was ~ 2000).

Picking of the numerous microearthquake events is no mean task. On average about 7 P-phases and 4 S-phases are picked for each event, putting the total number of annual phase picks for the HRSN data on the order of to 22,000. We have experimented with algorithms that make initial auto-picks of the phase arrivals, but have so far found picking by hand to be significantly more accurate and has the added advantage of allowing the analyst to assess the state of health of each station-component. In all our tests, autopicks have also invariably resulted in some missed events and catalog locations that are significantly more scattered and with higher residuals than locations done with purely hand-picked data.

A peculiarity of processing very small earthquake data, is that multiple events commonly occur within a few seconds of one another. The close timing of these events does not allow the local triggering algorithm to recover from one event before another occurs. As a result, the central site processor often does not trigger uniquely for each event. In such cases only one, 30 sec waveform gather and one earthquake identifier will be created for all the events. These multiple earthquake records (MER) account for only 3 to 5% of the total seismicity recorded by the HRSN. However, there are times when this rate rises to over 10%. In order to assign each event in an MER a unique event identifier for the NCEDC dbms and to make picking and automated processing of these events more manageable an additional feature of the GUI was developed that allows the analyst to "clone" MER into separate gathers for each event.

Quality Control. Once false triggers have been removed and picks for the local and distant local events have been completed, quality control on the picks is made to ensure that all picks have phase and weights assigned, that extraneous characters have been removed from the pick files, that double station-phase picks have not inadvertently been made, and that no repicks of the same event had been accidentally made during any cloning that was performed. Initial locations are then performed and phase residuals analyzed in order to determine whether severe pick outliers must be removed or adjusted. Unstable location solutions based on events with few picks are also assessed to see if the addition of marginal phases will improve the stability of the location determination. After any required pick adjustments have been made, the events are then relocated, and combined with error information to allow ranking of the confidence of location quality.

These procedures have all been put in place and tested for the new HRSN configuration. Currently we have located 13 months of local earthquakes recorded by the new HRSN (over 2200 events) and are moving backwards in time to pick and locate the earlier data collected since March of 2001. We currently have enough data and are confident enough with the procedures to begin organizing the locations for formal inclusion into the NCEDC dbms and dissemination to the community. These efforts are now underway. We are also in the early stages of establishing a scalar seismic moment catalog for the new HRSN events that is also to be included in the NCEDC dbms.

Catalog Assessment. We continue to examine the earthquake data in search of possible earthquake precursors. This includes quality control and evaluation of the routine earthquake catalog locations and analyses of the spatial and temporal distribution of the microseismicity in relation to the occurrence of larger earthquakes in the area and heightened alert levels declared as part of the Parkfield Prediction Experiment. The new data and event detection scheme allows complete event detection down to \sim magnitude 0.0. As a result, the rate of earthquake detection by the HRSN exceeds that of the NCSN by about a factor of 5 in the 30 km stretch of the SAF centered at the location of the 1966 M6 Parkfield event (Figure 5.1). The additional rate of HRSN event detection significantly increases both the spatial and temporal resolution of the changing seismicity patterns and provide unique additional information on the earthquake pathology at very low magnitudes.

Post-San Simeon Data

Because of its mandate to detect and record very low magnitude events in the Parkfield area, the HRSN is extremely sensitive to changes in very low amplitude seismic signals. As a consequence, in addition to detecting very small local earthquakes at Parkfield, the HRSN also detects numerous regional events. Since the beginning of the network's data collection in 1987, the local and regional events were discriminated based on analyst assessment of S-P times, and only local events with S-P times less than ~ 2.5 sec at the first arriving station were picked and located as part of the HRSN routine catalog.

Following the occurrence of the M6.5 San Simeon earthquake on December 22, of 2003, the long-standing data handling procedure outlined in the previous section was no longer viable due to the enormous rate of San Simeon aftershock detections (Figures 5.5 and 5.6). In the first 5 months following the mainshock, over 70,000 event detections were made by the HRSN system (compared to a yearly average detection rate of 6000 prior to San Simeon), and spot checks of the continuous 20 sps data revealed that the overwhelming majority of these detections resulted from seismic signals generated by San Simeon's aftershocks.

Data from the California Integrated Seismic Network (CISN) show that there were ~ 1,150 San Simeon aftershocks with magnitudes > 1.8 occurring in the week following the mainshock. During this same period, the number of event detections from the HRSN was ~ 10,500 (compared to an average weekly for the year prior to San Simeon of 115 detections/per week). This suggests that the HRSN is detecting San Simeon aftershocks well below magnitude 1, despite the network's ~ 50 km distance from the mainshock (Figures 5.5 and 5.6).

The dramatic increase in event detections vastly exceeded the HRSN's capacity to process both the continuous and triggered event waveform data. To prevent the loss of seismic waveform coverage, processing of the triggered waveform data has been suspended to allow archiving of the 250 sps continuous data to tape to continue uninterrupted. Cataloging of the event detection times from the modified REDI real-time system algorithm is also continuing, and the 250 sps waveform data is currently being periodically uploaded from the DLT tapes onto the NCEDC for access to the research research community. Research funding has also been requested from NSF-EarthScope to develop and apply new techniques to process these continuous data with the aim of identifying the Parkfield local events from among the San Simeon aftershocks and of compiling waveform and location catalogs for the local earthquakes.

4. Acknowledgements

Thomas V. McEvilly, who passed away in February 2002, was the PI on the HRSN project for many years. Without his dedication the creation and of the HRSN would not have been possible. Under Bob Nadeau's and Doug Dreger's general supervision, Rich Clymer, Bob

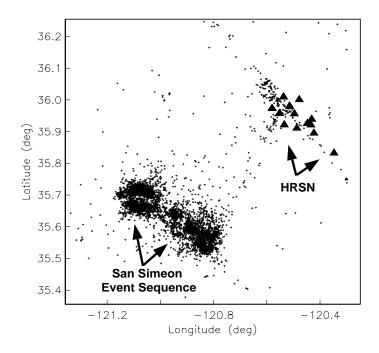


Figure 5.5: Earthquake locations of 5847 events in the San Simeon and Parkfield areas of California occurring between December 1, 2003 and April 1, 2004, inclusive (small black circles). Locations are from the Northern California Seismic Network catalog. Black triangles are the stations of the borehole High Resolution Seismic Network (HRSN). The M6.5 San Simeon event of December 22, 2003 and its aftershocks occurred in a region approximately 40 to 50 km southwest of the HRSN. Prior to the mainshock, seismicity in this region was predominantly quiescent.

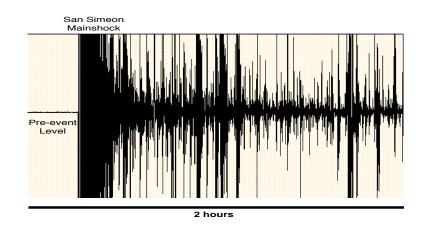


Figure 5.6: Unfiltered seismogram of the San Simeon mainshock and immediate aftershocks. Shown is a two hour snapshot of continuous 250 sps data recorded by the vertical component of the borehole HRSN station SMNB (located ~ 50 km to the northeast of the mainshock). Approximately 15 minutes of background pre-event recording is shown before the mainshock. Following the mainshock seismic signal levels are elevated well above the background level almost continuously and signals from multiple aftershocks (and possibly Parkfield local events) generally overlap. The very low background noise recordings of the borehole HRSN stations and the networks high detection sensitivity (designed for detecting very low magnitude Parkfield local events) causes the network to trigger on 10's of thousands of distant and small San Simeon aftershocks (many below magnitude 1), this despite the HRSN's distance of ~ 50 km from the sequence.

Uhrhammer, Doug Neuhauser, Don Lippert, Bill Karavas, John Friday, and Pete Lombard all contribute to the operation of the HRSN. Bob Nadeau prepared this chapter. During this reporting period, operation, maintenance, and data processing for the HRSN project was supported by the USGS, through grants: 03HQGR0065 and 04HQGR0085. NSF also provided support during the 2000-2003 period for the SAFOD expansion of the HRSN through grant EAR-9814605.

5. References

Bakun, W. H., and A. G. Lindh, The Parkfield, California, prediction experiment, *Earthq. Predict. Res.*, *3*, 285-304, 1985.

Daley, T.M. and T.V. McEvilly, Shear wave anisotropy in the Parkfield Varian Well VSP, *Bull. Seism. Soc. Am.*, 80, 857-869, 1990.

Hickman, S., M.D. Zoback and W. Ellsworth, Introduction to special section: Preparing for the San Andreas Fault Observatory at Depth, *Geophys. Res. Lett.*, *31*, L12S01, doi:10.1029/2004GL020688, 2004.

Karageorgi, E., R. Clymer and T.V. McEvilly, Seismological studies at Parkfield. II. Search for temporal variations in wave propagation using Vibroseis, *Bull. Seism. Soc. Am.*, *82*, 1388-1415, 1992.

Karageorgi, E., R. Clymer and T.V. McEvilly, Seismological studies at Parkfield. IV: Variations in controlledsource waveform parameters and their correlation with seismic activity, 1987-1994, *Bull. Seismol. Soc. Am.*, 87, 39-49, 1997.

Michelini, A. and T.V. McEvilly, Seismological studies at Parkfield: I. Simultaneous inversion for velocity structure and hypocenters using B-splines parameterization, *Bull. Seismol. Soc. Am.*, 81, 524-552, 1991.

Nadeau, R.M., A. Michelini, R.A. Uhrhammer, D. Dolenc, and T.V. McEvilly, Detailed kinematics, structure and recurrence of micro-seismicity in the SAFOD target region, *Geophys. Res. Lett.*, *31*, L12S08, doi:10.1029/2003GL019409, 2004.

Oye, V., J.A. Chavarria and P.E. Malin, Determining SAFOD area microearthquake locations solely with Pilot Hole seismic array data, *Geophys. Res. Lett.*, 31, L12S10, doi:10.1029/2003GL019403, 2004.

Roecker, S., C. Thurber and D. McPhee, Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drillsite, *Geophys. Res. Lett.*, 31, L12S04, doi:10.1029/2003GL019396, 2004.

Thurber, C., S. Roecker, H. Zhang, S. Baher and W. Ellsworth, Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes, *Geophys. Res. Lett.*, *31*, L12S02, doi:10.1029/2003GL019398, 2004.

Chapter 6

Bay Area Regional Deformation Network

1. Introduction

The Bay Area Regional Deformation (BARD) network of continuously operating Global Positioning System (GPS) receivers monitors crustal deformation in the San Francisco Bay area ("Bay Area") and northern California (Murray et al., 1998). It is a cooperative effort of the BSL, the USGS, and several other academic, commercial, and governmental institutions. Started by the USGS in 1991 with 2 stations spanning the Hayward fault (King et al., 1995), BARD now includes 80 permanent stations (Figure 6.1). The principal goals of the BARD network are: 1) to determine the distribution of deformation in northern California across the wide Pacific–North America plate boundary from the Sierras to the Farallon Islands; 2) to estimate three-dimensional interseismic strain accumulation along the San Andreas fault (SAF) system in the Bay Area to assess seismic hazards; 3) to monitor hazardous faults and volcanoes for emergency response management; and 4) to provide infrastructure for geodetic data management and processing in northern California in support of related efforts within the surveying and other interested communities.

BARD currently includes 80 continuously operating stations in the Bay Area and northern California (Tables 6.1 and 6.2), including 14 near Parkfield along the central San Andreas fault, and 17 near the Long Valley caldera near Mammoth. The BSL maintains 23 stations (including 2 with equipment provided by Lawrence Livermore National Laboratory (LLNL) and UC Santa Cruz). Other stations are maintained by the USGS (Menlo Park and Cascade Volcano Observatory), LLNL, Stanford University, UC Davis, UC Santa Cruz, Hat Creek Radio Observatory, U. Wisconsin, Haselbach Surveying Instruments, East Bay Municipal Utilities District, the City of Modesto, the National Geodetic Survey, Thales, Inc., and the Jet Propulsion Laboratory. Many of these stations are part of larger networks devoted to real-time navigation, orbit determination, and crustal deformation.

Between 1993 and 2001, the BSL acquired 29 Ashtech Z-12 and Micro-Z receivers from a variety of funding sources, including from federal (NSF and USGS), state (CLC), and private (EPRI) agencies. The network enhances continuous strain measurements in the Bay Area and includes several profiles between the Farallon Islands and the Sierra Nevada in order to better characterize the larger scale deformation field in northern California (Figure 6.1). Five sites have been equipped as part of the NSF-funded Mini-PBO project to establish collocated GPS, and borehole strainmeter and seismometer observatories in the Bay Area (see Chapter 7).

The number of continuous GPS stations in northern California will dramatically increase over the next 5 years, with over 250 new site installations planned as part of the Plate Boundary Observatory (PBO) component of the NSF-funded Earthscope project. UNAVCO and researchers from BARD and the other regional networks, such as SCIGN, BARGEN, and PANGA, have submitted a proposal to NSF to fold operation and maintenance of portions of the existing networks into the PBO array at the end of the 5 years. Due to incompatible management plans for real-time telemetry and site maintenance procedures between the BSL and UNAVCO, only two BSL-maintained stations (SUTB and MUSB), out of a total of 25 BARD stations, are proposed to become PBO stations. The other BSL stations are either collocated with seismic instrumentation or are located near the San Andreas fault where real-time processing of the GPS data for earthquake notification is a high priority. We are working closely with UNAVCO to facilitate the transition of the 25 stations and are acting in an advisory role on siting issues for the planned new installations.

Today, raw and RINEX data files from the BSL stations and the other stations run by BARD collaborators are archived at the BSL/USGS Northern California Earthquake Data Center data archive maintained at the BSL (*Romanowicz et al.*, 1994). The data are checked to verify their integrity, quality, completeness, and conformance to the RINEX standard, and are then made accessible, usually within 2 hours of collection, to all BARD participants and other members of the GPS community through Internet, both by anonymous FTP and by the World Wide Web (http://quake.geo.berkeley. edu/bard/).

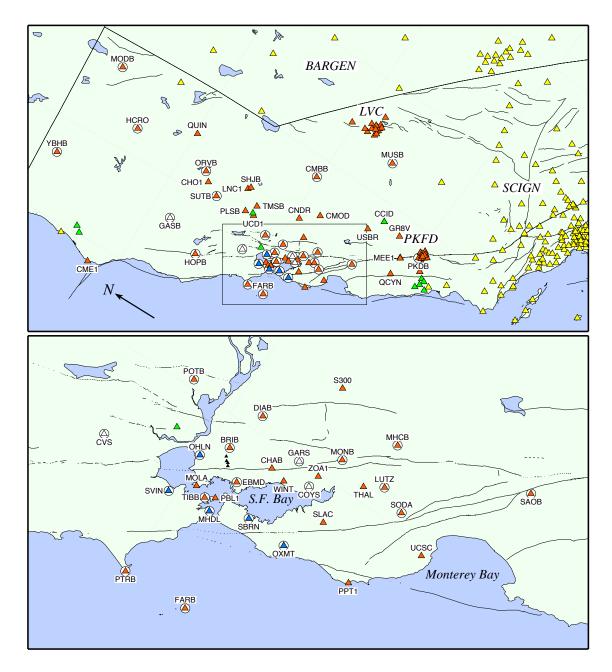


Figure 6.1: Operational (red) and planned (blue) BARD stations in northern California (top) and in the San Francisco Bay area (bottom). In the oblique Mercator projection expected Pacific–North America relative plate motion is parallel to the horizontal. Circled stations use continuous real-time telemetry. The 18-station Long Valley Caldera (LVC) network and 15-station Parkfield (PKFD) networks are also part of BARD. The small black triangles near BRIB are the experimental L1 stations. Mini-PBO stations are OHLN and SBRN (existing), and MHDL, OXMT, and SVIN (planned), all located along the northern Hayward and San Andreas fault. We plan to install 3 other stations at CVS, GARS, and COYS. The 2 Central Valley sites (USBR and CCID) are being installed in cooperation with the CSRC. Other nearby networks (open triangles) include: Basin and Range (BARGEN), and Southern California Integrated GPS Network (SCIGN).

Code	Latitude	Longitude	Start	Receiver	Maint.	Telem.	Location
BRIB	37.91940	-122.15255	1993.58	A-Z12	BSL	FR	Briones Reservation, Orinda
CMBB	38.03418	-120.38604	1993.92	A-Z12	BSL	\mathbf{FR}	Columbia College, Columbia
DIAB	37.87858	-121.91563	1998.33	A-Z12	BSL	\mathbf{FR}	Mt. Diablo
FARB	37.69721	-123.00076	1994.00	A-Z12	BSL	R- FR/R	Farallon Island
HOPB	38.99518	-123.07472	1995.58	A-Z12	BSL	\mathbf{FR}	Hopland Field Station, Hopland
LUTZ	37.28685	-121.86522	1996.33	A-Z12	BSL	\mathbf{FR}	SCC Comm., Santa Clara
MHCB	37.34153	-121.64258	1996.33	A-Z12	BSL	\mathbf{FR}	Lick Obs., Mt. Hamilton
MODB	41.90233	-120.30283	1999.83	A-Z12	BSL	NSN	Modoc Plateau
MOLA	37.94657	-122.41992	1993.75 - 2002.22	T-SSE	BSL		Pt. Molate, Richmond
MONB	37.49892	-121.87131	1998.50	A-Z12	BSL	\mathbf{FR}	Monument Peak, Milpitas
MUSB	37.16994	-119.30935	1997.83	A-Z12	BSL	R-Mi-FR	Musick Mt.
OHLN	38.00742	-122.27371	2001.83	A-uZ	BSL	\mathbf{FR}	Ohlone Park, Hercules
ORVB	39.55463	-121.50029	1996.83	A-Z12	BSL	\mathbf{FR}	Oroville
OXMT	37.49936	-122.42432	2004.12	A-uZ	BSL	\mathbf{FR}	Ox Mt., Half Moon Bay
PKDB	35.94524	-120.54155	1996.67	A-Z12	BSL	\mathbf{FR}	Bear Valley Ranch, Parkfield
POTB	38.20258	-121.95560	1998.92	A-Z12	BSL	\mathbf{FR}	Potrero Hill, Fairfield
PTRB	37.99640	-123.01490	1998.58	A-Z12	BSL	R-FR	Point Reyes Lighthouse
SAOB	36.76530	-121.44718	1997.58	A-Z12	BSL	\mathbf{FR}	San Andreas Obs., Hollister
SBRN	37.68622	-122.41044	2003.18	A-uZ	BSL	\mathbf{FR}	San Bruno Mt., Brisbane
SODB	37.16640	-121.92552	1996.33	A-Z12	BSL	R-FR	Soda Springs, Los Gatos
SUTB	39.20584	-121.82060	1997.33	A-Z12	BSL	R-FR	Sutter Buttes
SVIN	38.03318	-122.52632	2003.89	A-uZ	BSL	R- FR	St. Vincents, San Rafael
TIBB	37.89087	-122.44760	1994.42	A-Z12	BSL	R	Tiburon
YBHB	41.73166	-122.71073	1996.75	A-Z12	BSL	\mathbf{FR}	Yreka Blue Horn Mine, Yreka
CAND	35.93935	-120.43370	1999.33	A-Z12	USGS	R- FR	Cann, Parkfield
CARH	35.88838	-120.43082	2001.58	A-Z12	USGS	R- FR	Carr Hill 2, Parkfield
CARR	35.88835	-120.43084	1989.00-2003.31	A-Z12	$_{\rm JPL}$		Carr Hill, Parkfield
CRBT	35.79161	-120.75075	2001.67	A-Z12	USGS	R- FR	Camp Roberts, Parkfield
HOGS	35.86671	-120.47949	2001.50	A-Z12	USGS	R- FR	Hogs, Parkfield
HUNT	35.88081	-120.40238	2001.58	A-Z12	USGS	R- FR	Hunt, Parkfield
LAND	35.89979	-120.47328	1999.33	A-Z12	USGS	R- FR	Lang, Parkfield
LOWS	35.82871	-120.59428	2001.58	A-Z12	USGS	R- FR	Lowes, Parkfield
MASW	35.83260	-120.44306	2001.58	A-Z12	USGS	R- FR	Mason West, Parkfield
MIDA	35.92191	-120.45883	1999.75	A-Z12	USGS	R- FR	Mida, Parkfield
MNMC	35.96947	-120.43405	2001.58	A-Z12	USGS	R- FR	Mine Mt., Parkfield
POMM	35.91991	-120.47843	1999.75	A-Z12	USGS	R-FR	Pomm, Parkfield
RNCH	35.89999	-120.52482	2001.58	A-Z12	USGS	R-FR	Ranchita, Parkfield
TBLP	35.91741	-120.36034	2001.67	A-Z12	USGS	R-FR	Table, Parkfield

Table 6.1: Currently operating stations of the BARD GPS network maintained by the BSL and by the BSL/USGS/SCIGN in the Parkfield region. Receivers: A = Ashtech, T = Trimble. See Table 3.2 for telemetry codes and for BSL sites collocated with seismic stations. Data from other agencies retrieved or pushed by FTP or from the Web.

Many of the BARD sites are classified as CORS stations by the NGS, and are used as reference stations by the surveying community. We coordinate efforts with surveying community at meetings of the Northern California GPS Users Group and the California Spatial Reference Center, and are currently developing plans to use the existing infrastructure at the NCEDC to provide a hub for a high-frequency real-time surveying network in the Bay Area. Data and ancillary information about BARD stations are also made compatible with standards set by the International GPS Service (IGS), which administers the global tracking network used to estimate precise orbits and has been instrumental in coordinating the efforts of other regional tracking networks. The NCEDC also retrieves data from other GPS archives, such as at SIO, JPL, and NGS, in order to provide a complete archive of all high-precision continuous GPS measurements collected in northern California.

Code	Latitude	Longitude	Start	Receiver	Maint.	Location
CHAB	37.72412	-122.11931	1992.00	A-Z12	USGS	Chabot, San Leandro
WINT	37.65264	-122.14056	1992.00	A-Z12	USGS	Winton, Hayward
EBMD	37.81501	-122.28380	1999.18	T-SSi	EBMUD	EBMUD, Oakland
QUIN	39.97455	-120.94443	1992.68	Rogue	$_{\rm JPL}$	Quincy
S300	37.66642	-121.55815	1998.48	T-SSi	LLNL	Site 300, Livermore
HCRO	40.81563	-121.46915	2003.50	T-SSi	HCRO	Hat Creek Radio Obs.
CHO1	39.43264	-121.66496	1999.50	A-Z12	NGS	Chico
CME1	40.44177	-124.39633	1995.74	A-Z12	NGS	Cape Mendocino
CMOD	37.64130	-121.99997	2000.76	T-SSi	City	Modesto
CNDR	37.89641	-121.27849	1999.27	A-Z12	NGS	Condor, Stockton
PBL1	37.85306	-122.41944	1995.50-2004.19	A-Z12	NGS	Point Blunt, Angel Island
PPT1	37.18167	-122.39333	1996.00	A-Z12	NGS	Pigeon Point
SLAC	37.41652	-122.20426	2002.34	Leica	SLAC	Stanford Linear Accel. Center
SUAA	37.42691	-122.17328	1994.30	A-Z12	SU	Stanford University
THAL	37.35149	-121.93549	2003.00	A-uZ	Thales	Thales, Inc., Santa Clara
UCD1	38.53624	-121.75123	1996.38	T-SSi	UCD	UC Davis
UCSC	36.99279	-122.05219	2000.31	T-SSi	UCSC	UC Santa Cruz
ZOA1	37.54305	-122.01594	2002.50	Novatel	FAA	Fremont
GR8V	36.39901	-120.41577	2003.04	T-5700	UWisc	San Andreas Creeping Segment
MEE1	36.18690	-120.75860	2003.02	T-5700	UWisc	San Andreas Creeping Segment
MEE2	36.18052	-120.76684	2003.03	T-5700	UWisc	San Andreas Creeping Segment
QCYN	36.16116	-121.13748	2003.05	T-5700	UWisc	San Andreas Creeping Segment
USBR	36.84257	-120.43567	2004.30	T-SSi	CVWD	Central Valley
CCID	36.73901	-120.35657	2004.30	T-NetRS	CVWD	Mendota, Central Valley (P304)
LNC1	38.84651	-121.35023	2003.51	A-Z12	NGS	Lincoln
PLSB	38.68530	-121.76150	2004.14	Leica	Haselbach	Woodland
SHJB	38.81418	-121.29606	2003.22	Leica	Haselbach	Rocklin
TMSB	38.57078	-121.54922	2003.22	Leica	Haselbach	West Sacramento
BALD	37.78330	-118.90130	1999.67	A-ZFX	CVO	Bald Mt., LVC
CA99	37.64460	-118.89670	1999.67	A-ZFX	CVO	Casa 1999, LVC
CASA	37.64464	-118.89666	1993.00	Rogue	JPL	Casa Diablo, LVC
DDMN	37.74430	-118.98120	1999.67	A-ZFX	CVO	Deadman Creek, LVC
DECH	38.05150	-119.09060	2001.58	A-ZFX	CVO	Dechambeau Ranch, LVC
HOTK	37.65860	-118.82130	2001.67	A-Z12	CVO	Hot Creek, LVC
JNPR	37.77170	-119.08470	1997.81	A-Z12	USGS	Juniper, LVC
KNOL	37.65912	-118.97917	1998.58	A-ZFX	CVO	Knolls, LVC
KRAC	37.71330	-118.88050	2001.67	A-Z12	CVO	Krakatoa-USGS, LVC
KRAK	37.71313	-118.88114	1994.73-2004.04	Rogue	JPL	Krakatoa, LVC
LINC	37.63719	-110.00114 -119.01729	1998.67	A-Z12	CVO	Lincoln, LVC
MINS	37.65376	-119.06090	1995.92	A-Z12 A-Z12	USGS	Minaret Summit, LVC
MWTP	37.64052	-119.00030 -118.94473	1998.52 1998.58	A-ZFX	CVO	Mammoth Water Treat Plant, LVC
PMTN	37.83130	-110.04470 -119.05690	1999.67	A-Z12	CVO	Panorama Mt., LVC
RDOM	37.67707	-118.89794	1998.58	A-ZFX	CVO	Resurgent Dome, LVC
SAWC	37.68990	-118.95310	2000.65	A-ZFX	CVO	Saw, LVC
TILC	37.61890	-118.35310 -118.86280	2000.65	A-Z17A A-Z12	CVO	Tilla, LVC
WATC	37.66440	-118.65390	2000.03 2001.67	A-Z12 A-Z12	CVO	Waterson, LVC
W1110	01.00440	-110.00030	2001.07	11-2112		

Table 6.2: Currently operating stations of the BARD GPS network maintained by other agencies and by the USGS Cascade Volcano Observatory (CVO) in the Long Valley caldera region. Other agencies include: EBMUD = East Bay Mun. Util. Dist., UCD = UC Davis, SU = Stanford Univ., UCSC = UC Santa Cruz, UWisc = U. of Wisconsin, City = City of Modesto (see also Table 1.1). Data from other agencies retrieved or pushed by FTP or from the Web.

2. 2003-2004 Activities

The typical configuration of a BSL continuous GPS station installation has been described in detail in previous annual reports. We here provide a brief description and highlight some of the recent changes. During July 2003–June 2004, we performed maintenance on existing BARD stations, installed 2 new stations, and prepared for a new station installation in the Marin Headlands.

2.1 BARD Stations

Each BSL BARD station uses a low-multipath chokering antenna, most of which are mounted to a reinforced concrete pillar approximately 0.5–1.0 meter above local ground level. The reinforcing steel bars of the pillar are drilled and cemented into rock outcrop to improve longterm monument stability. A low-loss antenna cable is used to minimize signal degradation on the longer cable setups that normally would require signal amplification. Low-voltage cutoff devices are installed to improve receiver performance following power outages. Most use Ashtech Z-12 receivers that are programmed to record data once every 30 seconds and observe up to 12 satellites simultaneously at elevations down to the horizon. The antennas are equipped with SCIGN antenna adapters and hemispherical domes, designed to provide security and protection from weather and other natural phenomena, and to minimize differential radio propagation delays. The BSL acquired 7 Ashtech MicroZ-CGRS (uZ) receivers with NSF funding for the Mini-PBO project. These receivers, designed for continuous station applications, use less power (5.6 W) than the Z-12 receivers due to the lack of an interactive screen, provide better remote receiver control, and can support serial telemetry in both native raw format and the receiver independent BINEX format.

Data from most BSL-maintained stations are collected at 30-second intervals and transmitted continuously over serial connections (Table 6.1). Station TIBB uses a direct radio link to Berkeley, and MODB uses VSAT satellite telemetry. Most stations use frame relay technology, either alone or in combination with radio telemetry. Fourteen GPS stations are collocated with broadband seismometers and Quanterra data loggers (Table 3.2). With the support of IRIS we developed software that converts continuous GPS data to MiniSEED opaque blockettes that are stored and retrieved from the Quanterra data loggers (*Perin et al.*, 1998), providing more robust data recovery from onsite disks following telemetry outages.

Data from DIAB, MONB, POTB, and TIBB in the Bay Area, the 4 Mini-PBO stations, and 13 stations in the Parkfield regional (all but PKDB), are now being collected at 1-second intervals. Collecting at such highfrequency (for GPS) allows dynamic displacements due to large earthquakes to be better measured, such as was demonstrated by several studies following the 2002 Denali fault earthquake. However, this 30-fold increase in data pose telemetry bandwidth limitations. Data from the Parkfield stations are collected on an on-site computer, written to removable disk once per month, and sent to SOPAC for long-term archiving (decimated 30-sec data is acquired daily via the BSL frame relay circuit). In the Bay Area, we have converted stations that have sufficient bandwidth and are currently assessing bandwidth issues at other stations. We are planning to convert to 1-second sampling where possible during the next year.

The BSL also acquired several Wi-Lan VIP 110-24 VINES Ethernet bridge radios. These 2.4 GHz spread spectrum radios use a tree structure to create a distributed Ethernet backbone with speeds up to 11 Mbps. Each system uses a directional antenna to talk to its "parent" in the tree, and an omni-directional antenna to talk to its children, if multiple, or a directional antenna if it has only 1 child. These radios offer several advantages over the Freewave radios used at other sites, including TCP/IP Ethernet control, higher bandwidth, and greater flexibility for setting up networks. We installed a set of Wi-Lan radios at the SVIN Mini-PBO station to transmit data from the site to the frame relay circuit, and are assisting EBMUD in converting their continuous station to real-time telemetry using Wi-Lan radios.

2.2 Station Maintenance

In September 2003, data telemetry from Sutter Buttes (SUTB) was interrupted. SUTB uses a Freewave radio to telemeter data to Oroville (ORVB) where it is aggregated with the ORVB GPS and seismic data on the Quanterra dataloggers and then telemetered to BSL in real time. Two problems were found. The Freewave radio at ORVB was replaced due to a bad serial port. Also, the circuit breaker on the GPS receiver at SUTB had been tripped. After resetting the breaker, data acquisition and telemetry were restarted. It is possible that a lightning storm was responsible for both problems, although workers at the communication facility on Sutter Buttes said they had been having problems with turkey vultures flying into the power lines and shorting out the power system.

In February 2003, telemetry flow of GPS data stopped at MUSB. Access to the site was initially limited by the winter snowpack, and then by the need to coordinate the visit with Southern California Edison engineers. During a visit to the site in August 2003 continuity tests revealed that the hardline antenna cable had apparently failed. This 70 m cable apparently was damaged by repeated water freezing in the PVC conduit that houses it. We replaced the hardline antenna cable, improved the drainage of the conduit, and restarted data acquisition in October 2003.

In February 2004, the site installation at Diablo (DIAB) was refurbished, including replacement of dead

batteries and cooling fans, and removal of animal waste and nesting material that was degrading the performance of the cooling system.

2.3 New Installations

Throughout the year, we continued installations for the NSF-funded Mini-PBO project to establish collocated GPS, and borehole strainmeter and seismometer observatories in the Bay Area. In November 2003, we installed the GPS instrumentation at the Mini-PBO station at St. Vincents School for Boys (SVIN). In February 2004, we installed the GPS instrumentation at the Mini-PBO station at Ox Mountain (OXMT). Both of these sites employed the borehole antenna mount we designed to provide a stable, compact GPS monument. In the coming year we plan to complete the Mini-PBO GPS installations after PG&E has installed AC power at the Marin Headlands (MHDL) site. See Chapter 7 for more details about the Mini-PBO station installations.

Additional continuous GPS stations were installed in northern California by collaborating agencies during the last year, including 4 stations (GR8V, MEE1, MEE2, QCYN) by the University of Wisconsin to study the creeping section of the San Andreas fault between San Juan Bautista and Parkfield, 3 stations (PLSB, SHJB, TMSB) by Haselbach Instruments in the Central Valley for surveying applications, one station (LNC1) in the Central Valley by the US Coast Guard for navigation applications (replacing PBL1, which was decommissioned), and SLAC by the Stanford Linear Accelerator surveying group, which effectively replaces the nearby SUAA site that had been used for navigation research. Due to lack of funding, JPL discontinued the operation of KRAK on the resurgent dome in the Long Valley caldera. However, continued monitoring of this geophysically interesting location is provided by the nearby station KRAC operated by CVO.

3. Data Analysis and Results

We use the GAMIT/GLOBK software developed at MIT and SIO to process data from the BARD and other nearby continuous GPS networks. Recent improvements to GAMIT/GLOBK include better accounting of oceantide effects, estimating gradients in atmospheric variations, and applying elevation-dependent weighting to the data observables. We process data from more than 70 stations within hours of the completion of the day using rapid or predicted orbits. We have also reprocessed older data from the present to 1991 using improved orbits. Data from 5 primary IGS fiducial sites located in North America and Hawaii are included in the solutions to help define a global reference frame. For long-term velocity estimates, we combine these solutions with global and regional solutions provided by SOPAC to better define a stable North America reference frame. We are currently porting our processing system to a Linux-based cluster that will significantly decrease the time required to analyze the data and allow us to process the much larger number of stations anticipated by the installation of the PBO network.

The estimated relative baseline determinations typically have 2–4 mm long-term scatter in the horizontal components and the 10–20 mm scatter in the vertical. Average velocities for the longest running BARD stations during 1993–2004 are shown in Figure 6.2, with 95% confidence regions assuming only white noise. The velocities are relative to stable North America, as defined by the IGS and CORS fiducial stations. In a study using only the continuous GPS stations in northern California and Nevada (Murray and Segall, 2001), we found that most of the Sierra Nevada sites (CMBB, QUIN, and ORVB), as well as SUTB in the Central Valley, show little relative motion, indicating that the northern Sierra Nevada-Central Valley is tectonically stable. The motion of these sites relative to North America differs from the inferred motion of the western Basin and Range Province, suggesting 3 mm/yr right-lateral shear across the Walker Lane-Mt. Shasta seismicity trend. Deformation along the coast in central California is dominated by the active SAF system, which accommodates about 35 mm/yr of right-lateral shear. The Farallon Island site (FARB) off the coast of San Francisco is moving at nearly the rate predicted by the NUVEL-1A Pacific–North America Euler pole. Two-dimensional modeling of the observed fault-parallel strain accumulation predicts deep slip rates for the San Andreas, Hayward, and Calaveras/Concord faults in good agreement with estimated geologic rates.

We are completing a more comprehensive study that combines survey-mode and continuous GPS solutions into a self-consistent velocity field in the San Francisco Bay area ($D'Alessio \ et \ al.$, 2004). This Bay Area Velocity Unification ($B\bar{A}V\bar{U}$) study, which employs more sophisticated three-dimensional block modeling methods that allow for complex fault geometries and enable along-strike variations to be estimated, is described in more detail in the research section (12.8.).

We are assessing the BARD time series for transient deformation signals (short-term deviations from the longterm average velocities). Stations within stable continental regions typically move at constant velocities, but near plate boundaries, earthquake cycle deformation associated with strain accumulation and release on faults causes transient behavior both from coseismic static displacements and from postseismic deformation as the crust re-equilibrates to the stress changes induced by the earthquake.

Transient signals have been observed from numerous earthquakes worldwide, but in northern California,

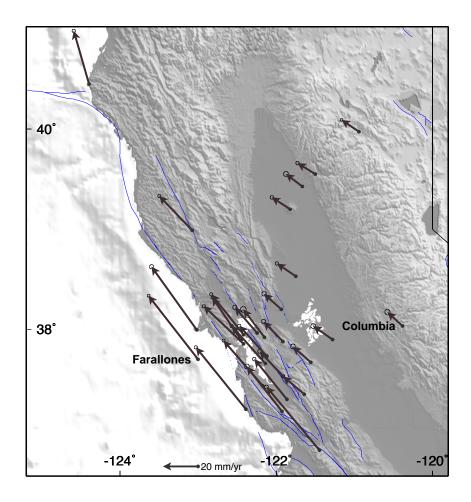


Figure 6.2: Velocities relative to stable North America for the BARD stations derived from 1993–2004 data. Ellipses show 95% confidence regions, assuming white noise only. The 35 mm/yr motion between Columbia and the Farallones is primarily due to shear across the San Andreas fault system.

the August 1998 M=5.1 San Juan Bautista earthquake (Uhrhammer et al., 1999) was the only event to have produced a detectable earthquake displacement signal (of 4 mm at the SAOB station) prior to 2003. This changed on 22 December 2003 when the M_w 6.5 San Simeon earthquake significantly displaced all the BARD stations along the creeping and Parkfield sections of the San Andreas fault. Most of these stations are located 50 km from the epicenter and were displaced southwest by about 15 mm. The closest continuous station, CRBT, about 25-30 km from the epicentral region, was displaced southwest by 68 mm and shows a modest postseismic transient in the first month following the earthquake (Figure 6.3). Preliminary results from our investigations of finite-fault rupture models for the San Simeon earthquake from inversions of seismic and geodetic data, including more coseismic displacements from survey-mode observations (*Rolandone* et al., 2004; *Murray et al.*, 2004), are presented in the research section (12.3.).

Transient deformation has also been observed using GPS from aseismic processes that can occur over hours to days, such as episodic slow earthquakes. These events, often associated with earthquake tremors, have been detected in both Japan and the northern Cascadia subduction zone, and recent studies suggest that they may also be occurring along the southern Cascadia subduction zone in northern California. In the research section (12.16.), we report on our preliminary study of deformation and tremor observations in the southern Cascadia subduction zone to better constrain and characterize this possible episodic behavior.

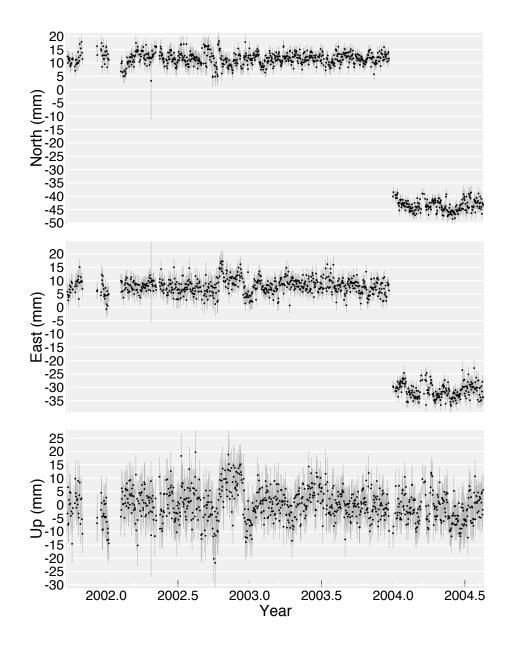


Figure 6.3: Daily position timeseries for CRBT, the continuous GPS station located closest to the epicenter of the 22 December 2003 San Simeon earthquake. The coseismic displacement is about 68 mm to the southwest. A modest amount of postseismic deformation occurs in the month following the event.

4. Real-Time Processing

We are developing real-time analysis techniques that will enable rapid determinations (within minutes) of deformation following major earthquakes to complement seismological information. We use GAMIT/GLOBK processing techniques to estimate independent hourly solutions at the several cm-level horizontal precision and during the past year established an extension of the REDI system where estimates of postseismic positions are attempted when 10 minutes of data become available following an earthquake (Murray et al., 2002).

We currently process 1-hour data batches available within 20 minutes of measurement from more than 20 continuously telemetered BSL and other stations providing hourly data. The hourly solutions have higher scatter than the 24-hour solutions (3–10 mm in the horizontal and 10–30 mm in the vertical), but our simulations suggest that displacements 3–5 times these levels should be reliably detected, and that the current network should be able to resolve the finite dimensions and slip magnitude of a M7 earthquake on the Hayward fault. Due to the poor ability of GAMIT to resolve ambiguities from short data spans, estimates of coseismic displacements within minutes of an event have high (decimeter-level) uncertainty. We are testing a relatively new component of GAMIT that uses Kalman filtering techniques and improved ambiguity resolution methods to provide higherprecision kinematic positions. This method works well for networks with small interstation distances (e.g., near the 1999 Hector Mine earthquake), which aids ambiguity resolution, but has less success on more widely spaced networks, such as the continuous GPS stations in the vicinity of the 2002 Denali earthquake.

These rapid processing techniques can also be applied to estimating higher frequency 1-Hz GPS displacements, which have been used to detect surface from large earthquakes and can potentially add valuable information about the seismic source. We are also developing methods to rapidly estimate finite-source models from coseismic GPS displacements and to use these models to predict strong-ground motions and improve ShakeMap depictions of these motions as rapidly as possible after an earthquake. The first step of this project has been the development of a new methodology to improve prediction of strong ground motion from a simple uniformslip geodetic model of the source. This methodology is based on a simple assumption that the large slip should take longer to terminate. We use well known scaling relations between stress drop and slip velocity to develop a spatio-temporal slip model. We have tested this model on the 1992 Northridge earthquake and found that the predicted ground motions agree well with observed motions and with other models derived from combinations of seismic and geodetic data (Rhie et al., 2004).

5. Acknowledgements

Mark Murray oversees the BARD program. André Basset, Wade Johnson, Rich Clymer, Cedric de La Beaujardiere, Bill Karavas, John Friday, Dave Rapkin, and Doug Neuhauser contributed to the operation of the BARD network.

6. References

Bürgmann, R., D. Schmidt, R.M. Nadeau, M. d'Alessio, E. Fielding, D. Manaker, T. V. McEvilly, and M. H. Murray, Earthquake potential along the northern Hayward fault, California, *Science*, 289, 1178–1182, 2000.

D'Alessio, M. A., I. A. Johanson, R. Bürgmann, D. A. Schmidt, and M. H. Murray, Slicing up the San Francisco Bay Area: Block kinematics from GPS-derived surface velocities, *J. Geophys. Res.*, in prep., 2004.

King, N. E., J. L. Svarc, E. B. Fogleman, W. K. Gross,

K. W. Clark, G. D. Hamilton, C. H. Stiffler, and J. M. Sutton, Continuous GPS observations across the Hayward fault, California, 1991-1994, *J. Geophys. Res.*, 100, 20,271–20,283, 1995.

Murray, M. H., and P. Segall, Continuous GPS measurement of Pacific–North America plate boundary deformation in northern California and Nevada, *Geophys. Res. Lett.*, 28, 4315–4318, 2001.

Murray, M. H., R. Bürgmann, W. H. Prescott, B. Romanowicz, S. Schwartz, P. Segall, and E. Silver, The Bay Area Regional Deformation (BARD) permanent GPS network in northern California, *EOS Trans. AGU*, 79(45), Fall Meeting Suppl., F206, 1998.

Murray, M., Neuhauser D., Gee, L., Dreger, D., Basset, A., and Romanowicz, B., Combining real-time seismic and geodetic data to improve rapid earthquake information, *EOS. Trans. AGU*, 83(47), G52A-0957, 2002.

Murray, M.H., D.C. Agnew, R. Bürgmann, K. Hurst, R.W. King, F. Rolandone, J. Svarc, GPS Deformation measurements of the 2003 San Simeon earthquake, *Seism. Res. Lett.*, 75, 295, 2004.

Perin, B. J., C. M. Meertens, D. S. Neuhauser, D. R. Baxter, M. H. Murray, and R. Butler, Institutional collaborations for joint seismic and GPS measurements, *Seismol. Res. Lett.*, 69, 159, 1998.

Rhie, J., D. Dreger, and M. H. Murray, A prediction of strong ground motions from geodetic data for PGV ShakeMaps, *Geophys. Res. Lett.*, in prep., 2004.

Rolandone, F., I. Johanson, and R. Bürgmann, Geodetic observations of the M6.5 San Simeon earthquake with focus on the response of the creeping segment of the San Andreas fault, *Seism. Res. Lett.*, 75, 293, 2004.

Romanowicz, B., B. Bogaert, D. Neuhauser, and D. Oppenheimer, Accessing northern California earthquake data via Internet, *EOS Trans. AGU*, 75, 257–260, 1994.

Uhrhammer, R., L. S. Gee, M. Murray, D. Dreger, and B. Romanowicz, The M_w 5.1 San Juan Bautista, California earthquake of 12 August 1998, *Seismol. Res. Lett.*, 70, 10–18, 1999.

Chapter 7

Plate Boundary Deformation Project

1. Introduction

The Integrated Instrumentation Program for Broadband Observations of Plate Boundary Deformation, commonly referred to as "Mini-PBO", is a joint project of the BSL, the Department of Terrestrial Magnetism at Carnegie Institution of Washington (CIW), the IGPP at UC San Diego (UCSD), and the U.S. Geological Survey (USGS) at Menlo Park, Calif. It augments existing infrastructure in central California to form an integrated pilot system of instrumentation for the study of plate boundary deformation, with special emphasis on its relation to earthquakes. This project is partially funded through the EAR NSF/IF program with matching funds from the participating institutions and the Southern California Integrated Geodetic Network (SCIGN).

Because the time scales for plate boundary deformation range over at least 8 orders of magnitude, from seconds to decades, no single technique is adequate. We have initiated an integrated approach that makes use of three complementary and mature geodetic technologies: continuous GPS, borehole tensor strainmeters, and interferometric synthetic aperture radar (InSAR), to characterize broadband surface deformation. Also, ultrasensitive borehole seismometers monitor microearthquake activity related to subsurface deformation.

The project has three components: 1) the installation of broadband deformation stations in the San Francisco Bay area; 2) the installation of GPS stations in the Parkfield region; and 3) support for skeletal operations of a 5-m X-band SAR downlink facility in San Diego to collect and archive radar data, and develop an online SAR database for WInSAR users. The BSL has participated in the first two of these components. Additional details about the Parkfield GPS stations, installed in 2001 to link the BARD network in central and northern California to the SCIGN network in southern California and currently operating in real-time streaming mode with instantaneous position analysis, are provided in the BARD chapter of this report. The remainder of this chapter describes San Francisco Bay area broadband deformation station component of this project.

The broadband deformation stations augment existing instrumentation along the Hayward and San Andreas faults in the San Francisco Bay area (Figure 7.1). During July 2001 to August 2002, five boreholes were drilled and equipped with tensor strainmeters and 3-component L22 (velocity) seismometers (Table 7.1). These were the first deployments of a new type of strainmeter developed by CIW that use 3 sensing volumes placed in an annulus with 120-degree angular separation (Figure 7.2, which allows the 3-component horizontal strain tensor to be determined. All of the stations include pore pressure sensors and 2-component tiltmeters. Four of the stations now are equipped with GPS receivers recording at 1 sample per second and Quanterra recording systems that provide 100-Hz seismic and strainmeter data. The GPS antennas at these stations are mounted at the top of the borehole casings to achieve stable compact monuments. These stations complement existing Bay Area stations of the BARD continuous network, the BDSN and HFN seismic networks, and borehole dilatometers along the southern Hayward fault and in the San Juan Bautista region.

2. Mini-PBO Station Configuration

The general configuration of borehole instrument installation at each Mini-PBO station is shown in Figure 7.3. A 6.625" steel casing was cemented into a 10.75" hole to 500-650' depth to prevent the upper, most unconsolidated materials from collapsing into the hole. Below this depth a 6" uncased hole was drilled to the target region for the strainmeter and seismometer packages. Coring, in order to identify the region with the most competent rock for the strainmeter, was attempted with only moderate success at a few of the holes and was not attempted at St. Vincents. We found that video logs provided a reasonable substitute. The target region of each hole was filled with a non-shrink grout into which the strainmeter was lowered, allowing the grout to completely fill the inner cavity of the strainmeter within the annulus formed by the sensing volumes to ensure good coupling to the

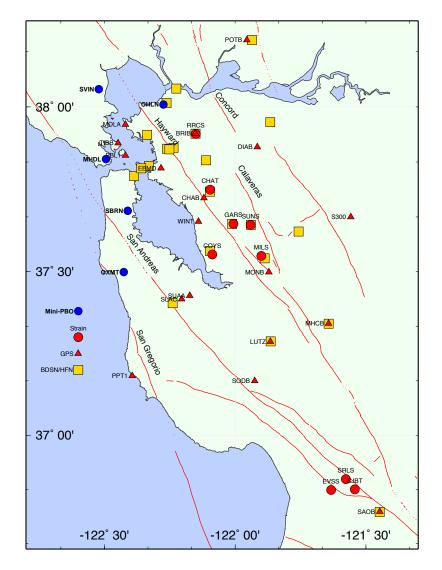


Figure 7.1: Map of San Francisco Bay and San Juan Bautista area with existing borehole strainmeter and continuous GPS stations. The 5 new Mini-PBO stations (blue) complement the existing configuration of BARD GPS (red triangles) and borehole strainmeter sites (red circles) and BDSN and borehole HFN seismic stations (yellow).

Code	Latitude	Longitude	Installed	Strainmeter	Seismometer	Location
				depth (ft)	depth (ft)	
OHLN	38.00625	-122.27299	2001/07/16	670.5	645.5	Ohlone Park, Hercules
SBRN	37.68622	-122.41044	2001/08/06	551.5	530.0	San Bruno Mtn. SP, Brisbane
OXMT	37.49936	-122.42431	2002/02/06	662.7	637.3	Ox Mtn., Half Moon Bay
MHDL	37.84227	-122.49374	2002/08/06	520.6	489.2	Golden Gate NRA, Sausalito
SVIN	38.03318	-122.52632	2002/08/29	527.0	500.0	St. Vincent CYO School, San Rafael

Table 7.1: Operating stations of the Mini-PBO network. Strainmeter installation date is given. Depth to tensor strainmeter and 3-component seismometers in feet. High-frequency seismic and strainmeter data, and 1-Hz GPS data are available at all sites except MHDL.

surrounding rock.

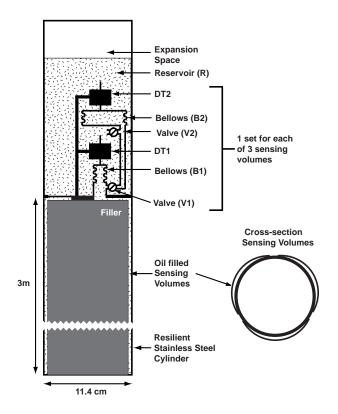
The 3-component seismometer package was then low-

ered to just above the strainmeter, on a 2" PVC pipe, and neat cement was used to fill the hole and PVC pipe to

entirely enclose the package. The pipe above this depth was left open for later installation of the pore pressure sensor. To allow water to circulate into the pipe from the surrounding rock for the pore pressure measurements, the steel casing was perforated, a sand/gravel pack was emplaced, and a PVC screen was used at this depth. At each hole, the casing was then cemented inside to about 200', and outside to about 20' depth. A 12" PVC conductor casing was cemented on the outside from the surface to 20' to stabilize the hole for drilling and to provide an environmental health seal for shallow groundwater flow. The annulus between the 12" conductor casing and the 6.625" steel casing was cemented to about 10' depth and above was left decoupled from the upper surface to help minimize monument instability for the GPS antenna mounted on top of the steel casing.

The BSL developed a GPS mount for the top of the borehole casings to create a stable, compact monument. This design will be used at the more than 140 PBO strainmeter stations to be installed over the next 5 years. The antennas, using standard SCIGN adapters and domes for protection, are attached to the top of the 6-inch metal casing, which will be mechanically isolated from the upper few meters of the ground. The casing below this level is cemented fully to the surrounding rock. The GPS mount design consists of two 11-inch diameter stainless steel flanges. The lower slip- and- weld type flange is welded onto the top of the 6 5/8"- inch borehole casing providing a level surface for the second flange. The upper blind-type flange, to which the $1 \ 1/4$ " stainless steel pipe used to connect to the SCIGN DC3 adaptor is attached, is bolted to the lower flange using four 3/4" by 3" stainless steel bolts. Two half- inch stainless steel dowels are press fit with high location precision (radius 7.500" + - 0.001") into the lower flange. Two matching holes are machined into the upper flange with a high location precision (radius 7.500" + - 0.001") and hole diameter precision (0.005"). One of the dowels is offset to insure unique directional alignment. During the period July 2003–June 2004, the BSL completed the installation of GPS systems using the borehole mount at St. Vincents School for Boys (SVIN) near San Rafael and at the Ox Mt site (OXMT) near Half Moon Bay.

Two-component tiltmeters were installed at all the stations by the USGS in 2003. Data from these sensors are recorded at 10-minute intervals and telemetered using the GOES system. Pore pressure sensors are also installed at all the stations and data are recorded at 1 Hz on the Quanterra dataloggers, except at Marin Headlands, where 10-minute interval data are also recorded on the Zeno datalogger.


The 1-Hz GPS, and 100-Hz strainmeter and seismometer data is acquired on Quanterra data loggers and continuously telemetered by frame relay to the BSL. Low frequency (600 second) data (including strainmeters, for redundancy) is telemetered using the GOES system to the USGS. All data is available to the community through the Northern California Earthquake Data Center (NCEDC) in SEED format, using procedures developed by the BSL and USGS to archive similar data from 139 sites of the USGS ultra-low-frequency (UL) geophysical network, including data from strainmeters, tiltmeters, creep meters, magnetometers, and water well levels.

The BSL is supervising GPS, power, frame relay telemetry, and Quanterra 4120 datalogger installation and maintenance at all the broadband deformation stations. Power, telemetry, and dataloggers are currently installed at all stations except MHDL, where we are waiting for PG&E to install the power drop. Telemetry at SVIN was established in June 2003 using Wi-LAN radios, a new type of radio that the BSL is currently beginning to adopt. These radios act as Ethernet bridges, providing superior access to console control on the Quanterras. The radios can also provide a spanning tree network structure for a regional wireless network, which allows greater flexibility for future network installations. We will use Wi-LAN radios at MHDL as well to provide a link between the borehole site and the frame-relay network interface circuit, which is located about 0.5 miles from the site.

The BSL and USGS are addressing minor problems at the stations. Highly correlated low-amplitude noise is contaminating the seismic and strain channels at several of the stations, mostly due to electrical ground loop issues. The USGS and CIW are also investigating anomalies in the strainmeter channels, including unusual steps in several of the instruments related to resetting of the secondary values that serve as an overflow buffer in the event of a large strain signal. These investigations have included tests of several variations of the strainmeter electronics boxes, which may have components that are poorly isolated. grounded. These tests, still ongoing, also introduce grounding loop problems that contaminate the high-frequency strain channels. In January 2004, the vertical component of the geophone at OHLN began to develop problems, which were most evident during seismic events. Testing indicated that the spring may have not functioned properly and that the sensor had lodged against a stop. The geophone returned to normal operation after it was pulsed with a high amplitude (.5V 4Hz) sine wave, which presumably dislodged the sensor.

3. Broadband Deformation Data

We are in the initial stages of assessing the data quality of the broadband deformation instrumentation. The borehole seismic packages provide good signal to noise characteristics compared to the NHFN stations due to their relatively deep installation. The systems have the best signal to noise near their 2-Hz characteristic frequency, but typical microseismic noise around 0.1 Hz is

ST. VINCENT SCHOOL BOREHOLE STRAINMETER AND SEISMIC MONITORING INSTALLATION

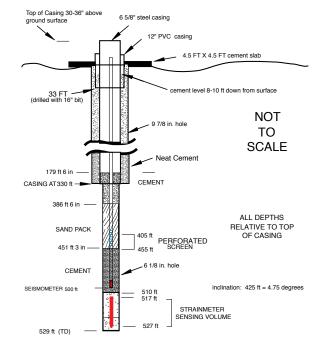


Figure 7.2: Tensor strainmeter diagram. These instruments are a modification of hydraulic sensing dilatometer design to achieve a volume strain sensitivity of $10^{**}(-12)$ with constant frequency response from 0 to more than 10 Hz and a dynamic range of about 130 dB. The design incorporates a second bellows- DT- valve sub- system which provides extended dynamic range, complete preservation of baseline during required instrumental resets, and redundant sensing electronics. Figure courtesy A. Linde (USGS).

not evident (Figure 7.4). It is possible that the microseismic noise could be resolved if the systems included a pre-amplifier. We are planning to test this at OXMT and MHDL when the power and telemetry issues at those sites are resolved. These stations currently sample at 100-Hz, so they miss some of the seismic energy at high frequencies that are observed on the 500-Hz Parkfield borehole stations.

Analysis of GPS observations show that the short-term daily repeatabilities in the horizontal components are about 0.5-1 mm, and annual signals with about 1 mm amplitude. These values are similar to those obtained with more typical monuments, such as concrete piers or braced monuments, but it is too early to assess the longterm stability of the borehole casing monument, which might also be affected by annual thermal expansion effects on the casing.

The newly designed tensor strainmeters appear to

Figure 7.3: The Mini-PBO borehole configuration at St. Vincents, showing the emplacement of the strainmeter and seismometer instruments downhole. The GPS receiver is mounted on the top. Figure courtesy B. Mueller (USGS).

faithfully record strain signals over a broad frequency range, except at the longest periods where the strains show a long-term exponential signal. This large signal is most likely due to cement hardening effects and reequilibration of stresses in the surrounding rock in response to the sudden appearance of the borehole. These effects can last for many years and are the principal reason that borehole strainmeters cannot reliably measure strain at periods greater than a few months.

At periods around 1 day, tidally induced strains are the dominant strain signal. Since the response of the strainmeter volumes is difficult to estimate independently, theoretically predicted Earth tides are typically used to calibrate the strainmeters. Figure 7.5 shows the approximate microstrain of the OHLN strainmeter over a several month period interval, and some of the steps required to clean the data, including removing the tides and atmospheric pressure effects. The remaining signal is highly correlated with rainfall, indicating the extent that hydrologic events can affect strain. The proximity of the strainmeters to the San Francisco Bay complicates the determinations of theoretical tides due to ocean and bay loading effects. Figure 7.6 gives results from a tidal

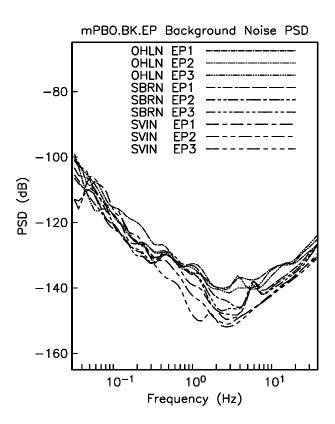


Figure 7.4: Background noise measured by the borehole seismic packages at OHLN, SBRN, and SVIN. Component 1 is vertical. The systems have the best signal to noise ratio near their 2-Hz characteristic frequency. Typical microseismic noise around 0.1 Hz is not evident.

analysis provided by D. Agnew (UCSD) that shows good agreement in amplitude and phase of the two principal tidal components used for strainmeter calibrations (M2 and O1) at most of the stations, but a negative M2 tide at Ohlone, which is physically implausible.

At higher frequencies, strains due to seismic events are also evident. Figure 7.7 shows borehole strain measurements with clear seismic phases at OHLN for a 2003 Carlsberg Ridge earthquake. The dilatational component is bandpass filtered to show 100-300 second period Raleigh waves. Also shown are synthetic straingrams computed from a summation of the fundamental normal mode branch assuming a 1D Earth model (PREM), showing reasonably good agreement in amplitude. We are developing methods to use seismic surface waves to estimate the amplitude calibrations of the strainmeters to help resolve some of the problems observed with the tidal comparisons. The synthetic surface-wave and tidalperiod amplitude calibrations currently agree to within 40%, which we expect will be significantly improved by using better Earth models and more sophisticated analysis techniques, such as phase-matched filtering.

Figure 7.5: Four-month subset of OHLN data, detrended to flatten the first 50 days (middle trace), separated using BAYTAP-G (Tamura et al., 1991) into tidal, atmospheric pressure, and "cleaned" data components (with arbitrary vertical offsets). The atmospheric pressure time series measured at the site was also used for this decomposition. Approximate microstrain values are based on peak-topeak tidal amplitude. The remaining large strain signals in the cleaned data are highly correlated with rainfall measured at an instrument located about 5 km from the site (40 cm total cumulative rainfall during this interval), and therefore are probably not geophysically interesting.

transient behavior, such as episodic creep or slow earthquake displacements. These multiparameter stations are providing a prototype for more than 140 planned borehole strainmeter, seismometer, and GPS stations in Cascadia and along the San Andreas fault as part of the Plate Boundary Observatory.

4. Acknowledgements

This project is sponsored by the National Science Foundation EAR/IF program with matching funds from the participating institutions and the Southern California Earthquake Center (SCEC) (PI Romanowicz).

Under Mark Murray's supervision, André Basset, Bill Karavas, John Friday, Dave Rapkin, Doug Neuhauser, Tom McEvilly, Wade Johnson, and Rich Clymer have contributed to the development of the BSL component of the Mini-PBO project. Several USGS colleagues, especially Malcolm Johnston, Bob Mueller, and Doug Myren, played critical roles in the drilling and instrument installation phases.

We are also examining the strain data for other types of

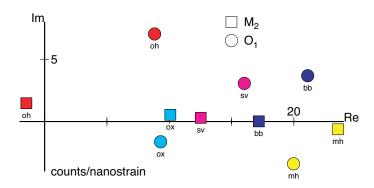


Figure 7.6: Tidal analysis performed by D. Agnew on areal strain from the Mini-PBO stations, showing agreement within about 20% in both amplitude and phase between the O1 and M2 tides, except at Ohlone (oh), whose negative M2 tide is physically implausible.

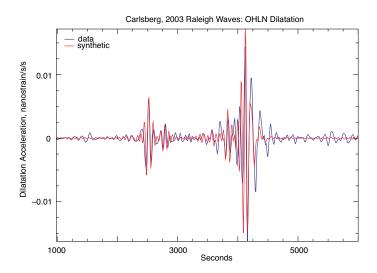


Figure 7.7: Comparison between data (blue) and synthetic (red) straingrams at the OHLN strainmeter for the 2003 Carlsberg Ridge earthquake. The dilatational component is bandpass filtered to show 100-300 second period Raleigh waves. The synthetics are computed from a summation of spheroidal modes assuming a 1D Earth model (PREM). Surface-wave and tidal-period amplitude calibrations agree to within 40%, which we expect will be significantly improved by using better Earth models and more sophisticated analysis techniques, such as phasematched filtering.

Chapter 8

Data Acquisition and Quality Control

1. Introduction

Stations from nearly all networks operated by the BSL transmit data continuously to the BSL facilities on the UC Berkeley campus for analysis and archive. In this chapter, we describe activities and facilities which crosscut the individual networks described in Chapters 3 - 7, including the facilities in McCone Hall, procedures for data acquisition and quality control, sensor testing capabilities and procedures, and a collaborative experiment in early warning.

While some of these activities are continuous from year to year, we have identified changes or activities which are specific to 2003-2004.

2. McCone Hall Facilities

The routine data acquisition, processing, and archiving activities of the BSL are carried out in McCone Hall. The BSL facilities in McCone are designed to provide air conditioning, 100-bit switched network, and reliable power with UPS and generator.

Because of the mission-critical nature of the automated earthquake processing, most computer systems operated by the BSL run on circuits with both UPS and generator power. Air conditioning is provided through both "building air" and two additional AC units.

2.1 Power

Over the years, the BSL has experienced problems with the McCone generator system, including a failure in 1999 due to a combination of a weakened power system and a leak in the water pump. In the 2001-2002 Annual Report, we described the failure of the McCone and Byerly generators in the March 7, 2002 campus-wide power outage.

While the failure of the generator at Byerly Vault was traced to PPCS human error (the generator had been left in a mode where it would not automatically start when power was lost), the failure of the McCone generator was due to poor maintenance. Similar to the situation in 1999, it failed due to problems in the power system combined with a leak in the water pump.

In the fall of 2002, BSL staff met with Eric Haemer, Sara Shirazi, and several others from PPCS to discuss maintenance and routine load testing of the McCone generator. As a result, the McCone generator is scheduled for quarterly load tests and bi-monthly run tests.

2.2 Air Conditioning

In parallel with power problems, the BSL has faced cooling problems in room 237 in the past year. As with power, the growth of the computing systems in the past year has led to an increased heat load. This came to a crisis during the fall of 2002, with peak temperatures in the computer room exceeded 85° when the AC unit failed. After consideration of several options, the BSL decided to add an additional AC unit to room 237. The new unit (which is not supported by UPS/generator power) has helped keep systems running, although the BSL held a summit with PPCS staff in February 2004 to review ongoing cooling problems. As a result, PPCC worked with the contractor to install a larger impeller on the chilled water circulation pump. This has increased the cooling capacity of our dry cooler on the roof. In addition, PPCS has been coming by more regularly to inspect the filters on the unit.

2.3 New Facilities

The BSL is actively working with the campus to relocate the critical operations of data acquisition, processing, archiving, and distribution to a more robust facility. With assistance from the Office of the Vice Chancellor for Research, the BSL has been granted space in 2195 Hearst, a recently completed building on the Oxford Tract. 2195 Hearst was designed to current codes and has been given special attention for post-earthquake operations. The BSL is gearing up to relocate their critical computers in the fall of 2004.

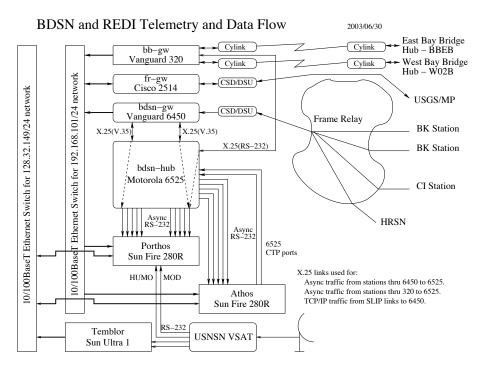


Figure 8.1: Data flow from the BDSN, NHFN, MPBO, HRSN, and BARD network into the BSL central processing facility.

3. Data Acquisition

Central-site data acquisition for the BDSN/NHFN/MPBO is performed by two computer systems located at the BSL (Figure 8.1). These acquisition systems are also used for the Parkfield-Hollister electromagnetic array and for the BARD network. A third system is used primarily as data exchange system with the USNSN and receives a feed from CMB, HUMO, MOD, SAO, and WDC from the the NSN VSAT. This system also transmits data to the USNSN from HOPS, CMB, SAO, WDC, and YBH. Data acquisition for the HRSN follows a more complicated path, as described in Chapter 5.

3.1 Comserv

The BSL uses the **comserv** program for central data acquisition, which was developed by Quanterra. The **comserv** program receives data from a remote Quanterra data logger, and redistributes the data to one or more comserv client programs. The comserv clients used by REDI include **datalog**, which writes the data to disk files for archival purposes, **cdafill**, which writes the data to the shared memory region for REDI analysis, and other programs such as the seismic alarm process, the DAC480 system, and the feed for the Memento Mori Web page (Figure 8.2).

The two computers that perform data acquisition also serve as REDI processing systems. In order to facilitate REDI processing, each system maintains a shared memory region that contains the most recent 30 minutes of data for each channel used by the REDI analysis system. All REDI analysis routines first attempt to use data in the shared memory region, and will only revert to retrieving data from disk files if the requested data is unavailable in the shared memory region.

Most stations transmit data to only one or the other of the two REDI systems. The comserv client program cs2m receives data from a comserv and multicasts the data over a private ethernet. The program mcast, a modified version of Quanterra's comserv program, receives the multicast data from cs2m, and provides a comservlike interface to local comserv clients. This allows each REDI system to have a comserv server for every station.

We have extended the multicasting approach to handle data received from other networks such as the NCSN and UNR. These data are received by Earthworm data exchange programs, and are then converted to MiniSEED and multicast in the same manner as the BSL data. We use **mserv** on both REDI computers to receive the multicast data, and handle it in an identical fashion to the BSL MiniSEED data.

3.2 BH Sampling Rate

The BSL converted most - but not quite all - of the BDSN BH data streams from 20 samples per second to 40 samples per second at the beginning of the

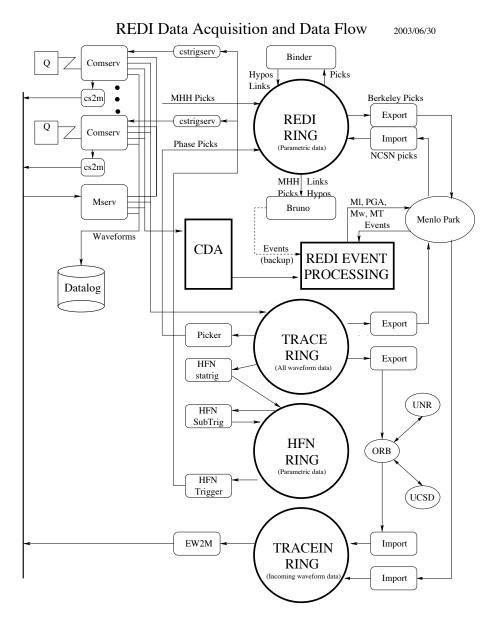


Figure 8.2: Dataflow in the REDI processing environment, showing waveform data coming in from the Quanterra data loggers (Q) into comserv. From comserv, data are logged to disk (via datalog), distributed to other computers (mserv), fed into the CDA for REDI processing, and spooled into a trace ring for export.

GMT day on June 15, 2004 (day 167). This change affects: BDM, BKS, BRIB (broadband sensor only), CMB, CVS, FARB, HOPS, HUMO, JCC, JRSC, MHC, MNRC, MOD, ORV, PACP, PKD, POTR, RFSB (surface strong-motion only), SAO, SCCB, WDC, and YBH. Stations BRK, KCC, and WENL were converted at the beginning of day 168.

This change in sampling rate was made in order to be consistent with the USArray specifications. At this time, we do not intend to change the sampling rate of the BP channels associated with the BSL borehole networks - the NHFN, MPBO, and HRSN.

4. Seismic Noise Analysis

BSL seismic data are routinely monitored for stateof-health. An automated analysis is computed weekly to characterize the seismic noise level recorded by each broadband seismometer. The estimation of the Power Spectral Density (PSD) of the ground motion recorded at a seismic station provides an objective measure of background seismic noise characteristics over a wide range of frequencies. When used routinely, the PSD algorithm also provides an objective measure of seasonal and secular variation in the noise characteristics and aids in the early diagnoses of instrumental problems. A PSD estimation algorithm was developed in the early 1990's at the BSL for characterizing the background seismic noise and as a tool for quality control. As presently implemented, the algorithm sends the results via email to the engineering and some research staff members and generates a bargraph output which compares all the BDSN broadband stations by components. A summary of the results for 2003-2004 is displayed in Figure 3.3. Other PSD plots for the NHFN, HRSN, and MPBO are shown in Figures 4.3, 5.2, and 7.4 respectively.

Three years ago, we expanded our use of the weekly PSD results to monitor trends in the noise level at each station. In addition to the weekly bar graph, additional figures showing the analysis for the current year are produced. These cumulative PSD plots are generated for each station and show the noise level in 5 frequency bands for the broadband channels. These cumulative plots make it easier to spot certain problems, such as failure of a sensor. In addition to the station-based plots, a summary plot for each channel is produced, comparing all stations. These figures are presented as part of a noise analysis of the BDSN on the WWW at http://www.seismo.berkeley.edu/seismo/bdsn/psd/.

The PSD algorithm has been documented in previous annual reports.

5. Sensor Testing Facility

The BSL has set up an instrumentation test facility in the Byerly Seismographic Vault in order to systematically determine and to compare the characteristics of up to eight sensors at a time. The test equipment consists of an eight-channel Quanterra Q4120 high-resolution data logger and a custom interconnect panel that provides isolated power and preamplification when required to facilitate the connection and routing of signals from the sensors to the data logger with shielded signal lines. Upon acquisition of the 100 samples-per-second (sps) data from the instruments under test, PSD analysis and spectral phase coherency analysis are used to characterize and compare the performance of each sensor. Tilt tests and seismic signals with a sufficient signal level above the background seismic noise are also used to verify the absolute calibration of the sensors. A simple vertical shake table is used to access the linearity of a seismic sensor.

The sensor testing facility of the BSL is described in detail in the 2001-2002 Annual Report.

Instruments tested during the past year include three Keck OBS broadband seismometers, three STS-2 broadband seismometers, CITRIS accelerometers and a tilt-meter.

Figure 8.3: Closeup photo of the back of the signal/power cable connector on the STS-2 control box, installed at WDC, showing the corrosion of the wires. The subsequent leakage between the cables generated coherent long period noise.

Figure 8.4: Photo of STS-2 sensors #50205 (right) and #20022 (left) after they were installed and leveled on the seismic pier in the BKS vault. After this photo was taken, the sensors were covered with a couple layers of R-13 fiberglass batt insulation to minimize temperature variations and improve their low frequency performance.

5.1 STS-2s

On August 26th, 2003, the malfunctioning STS-2 broadband sensor (#39335), which was removed from WDC, was installed for testing. The symptom was that there is coherent long period noise on all three broadband channels and the external signal/power connector was visibly corroded (owing to water standing in the dome in which it was installed at WDC) (see Figure 8.3).

The conductors in the signal/power cable were reterminated and the sensor was taken to BKS for noise testing. During the installation in the sensor testing facility, it was discovered that the bubble level on the base plate of the sensor, which is critical for leveling the seismometers, had no bubble. The fluid had leaked out of the bubble level so that it could not be used to level the instrument. On September 8th, after installing a new bubble level on its base plate, STS-2 #39335 was installed and successfully leveled for testing. The subsequent background noise PSD tests showed that the STS-2 was operating within its nominal specifications.

During the month of February 2004, a pair of STS-2 broadband seismometers (#20022 and #50205) were installed in the BKS vault (see Figure 8.4) to characterize their performance prior to installation at remote BDSN seismic stations. STS-2 #20022 is a "low power" unit, for which the factory supplied only nominal calibration information, which was originally installed at HUMO in June 2002. It was removed from service at HUMO in November 2002 because it was determined to be the source of the excessively high noise level observed on the broadband channels. As is our routine policy, it was tested after it was repaired. STS-2 #50205 is a new sensor for which the factory supplied detailed calibration information (with 5 complex zeros and 11 complex poles) for each of the three orthogonal triaxial sensors in the unit. The resulting tests showed that both sensors were operating within their nominal specifications. STS-2 #50205was subsequently installed at FARB on August 21, 2004 and STS-2 #20022 awaits installation at a new BDSN station.

5.2 CITRIS Accelerometer

During the month of November, several calibration and noise tests were preformed on prototype CITRIS accelerometers developed by a team working with Steven Glaser in Civil Engineering. The calibration testing was done in the BSL machine shop in Room 298 McCone Hall during the first two weeks on November. The absolute calibration for each accelerometer was determined by tilting the sensor through an accurately measured angle (see Figures 8.5 and 8.6) and measuring its response. The data were transmitted to a laptop computer via a spread spectrum tranceiver and the data logging was done on the laptop with custom software written by graduate students working on the project. After the accelerometers were calibrated, the quiet background noise PSD test was done in the BKS Vault and the results are shown in Figure 8.7.

5.3 Keck OBS

The Keck OBS testing reported on last year continued through July 2004 with the application of insulation to inhibit convection induced noise.

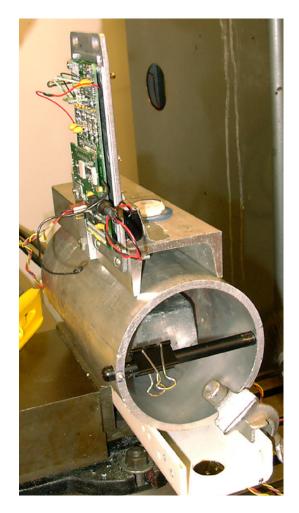


Figure 8.5: Closeup photo of the custom test apparatus assembled to rotate the CITRIS accelerometer through a range of accurately measurable angles up to +/-30 degrees. The accelerometer is an integral component on the circuit board (top) and the large pipe (bottom center) is rotated on the channel to tilt the accelerometer. A laser pointer (black tube mounted on pipe diagonal) is used to infer the rotation angle from the position of the projected laser beam (see Figure 8.6).

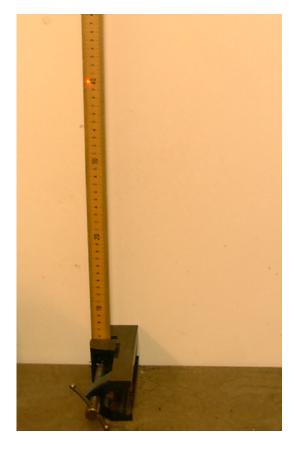


Figure 8.6: Photo of the laser beam projected on a meter stick located 300 cm from the center of the rotation axis of the pipe in Figure 8.5. The position of the beam can be determined to an accuracy of 0.5 mm which is equivalent to measuring the tilt angle to an accuracy of 0.6 minutes of arc.

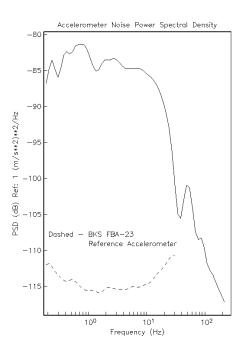


Figure 8.7: Plot of the background noise PSD for one of the CITRIS horizontal accelerometers under test. The background noise PSD estimate from the co-sited BKS Kinemetrics FBA-23 strong motion accelerometer (dashed line) is provided for reference. The low frequency noise PSD floor of the CITRIS accelerometer averages ~ 83 dB.

Between March and June another round of testing of the Keck OBS sensor began. Sensor #T1046 (see Figure 8.8) was tested to characterize its performance prior to installation on the sea floor at the MOBB site in Monterey Bay. Fiberglass batt insulation (see Figure 8.9) was tied around the titanium pressure sphere to improve the thermal stability of the sensor. During the testing in early April, we found the horizontal components to be excessively noisy. Upon investigation, we found that one of the washers was sited on what appeared to be a CaCl deposit which was powdery and loose and the pier had some small loose debris on its surface. Also, the thick cable which is attached at the top of the pressure vessel is a source of tilt related noise. We swept off the seismic pier and re-installed OBS on three ceramic washers, suspended the cable from the overhead airduct girders, and reinstalled the fiberglass batt insulation. The horizontal component noise was reduced significantly.

Figure 8.8: Photo of cast titanium pressure sphere housing Keck OBS #T1046. The disc shaped base is standing on three creamic washers for stability on the seismic pier. The orange signal cable exiting at the top of the sphere is draped overhead to minimize the generation of noise at the cable responds to temperature changes.

5.4 Other Tests

During June, Pinnacle Technologies tested a prototype nanoradian resolution tiltmeter in the BKS vault. They supplied the sensor and recording system and they also did all the analysis. We provided only the quiet vault environment in which they could test their sensor.

Figure 8.9: Photo of fiberglass batt insulation surrounding the pressure sphere.

6. Acknowledgements

Doug Neuhauser, Bob Uhrhammer, Lind Gee, Pete Lombard, and Rick McKenzie are involved in the data acquisition and quality control of BDSN/NHFN/MBPO data.

Development of the sensor test facility and analysis system was a collaborative effort of Bob Uhrhammer, Tom McEvilly, John Friday, and Bill Karavas. IRIS and DTRA provided, in part, funding and/or incentive to set up and operate the facility and we thank them for their support.

Bob Uhrhammer led the testing and problem solving effort of the Keck sensors, with help from John Friday, Doug Neuhauser, and Bill Karavas.

Bob Uhrhammer, Lind Gee, and Doug Neuhauser contributed to the preparation of this chapter.

7. References

Scherbaum, Frank. Of Poles and Zeros: Fundamentals in Digital Seismology, Volume 15 of Modern Approaches in Geophysics, G. Nolet, Managing Editor, Kluwer Academic Press, Dordrecht, xi + 257 pp., 1996.

Tapley, W. C. and J. E. Tull, SAC - Seismic Analysis Code: Users Manual, *Lawrence Livermore National Laboratory*, Revision 4, 388 pp., March 20, 1992.

Chapter 9

Northern California Earthquake Monitoring

1. Introduction

Routine analysis of the data produced by BSL networks begins as the waveforms are acquired by computers at UC Berkeley, and ranges from automatic processing for earthquake response to analyst review for earthquake catalogs and quality control.

Over the last 10 years, the BSL has invested in the development of the hardware and software necessary for an automated earthquake notification system (Gee et al., 1996; 2003a). The Rapid Earthquake Data Integration (REDI) project is a research program at the BSL for the rapid determination of earthquake parameters with three major objectives: to provide near real-time locations and magnitudes of northern and central California earthquakes; to provide estimates of the rupture characteristics and the distribution of ground shaking following significant earthquakes, and to develop better tools for the rapid assessment of damage and estimation of loss. A long-term goal of the project is the development of a system to warn of imminent ground shaking in the seconds after an earthquake has initiated but before strong motions begin at sites that may be damaged.

In 1996, the BSL and USGS began collaboration on a joint notification system for northern and central California earthquakes. The current system merges the programs in Menlo Park and Berkeley into a single earthquake notification system, combining data from the NCSN and the BDSN.

Today, the BSL and USGS system forms the Northern California Management Center (NCMC) of the California Integrated Seismic Network (Chapter 2).

2. Northern California Management Center

The details of the Northern California processing system and the REDI project have been described in past annual reports. In this section, we will describe how the Northern California Management Center fits within the CISN system, detail recent developments, and discuss plans for the future development.

Figure 2.3 in Chapter 2 illustrates the NCMC as part of the the CISN communications ring. The NCMC is a distributed center, with elements in Berkeley and Menlo Park. The 35 mile separation between these two centers is in sharp contrast to the Southern California Management Center, where the USGS Pasadena is located across the street from the Caltech Seismological Laboratory. As described in Chapter 2, the CISN partners are connected by a dedicated T1 communications link, with the capability of falling back to the Internet. In addition to the CISN ring, the BSL and the USGS Menlo Park have a second dedicated communication link to provide bandwidth for shipping waveform data and other information between their processing systems.

Figure 9.1 provides more detail on the current system at the NCMC. At present, two Earthworm-Earlybird systems in Menlo Park feed two "standard" REDI processing systems at UC Berkeley. One of these systems is the production or paging system; the other is set up as a hot backup. The second system is frequently used to test new software developments before migrating them to the production environment. The Earthworm-Earlybird-REDI systems perform the standard detection, location, estimation of M_d , M_L , and M_w , as well as processing of ground motion data. The computation of ShakeMaps is also performed on two systems, one in Menlo Park and one in Berkeley, as described below. An additional system performs finite-fault processing and the computation of higher level ShakeMaps.

The dense network and Earthworm-Earlybird processing environment of the NCSN provides rapid and accurate earthquake locations, low magnitude detection thresholds, and first-motion mechanisms for smaller quakes. The high dynamic range data loggers, digital telemetry, and broadband and strong-motion sensors of the BDSN and REDI analysis software provide reliable magnitude determination, moment tensor estimation, peak ground motions, and source rupture charac-

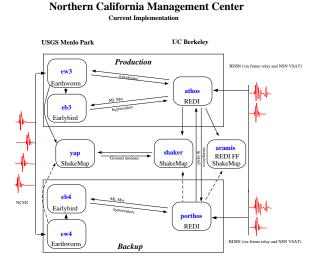


Figure 9.1: Detailed view of the current Northern California processing system, showing the two Earthworm-Earlybird-REDI systems, the two ShakeMap systems, and the finite-fault system.

teristics. Robust preliminary hypocenters are available about 25 seconds after the origin time, while preliminary coda magnitudes follow within 2-4 minutes. Estimates of local magnitude are generally available 30-120 seconds later, and other parameters, such as the peak ground acceleration and moment magnitude, follow within 1-4 minutes (Figure 9.2).

Earthquake information from the joint notification system is distributed by pager/cellphone, e-mail, and the WWW. The first two mechanisms "push" the information to recipients, while the current Web interface requires interested parties to actively seek the information. Consequently, paging and, to a lesser extent, e-mail are the preferred methods for emergency response notification. The *recenteqs* site has enjoyed enormous popularity since its introduction and provides a valuable resource for information whose bandwidth exceeds the limits of wireless systems and for access to information which is useful not only in the seconds immediately after an earthquake, but in the following hours and days as well.

3. 2003-2004 Activities

Most of the effort in the last year has gone toward designing the Northern California Seismic System.

3.1 System Development

As part of ongoing efforts to improve the monitoring systems in northern California, the BSL and the USGS Menlo Park have started to develop the next generation of the northern California joint notification system or the Northern California Seismic System (NCSS).

Figure 9.1 illustrates the current organization of the two systems. As described above, an Earthworm/Earlybird component is tied to a REDI component and the pair form a single "joint notification system". Although this approach has functioned reasonably well over the last eight years, there are a number of potential problems associated with the separation of critical system elements by \sim 35 miles of San Francisco Bay.

Recognizing this, we intend to redesign the Northern California operations so that a single independent system operates at the USGS and at UC Berkeley. In FY01/02, our discussions proceeded to the stage of establishing specifications and determining the details required for design. However, in the last year, most of the development effort focused on CISN activities and specific plans for the "next generation" Northern California system were put on hold. This enforced wait provided the opportunity for some ideas to mature and the current plans for the NCMC are somewhat different from those envisioned in 2001.

The current design draws strongly on the experience in Southern California for the development of TriNet (Figure 9.3), with some modifications to allow for local differences (such as very different forms of data acquisition and variability in network distribution). In addition, the BSL and the USGS want to minimize use of proprietary software in the system. The TriNet software uses three forms of proprietary software: Talerian Smart Sockets (TSS) for inter-module communication via a "publish and subscribe" method; RogueWave software for database communication, and Oracle as the database management system. As part of the development of the Northern California Earthquake Data Center, the USGS and BSL have worked extensively with Oracle databases and extending this to the real-time system is not viewed as a major issue. However, we did take the opportunity to review options for replacing Smart Sockets and RogueWave with Southern California, resulting in joint agreement on replacement packages and shared development effort.

In the last two years, BSL staff, particularly Pete Lombard, have become extremely familiar with portions of the TriNet software. We have begun to adapt the software for Northern California, making adjustments and modifications along the way. For example, Pete Lombard has adapted the TriNet magnitude module to northern California, where it is running on a test system. Pete made a number of suggestions on how to improve the performance of the magnitude module and has worked closely with Caltech and the USGS/Pasadena on modifications. One of the recent discoveries with the magnitude module was related to differences in time references as implemented in the database schema.

More recently, the BSL and the USGS Menlo Park

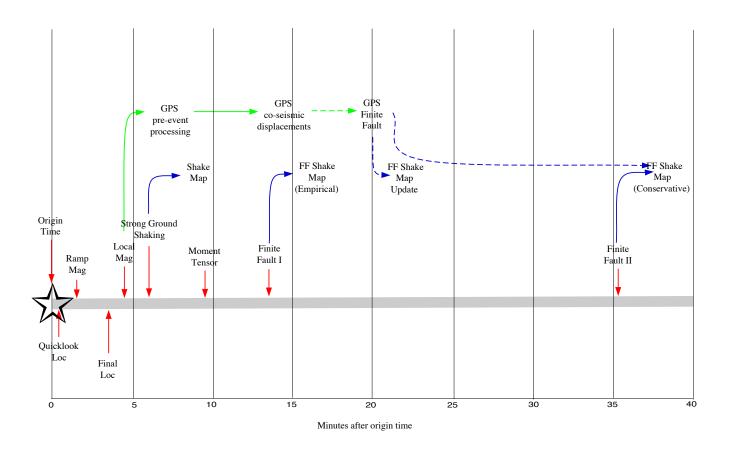


Figure 9.2: Illustration of the current (solid lines) and planned/proposed (dotted lines) development of real-time processing in northern California. The Finite Fault I and II are fully implemented within the REDI system at UC Berkeley and are integrated with ShakeMap. The resulting maps are still being evaluated and are not currently available to the public.

undertook the effort to develop and test a design to exchange "reduced amplitude timeseries". One of the important innovations of the TriNet software development was the concept of continuous processing (Kanamori et al., 1999), where waveform data are processed to produce Wood Anderson synthetic amplitudes and peak ground motions constantly. A program called rad produces a reduced timeseries, sampled every 5 secs, and stores it in a memory area called an "Amplitude Data Area" or ADA. Other modules can access the ADA to retrieve amplitudes to calculate magnitude and ShakeMaps as needed. In the past year, the BSL and the USGS Menlo Park have collaborated to establish the tools for the ADAbased exchange. As part of the software development in northern California, several modules have been developed:

The first, ada2ring, reads from an ADA, creates an EW message, and plops it into a ring where it can be picked up and transferred between computers using the

standard EW import/export. The second, ring2ada, will take the EW amplitude message and put it into the ADA. More recently, some development in northern California now allows multiple rads to work on the same time base and feed a single ADA (solving the problem of multiple rads working on the same channels).

This system is currently being tested in northern California, with ADAs in Menlo Park and Berkeley feeding an ADA in Berkeley that is being used to test the magnitude codes.

Additional capability needed in the future includes the capability to filter channels in the ADA (so that NoCal does not send CI timeseries back to SoCal, for example), and the ability to handle location codes (currently in the NC version but not in the SC version).

More information on the Northern California software development efforts is available at http://www.cisn.org/ncmc/.

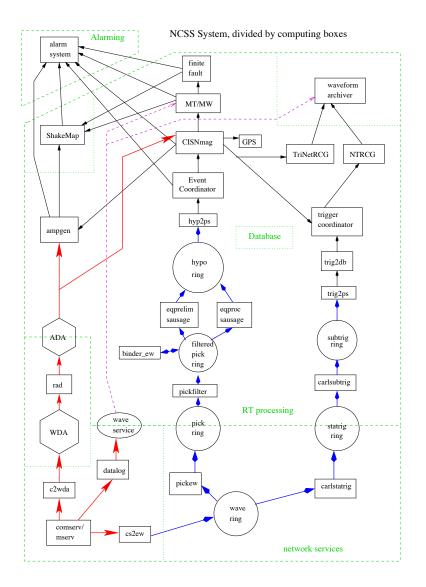


Figure 9.3: Schematic diagram of the planned NCSS system. The design combines elements of the Earthworm, TriNet, and REDI systems

3.2 M_w

The REDI system has routinely produced automatic estimates of moment magnitude (M_w) for many years. However, these estimates were not routinely used as the "official" magnitude until after the 05/14/2002 Gilroy earthquake (M_w 4.9, M_L 5.1), motivated by the complications created by the publication of multiple magnitudes.

In last year's annual report, we discussed the issue of when to report M_w . As currently implemented, solutions that meet a minimum quality criterion are automatically reported (a variance reduction of 40% or higher). This criterion appears to work very well and screens out events contaminated by teleseisms. Over the last few years, nearly all events over 4.5 have met this criterion, as have a number of events in the M3.5-4.5 range.

As part of the effort to establish a statewide magnitude reporting hierarchy, we have looked more closely at the estimates of M_w (*Gee et al.*, 2003b; 2004b) and the comparison between M_w and M_L .

Two methods of determining regional moment tensor (RMT) solutions have been automated as part of the REDI system - the complete waveform modeling technique (CW) of *Dreger and Romanowicz* (1994) and the surface wave inversion (SW) of *Romanowicz et al.* (1993).

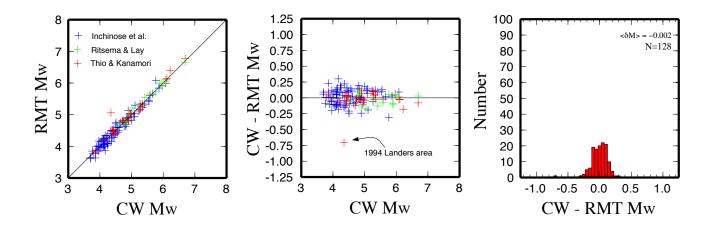


Figure 9.4: Left: Comparison of the estimates of M_w from the complete waveform (CW) method (*Dreger and Ro-manowicz*, 1994) with other regional moment tensor (RMT) methods (*Thio and Kanamori*, 1995; *Ritsema and Lay*, 1995; *Inchinose et al.*, 2003). Middle: Difference between the estimates of M_w , plotted against M_w . Right: Histogram of the magnitude differences.

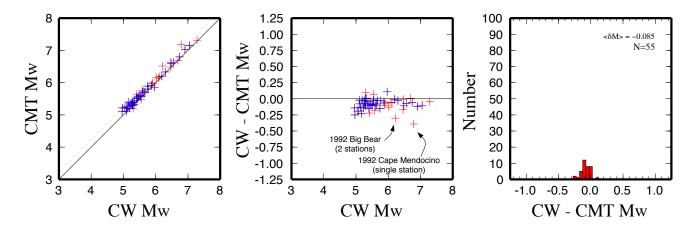


Figure 9.5: Left: Comparison of the estimates of M_w from the CW method with the Harvard CMT method (*Dziewonski* and Woodhouse, 1981). Middle: Difference between the estimates of M_w , plotted against M_w . Right: Histogram of the magnitude differences, showing the very tight distribution.

Comparison between the CW method and other regional moment tensor studies in northern California and the western United States show excellent agreement in the estimate of seismic moment and M_w (Figure 9.4). Over 128 events, the average difference in M_w is 0.002 magnitude units.

There is also very good agreement between the regional complete waveform method and global methods such as the Harvard Centroid Moment Tensor (CMT) (*Dziewonski and Woodhouse*, 1981). Figure 9.5 shows the excellent agreement between the CW and CMT solutions, with an apparent bias: the CMT estimates of M_w are on average 0.09 higher than the CW estimates. There is a slight suggestion that the residual is increasing at the lower magnitude range, which may be attributed to the global methods reaching the end of their resolution for small earthquakes.

Comparison of the CW estimates of M_w with other regional methods and the CMT solutions indicate the robustness of the procedures and the continuity between the regional and global estimates. The difference between the CW and CMT estimates of M_w shows more scatter

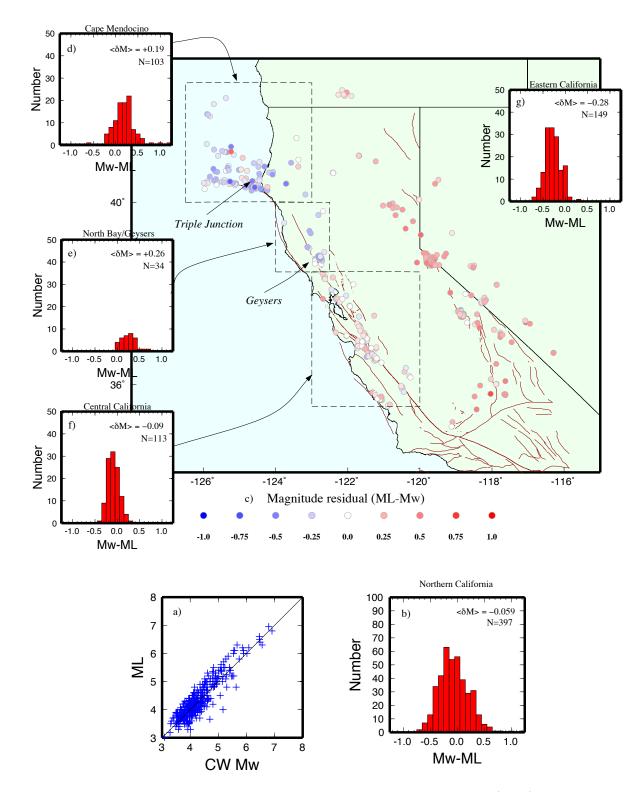


Figure 9.6: Comparison between M_w and M_L for earthquakes in northern California. a) & b) Plots of the M_L versus M_w for all events. The magnitude difference shows a broad spread, with an average of 0.06. c) Map showing the distribution of the magnitude residual, illustrating the strong geographic signal of the Cape Mendocino, Geysers, and eastern California regions. d)-h) Plots showing the distribution of the magnitude residual for different areas.

for events in the early 1990s (red crosses in Figure 9.5), reflecting the limited distribution of regional broadband stations at that time. However, the bias is consistent over time. We do not observe a correlation with this difference and the difference in depth, and are currently investigating the influence of different velocity models.

In comparing regional estimates of M_w to M_L in northern California, we observe an interesting pattern. Overall, the average magnitude difference is quite small (-0.06). However, there is a strong geographic signal in the data. In Figure 9.6, earthquakes with $M_L > M_w$ are drawn in red; events with $M_w > M_L$ are drawn in blue. In general, M_L is consistently larger than M_w with the exception of two regions - the North Bay/Geysers and the Cape Mendocino/Gorda plate areas. In the North Bay Geysers area, the mean difference between M_w and M_L is 0.26 and in Cape Mendocino, the mean difference is 0.19 (although there are 9 events with a difference greater than 0.5). In both areas, there is evidence that this is due to source processes.

At this point in time, we believe that the variation in the magnitude residuals is due to path effects (particularly for events on the east side of the Sierra).

4. Routine Earthquake Analysis

In fiscal year 2003-2004, over 12,500 earthquakes were detected by the automatic systems in northern California. This compares with over 8,300 events last year. The 50% increase in the number of events can be attributed to the 2003 San Simeon earthquake. Of those 12,500+ events, over 560 had preliminary magnitudes greater than 3. 46 events had M_L greater than 4. The largest event recorded by the system was the $M_w 6.5$ San Simeon earthquake, which is discussed below.

During the last year, the BSL modified its routine analysis procedures, both in response to the increase in seismicity and to a change in personnel.

In the past, BSL analysts routinely located and determined the magnitude of earthquakes in northern California and adjacent regions. As a general rule, events were analyzed if their magnitude is greater than 2.8 in the Central Coast ranges, greater than 3.0 in all of northern California, or greater than 3.8 in the bordering regions. Traditionally, these events were located using hand-picked arrival times from the BDSN stations in conjunction with P-arrival times from the NCSN using the program strelp. Over the past several years, the BSL has made a transition in the daily analysis to take advantage of the automatic processing system. As part of this transition, events which have been processed by the automatic system are not generally relocated, although phase arrivals are still hand-picked and the synthetic Wood-Anderson readings are checked.

In the past year, we migrated to a system where the

analyst imports and exports data from the database for review. A graphical user interface allows the analyst to select events for review, export picks and amplitudes, modify and update those readings, and import new readings as well as new hypocenters and magnitudes. While this new system is an improvement in many ways (in particular, it has allowed us to stop depending on an older PC database), there are several components that are difficult to work with since Seistool is not designed to work in a database environment. This system is an interim solution while the development of the new northern California system is underway.

During this transition, the M6.5 San Simeon earthquake occurred. The significant increase in seismicity associated with its vigorous aftershock sequence, combined with a reduction in staff, presented significant challenges for the earthquake analysis at the BSL (see, for example, Chapter 5). Recognizing that the BSL efforts to locate local earthquakes duplicates efforts of the USGS, the BSL changed their policy for local and regional reading. As of March 2004, BSL staff are no longer reading BDSN records for local and regional earthquakes. Instead, the BSL analysis effort is being redirected to help with the HRSN readings.

The BSL continues to focus on the unique contributions that can be made from the broadband network. From July 2003 through June 2004, BSL analysts reviewed nearly 179 earthquakes in northern California and adjoining areas of magnitude 3.5 and higher. Reviewed moment tensor solutions were obtained for 65 events (through 6/30/2004). Figure 9.7 and Table 9.1 display the earthquakes located in the BSL catalog and the moment tensor solutions.

4.1 San Simeon Earthquake

The December 22, 2003 M6.5 San Simeon earthquake is the largest event in California since the 1999 M7.1 Hector Mine earthquake and resulted in 2 deaths and over 50 injuries (Figure 9.8). Preliminary reports suggest that the most severe damage was to unreinforced masonry structures that had not yet been retrofitted (e.g., EERI, 2004). Significant damage to water tanks has also been reported and a number of wineries suffered significant loss of wine barrels and their contents. In the following description, we draw upon the San Simeon report of the CISN (*Gee et al.*, 2004a).

The automated procedures of earthquake location and magnitude determination worked well (Tables 9.2 and 9.3). A preliminary location was available within 30 seconds, and a final location with a saturated duration magnitude (M_d) of 5.6 was released approximately 4 minutes after the event occurred. An updated and more reliable local magnitude (M_L) of 6.4 was released 30 seconds later, and the final moment magnitude (M_w) of 6.5 was released 6.5 minutes after the earthquake origin time.

Location	Date	UTC Time	Lat.	Lon.	MT	M_l	M_w	Mo	Str.	Dip	Rake
					Depth	Ū	ű			1	
Petrolia	07/04/03	20:52:57.30	40.318	-124.584	21	3.7	4.3	3.69e22	189	88	14
Healdsburg	07/30/03	04:50:06.00	38.679	-122.910	8	4.0	4.0	1.08e22	311	86	176
Geysers	08/03/03	12:00:53.00	38.796	-122.767	5	3.8	4.2	2.18e22	345	64	-153
Ferndale	08/15/03	09:15:13.00	40.984	-125.596	8	5.0	5.1	5.75e23	42	73	-19
Punta Gorda	08/26/03	02:29:55.80	40.451	-124.648	24	3.9	4.4	4.48e22	124	83	170
Orinda	09/05/03	01:39:54.00	37.846	-122.222	14	4.1	4.0	1.15e22	141	76	-177
Petrolia	09/10/03	21:19:24.00	40.493	-125.657	11	3.9	4.2	2.08e22	360	87	-34
Tres Pinos	09/25/03	14:33:45.70	36.820	-121.354	8	3.5	3.5	2.15e21	137	89	176
Geysers	10/03/03	16:56:34.00	38.839	-122.810	5	3.9	4.3	2.73e22	27	51	-95
Eureka	10/09/03	06:11:33.00	41.073	-125.238	8	4.3	4.5	6.70e22	47	49	-5
Lafayette	10/19/03	15:32:52.00	37.907	-122.150	5	3.5	3.5	2.12e21	245	77	-6
Morgan Hill	11/06/03	22:04:13.00	37.209	-121.661	8	3.9	3.8	4.98e21	134	55	89
Nevada	11/15/03	20:11:59.00	38.222	-117.873	8	4.5	4.1	1.60e22	181	81	-160
Nevada	11/15/03	21:19:36.00	38.219	-117.870	8	4.5	4.2	2.21e22	183	81	-168
San Simeon	12/22/03	19:15:56.00	35.706	-121.102	8	6.4	6.5	5.93e25	290	58	78
San Simeon	12/22/03	21:31:36.00	35.713	-121.069	5	4.3	4.2	2.03e22	103	65	64
Templeton	12/22/03	23:52:36.00	35.529	-120.890	5	4.1	4.1	1.58e22	92	50	71
San Simeon	12/23/03	02:06:55.00	35.689	-121.113	8	4.2	4.1	1.64e22	315	59	113
San Simeon	12/23/03	02:56:49.00	35.709	-121.072	8	4.1	3.9	7.98e21	352	63	160
Paso Robles	12/23/03	03:46:00.00	35.699	-121.116	14	4.3	4.3	3.07e22	162	90	-162
San Simeon	12/23/03	05:30:19.00	35.667	-121.110	5	4.2	4.1	1.61e22	116	54	91
Cambria	12/23/03	18:17:11.00	35.654	-121.054	5	4.9	4.7	1.30e23	293	60	98
San Simeon	12/25/03	05:20:13.00	35.706	-121.102	5	4.2	3.9	7.03e21	282	51	79
San Simeon	12/25/03	05:21:59.00	35.652	-121.094	5	4.2	4.0	1.05e22	293	58	91
San Simeon	12/25/03	06:34:49.00	35.657	-121.091	5	4.1	3.9	9.05e21	295	50	73
San Simeon	12/25/03	09:45:55.00	35.666	-121.091	5	4.1	3.9	7.31e21	308	49	99
Templeton	12/25/03	11:50:01.00	35.553	-120.839	8	4.4	4.5	5.30e22	313	58	131
San Simeon	12/27/03	21:29:39.00	35.668	-121.109	5	4.0	4.0	1.00e22	331	42	46
San Simeon	01/02/04	10:44:51.00	35.705	-121.153	5	3.9	4.1	1.69e22	322	49	105
San Simeon	01/02/04	10:47:39.00	35.682	-121.180	5	4.2	4.2	2.38e22	327	56	112
San Martin	01/31/04	02:11:23.00	37.099	-121.568	8	3.7	3.7	3.46e21	136	87	133
Bakersfield	02/14/04	12:43:11.00	35.052	-119.125	5	4.6	4.6	8.50e22	50	60	49
Geysers	02/18/04	20:37:46.00	38.834	-122.765	5	4.4	4.5	5.46e22	14	50	-100
San Juan Bautista	03/16/04	06:38:32.00	36.806	-121.521	5	4.6	4.3	3.01e22	42	82	13
San Simeon	03/17/04	23:53:07.00	35.735	-121.075	5	4.8	4.5	5.50e22	298	49	88
San Simeon	06/05/04	02:46:51.00	35.548	-121.298	5	3.6	3.6	2.63e21	322	81	170
San Simeon	06/06/04	08:40:52.00	35.552	-121.284	8	3.8	3.8	6.13e21	238	90	-1
Mendocino	06/17/04	18:43:55.00	40.754	-125.076	5	3.7	3.8	5.64e21	149	79	-165
Offshore Baja Calif.	06/15/04	22:28:49.00	32.383	-117.847	5	5.3	5.0	3.14e23	231	74	-18
Lakeview,OR	06/27/04	07:00:13.00	42.208	-120.318	5	5.0	4.1	1.64e22	168	67	-105
Lakeview,OR	06/30/04	12:21:50.00	42.175	-120.295	5	5.0	4.7	1.09e23	165	61	-114

Table 9.1: Moment tensor solutions for significant events from July 1, 2003 to June 31, 2004 using a complete waveform fitting inversion. Epicentral information from the UC Berkeley/USGS Northern California Earthquake Data Center. Moment is in dyne-cm and depth is in km.

The automatically determined first motion mechanism and moment tensor solution each showed a reverse mechanism, in excellent agreement with the reviewed mechanisms.

One of the most challenging aspects of this event was the lack of ShakeMap-quality stations in the vicinity of the earthquake, particularly stations with communications capability. The closest such station to the epicenter with continuous telemetry was the UC Berkeley station PKD, in Parkfield, CA, at a distance of 56 km. The California Geological Survey (CGS) operates three stations in the area - Cambria at 13 km, San Antonio Dam at 22 km, and Templeton at 38 km from the epicenter. However, since these stations did not have telemetry, their data were not available until hours after the earthquake. Caltech/USGS Pasadena operate stations to the south of the event, but their nearest station was 60 km from the epicenter.

The first automatic ShakeMap was posted 8 minutes after the event, based on the M_L of 6.4 and with 29 stations contributing. The first update occurred 6 minutes later based on the revised M_w of 6.5 and the addition of 45 stations (mostly distant). Throughout December 22nd and 23rd, the ShakeMap was updated multiple times with additional data (including the observations from the CGS stations at Templeton and Cambria) and as more infor-

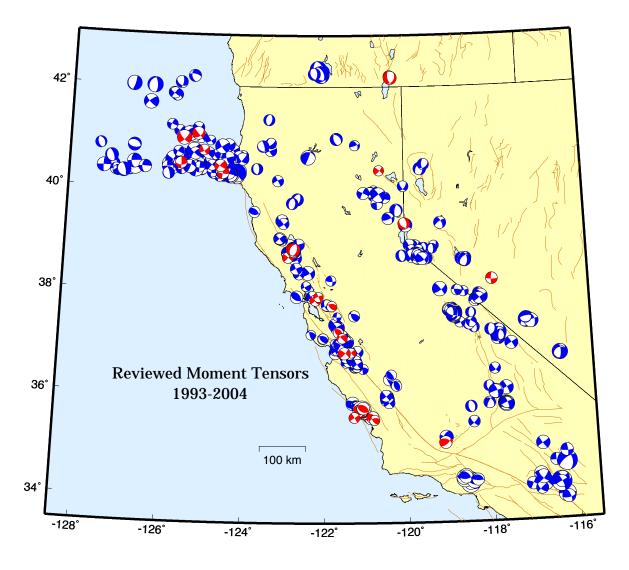


Figure 9.7: Map comparing the reviewed moment tensor solutions determined by the BSL in the last 11 years (blue) and those from the last fiscal year (red).

mation about the earthquake rupture (fault orientation and length) became available.

The San Simeon event provided an important proving ground for the finite fault processing (see section 12.2.) for more details. The automatic codes performed correctly, although a configuration mistake caused the inversion to use the lower quality of the two moment tensor solutions obtained. As a result, the finite-fault system did not obtain optimal results. The computations proved to be relatively fast in this implementation, with the line source inversion completed approximately eight minutes after the event occurred and the resulting predicted ground motions available six minutes later. The 2-D inversion and the predicted ground motions were completed 30 minutes after the earthquake.

Although the automated system had a configuration error, the processed data were available for rapid review by the seismic analyst. Using available strong motion and broadband displacement waveforms, both line-source and planar-source analyses indicated that this event ruptured nearly horizontally to the SE from the epicenter, essentially in the null-axis direction of the NE dipping reverse mechanism. Because of this nearly horizontal, along dip rupture, it was not possible to uniquely determine the causative fault plane, although there was a slight preference for the NE dipping plane which is consistent with the aftershock distribution. The southeast rupture produced directivity-amplified ground motions toward the SE that

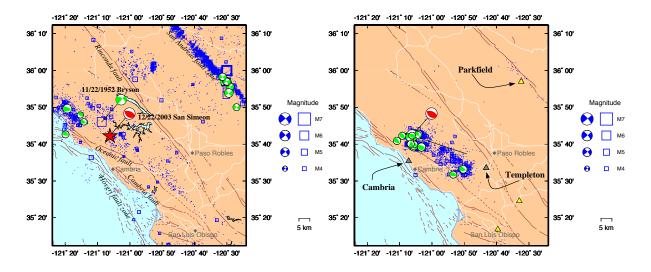


Figure 9.8: Left: Map showing the seismicity from 1966-2003 in the region of the San Simeon earthquake. Earthquakes with magnitude less than 3 are plotted as points; events with magnitude greater than 3 are plotted as squares. Moment tensors solutions over the last 10 years are plotted in green. The location and mechanism of the M6.5 event are shown in red. Also shown is the location and first-motion mechanisms of the 1952 Bryson earthquake (Dehlinger and Bolt, 1987). Right: Earthquakes and moment tensors in the region of the San Simeon earthquake since the 12/22/03 mainshock. The aftershock region extends from the mainshock to the southeast. The solid line indicates the extent of the line source determined on the 22nd for improving the ShakeMap. Triangles indicate the location of stations used in the ShakeMap - yellow indicates near real time stations; grey indicates stations without communications that were not available in near real time. Stations mentioned in the text - Cambria, Templeton, and Parkfield - are labelled.

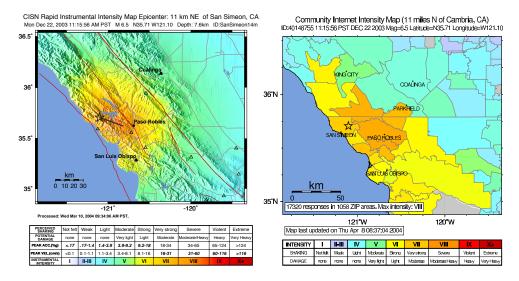


Figure 9.9: Left: Map of instrumental intensity for the M6.5 San Simeon earthquake, after correction for the fault distance calculation. Right: Close-up of the Community Internet Intensity Map for the San Simeon earthquake.

is consistent with felt reports and the damage in Paso Robles. The preliminary results from the reviewed finite source analysis were included in the ShakeMap system approximately 4 hours after the earthquake. information in the past - the 1999 Hector Mine and 2001 Denali earthquakes are examples. As noted earlier, the use of finite source information is not automatically included in the ShakeMaps available to the public. Because this component of the system has been seldom exercised,

Only a few ShakeMaps have made use of finite source

CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST Mi6.5 N35.71 W121.10 Depth: 7.6km ID:SanSimeon2

B: 12/22 11:38 Update with additional stations and Mw 6.5

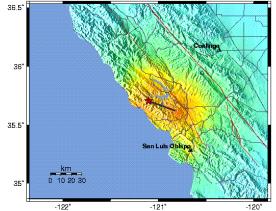
CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST M 6.5 N35.71 W121.10 Depth: 7.6km ID:SanSimeon7m

A: 12/22 11:24 AM First ShakeMap with ML 6.4.

-121

120

CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST M 6.4 N35.71 W121.10 Depth: 7.6km ID:SanSimeon1


36.5

36

35.5

35

-122

C:12/22 15:33 Update with addition of finite fault description.

CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST M 6.5 N35:71 W121.10 Depth: 7.6km ID:SanSimeon12m



E: 12/23 16:28 Update with data from the Cambria station.

CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST M 6.5 N35.71 W121.10 Depth: 7.6km ID:SanSimeon&m

CISN Rapid Instrumental Intensity Map Epicenter: 11 km NE of San Simeon, CA Mon Dec 22, 2003 11:15:56 AM PST M 6.5 N35:71 W121:10 Depth: 7.6km ID:40148755

F: ShakeMap as of 1/5/2004.

Figure 9.10: The temporal evolution of ShakeMaps for the San Simeon earthquake, as illustrated through the intensity maps. All times are local.

the San Simeon earthquake uncovered a problem in the code used to compute distances to a rupture segment. As a result, the ShakeMaps in Figure 9.10c-f underestimate ground motions near the middle of the fault trace. Figure 9.9 displays the revised intensity map, which shows a broader area of intensity VIII than observed in Figure 9.10f.

The lack of nearby ShakeMap-quality stations resulted in maps with an overwhelming reliance on theoretically predicted ground motions. Figure 9.10 illustrates the evolution of the intensity map with time. In Figure 9.10a and b, the source is modeled as a point source and the maps show areas of significant ground motions south and north of the epicenter. Four hours after the earthquake, information about the fault rupture was added (c), based on the inversion results of Dreger et al. (2004). The addition of the finite fault information (in this case, limited to the linear extent and orientation of the fault) focused the higher ground motions to the southeast and showed more damaging shaking in the vicinity of Paso Robles. However the most significant change in the ShakeMap came with the addition of data from the Templeton station, seven hours after the earthquake (d). The high shaking observed at Templeton (47% g), raised all the intensity levels significantly. Maps (e) and (f) show the intensity level after the addition of the Cambria data and the map as of January 5, 2004.

As seen in Figure 9.10c, the addition of information about the fault length and orientation was an important addition to the ShakeMap, particularly given the sparseness of instrumentation. This methodology provides an important tool in areas with limited station distribution to improve ShakeMaps.

4.2 Other Events of Interest

Other significant events in fiscal year 2003-2004 include a small swarm in the Livermore area (largest magnitude M3.5) in January 2004, a M4.4 near the Geysers on February 18th, an M4.3 near San Juan Bautista on March 16th, an M4.2 near King's Beach (Lake Tahoe) on June 3rd, and a sequence in southeastern Oregon which began on June 23rd and continues as of this writing.

4.3 Teleseisms

In addition to the routine analysis of local and regional earthquakes, the BSL also processes teleseismic earthquakes. Taking advantage of the ANSS catalog, analysts review teleseisms of magnitude 5.8 and higher. All events of magnitude 6 and higher are read on the quietest BDSN station, while events of magnitude 6.5 and higher are read on the quietest station and BKS. Earthquakes of magnitude 7 and higher are read on all BDSN stations. The phase and amplitude data are provided to the NEIC, along with the locations and magnitudes, as contributions to the global catalogs, such as that of the ISC.

5. Acknowledgements

Lind Gee leads the development of the REDI system and directs the routine analysis. Peter Lombard and Doug Neuhauser contribute to the development of software. Rick McKenzie, Doug Dreger, Dennise Templeton, Peggy Hellweg, and David Dolenc contribute to the routine analysis. Lind Gee, Doug Neuhauser, and Dennise Templeton contributed to the writing of this chapter.

Partial support for the develop of the REDI system is provided by the USGS.

6. References

Dehlinger, P., and B. Bolt, Earthquakes and associated tectonics in a part of coastal central California, *Bull. Seis. Soc. Am.*, 77, 2056-2073, 1987.

Dreger, D., Lombard, O., Boatwright, J., Wald D., and L. Gee, Finite source models of the December 22, 2003 San Simeon earthquake and applications to ShakeMap (abstract), *Seismol. Res. Lett.*, 75, 293, 2004.

Dreger, D., and B. Romanowicz, Source characteristics of events in the San Francisco Bay region, USGS Open File Report 94-176, 301-309, 1994.

Dziewonski, A.M., T.-A. Chou and J.H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-2852, 1981.

Earthquake Engineering Research Institute, Preliminary observations on the December 22, 2003, San Simeon earthquake, http://www.eeri.org/lfe/usa_ san_simeon.html, 2004.

Gee, L., D. Oppenheimer, T. Shakal, D. Given, and E. Hauksson, Performance of the CISN during the 2003 San Simeon Earthquake, http://www.cisn.org/docs/ CISN_SanSimeon.pdf, 2004a.

Gee, L., J. Polet, R. Uhrhammer, and K. Hutton, Earthquake Magnitudes in California, *Seism. Res. Lett.*, 75(2), 272, 2004b.

Gee, L., D. Neuhauser, D. Dreger, M. Pasyanos, R. Uhrhammer, and B. Romanowicz, The Rapid Earthquake Data Integration Project, *Handbook of Earthquake* and Engineering Seismology, IASPEI, 1261-1273, 2003a.

Gee, L., D. Dreger, G. Wurman, Y, Gung, B. Uhrhammer, and B. Romanowicz, A Decade of Regional Moment Tensor Analysis at UC Berkeley, *Eos Trans. AGU*, 84(46), Fall Meet. Suppl., Abstract S52C-0148, 2003b.

Gee, L., D. Neuhauser, D. Dreger, M. Pasyanos, B. Romanowicz, and R. Uhrhammer, The Rapid Earthquake Data Integration System, *Bull. Seis. Soc. Am.*, 86, 936-945,1996.

CISN Timing						
Earthquake Information	UTC Time	Elasped time				
		(HH:MM:SS)				
Origin Time (OT)	$12/22 \ 19:15:56$	00:00:00				
Quick Look hypocenter	12/22 19:16:20	00:00:24				
Final hypocenter & M_d	$12/22 \ 19:20:25$	00:04:29				
Local Magnitude	$12/22 \ 19:20:58$	00:05:02				
First Motion mechanism	$12/22 \ 19:21:36$	00:05:40				
Moment Tensor mechanism & M_w	12/22 19:22:40	00:06:44				
1st ShakeMap completed $(M_L \ 6.4)$	$12/22 \ 19:24:13$	00:08:17				
Analyst review/1st aftershock probability	$12/22 \ 19:32:00$	00:16:04				
2nd ShakeMap completed $(M_w \ 6.5)$	$12/22 \ 19:38:28$	00:22:32				
Analyst review of moment tensor	$12/22 \ 20:16:49$	01:00:53				
1st Internet Quick Report at cisn-edc.org	$12/22 \ 20:30:-$	01:14:-				
Analyst review of line source	12/22 21:54:-	02:38:-				
ShakeMap update with line source	$12/22 \ 23:33:-$	04:17:-				
ShakeMap update with Templeton data	$12/23 \ 02:34:-$	07:18:-				
Earthquake Report at cisn.org	$12/23 \ 17:34:-$	22:18:-				
Updated aftershock probability	12/23 $22:54:-$	27:38:-				
ShakeMap update with Cambria data	$12/24 \ 00:28:-$	29:12:-				
Preliminary science report at cisn.org	12/24 23:44:-	52:28:-				

Table 9.2: Timing of earthquake information for the San Simeon earthquake.

Parameters of the Dec 22, 2003 San Simeon Earthquake						
	Automatic	Reviewed				
Origin Time (UTC)	19:15:56.24	19:15:56.20				
Location (latitude longitude)	35.7058 -121.1013	35.7043 - 121.1032				
Depth (km)	7.59	7.34				
M_d	5.62	5.35				
M_L	6.43	6.44				
M_w	6.50	6.50				
FM Mechanism (strike/dip/rake)	297/56/97 105/35/80	305/60/71 160/35/120				
MT Mechanism (strike/dip/rake)	294/59/83 128/32/102	290/58/78 131/34/108				
MT Depth (km)	8.0	8.0				

Table 9.3: Comparison of parameters as determined by the automatic earthquake processing system with those obtained after analyst review. Note that the value of M_d is lower than the M_L or M_w as the duration magnitude estimate generally saturates around M4.0-4.5. FM - first motion; MT - moment tensor.

Hardebeck, J., Boatwright, J., Dreger, D., Goel, R., Graizer, V., Hudnut, K., Ji, C., Jones, L., Langbein, J., Lin, J., Roeloffs, E., Simpson, R., Stark, K., Stein, R., and J. Tinsley, Preliminary report on the 22 December 2003 M6.5 San Simeon, California, earthquake, *Seismol. Res. Lett.*, 75, 155-172, 2004.

Ichinose, G., J. Anderson, K. Smith, and Y. Zeng, Source parameters of eastern California and western Nevada earthquakes from regional moment tensor solutions, *Bull. Seis. Soc. Am.*, *93*, 61-84, 2003.

Ritsema, J., and T. Lay, Long-period regional waveform moment tensor inversion for earthquakes in the western United States, *J. Geophys. Res.*, 100, 9853-9864, 1995.

Romanowicz, B., D. Dreger, M. Pasyanos, and R. Uhrhammer, Monitoring of strain release in central and northern California using broadband data, *Geophys. Res. Lett.*, 20, 1643-1646, 1993.

Pasyanos, M., D. Dreger, and B. Romanowicz, Toward real-time estimation of regional moment tensors, *Bull. Seis. Soc. Am.*, 86, 1255-1269, 1996.

Thio, H. K., and H. Kanamori, Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope, *Bull. Seis. Soc. Am.*, 85, 1021-1038, 1995.

Chapter 10

Northern California Earthquake Data Center

1. Introduction

The Northern California Earthquake Data Center, a joint project of the Berkeley Seismological Laboratory (BSL) and the U.S. Geological Survey at Menlo Park, serves as an online archive for various types of digital data relating to earthquakes in central and northern California. The NCEDC is located at the Berkeley Seismological Laboratory, and has been accessible to users via the Internet since mid-1992.

The primary goal of the NCEDC is to provide a stable and permanent archival and distribution center of digital geophysical data for networks in northern and central California. These data include seismic waveforms, electromagnetic data, GPS data, strain, creep, and earthquake parameters. The principal networks contributing seismic data to the data center are the Berkeley Digital Seismic Network (BDSN) operated by the Seismological Laboratory, the Northern California Seismic Network (NCSN) operated by the USGS, and the Bay Area Regional Deformation (BARD) GPS network. The collection of NCSN digital waveforms dates from 1984 to the present, the BDSN digital waveforms date from 1987 to the present, and the BARD GPS data date from 1993 to the present. The BDSN includes stations that form the specialized Northern Hayward Fault Network (NHFN) and the MiniPBO (MPBO) borehole seismic and strain stations in the SF Bay Region.

2. NCEDC Overview

The NCEDC is located within the computing facilities at the Berkeley Seismological Laboratory in McCone Hall. The BSL facility provides the NCEDC with air conditioning, 100 bit switched network, and reliable power from a UPS with generator backup.

The currently installed NCEDC facilities consist of a Sun 280R host computer with a 15-slot AIT tape library which holds 25 GBytes per tape, two SCSI/ATA RAID systems with a total capacity of 4.6 TBytes, and the SAM-FS hierarchical storage management (HSM) software. A dual processor Sun Ultra 60 provides Web services and research account access to the NCEDC, and a Sun Ultra 450 computer is used for quality control procedures.

In order to increase capacity and reliablity, the NCEDC has ordered a Sun L100 tape library with a capacity of 100 LTO-2 tapes, two LTO-2 tape drives, an additional 7 TBytes of RAID, and a fiber-channel switch to support a local SAN. With this additional hardware, we plan to implement a full online copy of the NCEDC data at an alternate location.

The hardware and software system can be configured to automatically create multiple copies of each data file. The NCEDC uses this feature to create an online copy of each data file on online RAID, and another copy on AIT tape which is stored offline. All waveform and GPS data are currently stored on magnetic disk, with backup copies on tape media.

The NCEDC acquired a single processor unlimited user Oracle database license from other funding sources to provide public access to the NCEDC earthquake catalog and waveform inventory, and has ordered a single processor computer on which to run this database.

3. 2003-2004 Activities

By its nature, data archiving is an ongoing activity. In 2003-2004, the NCEDC continued to expand its data holdings and enhance access to the data. Projects and activities of particular note include:

- Population of the hardware information and SEED instrument responses for all NCSN operated stations into the NCEDC database.
- Conversion of all NCSN waveforms from 1984 through 2003 from CUSP format to standard MiniSEED format using standard SEED channel names.

- Association of NCSN event waveforms with the NCSN eventids in the NCEDC database to support data retrieval by eventid.
- Enhanced *BREQ_FAST* and *NetDC* data retrieval interfaces to provide access to NCSN waveform data in SEED format.
- Continued development of IRIS *FISSURES DHI* services as a data distribution method for data from the NCEDC.
- Continued development of *STP* at the NCEDC.
- Development of XML tools for import/export and maintenance of hardware tracking data in the NCEDC database.
- Archiving data from 15 shared SCSN (network CI) stations in southern California in support of the statewide earthquake system developed for the California Integrated Seismic Network (CISN), which represents one of the ANSS monitoring regions.
- Began archiving process for SAFOD Pilot Hole data.
- Began archiving process for LBL Gesers waveform data.
- Purchase of new hardware to support data migration and expansion of the NCEDC.

These activities and projects are described in detail below.

4. Data Collections

The bulk of the data at the NCEDC consists of waveform and GPS data from northern California. Figure 10.1 shows the relative proportion of each data set at the NCEDC. The total size of the datasets archived at the NCEDC is shown in Table 10.1. Figure 10.2 shows the geographic distribution of data archived by the NCEDC.

4.1 BDSN/NHFN/MPBO Seismic Data

The archival of current BDSN (Chapter 3), NHFN (Chapter 4), and Mini-PBO (Chapter 7) (all stations using the network code BK) seismic data is an ongoing task. These data are telemetered from more than 30 seismic data loggers in real-time to the BSL, where they are written to disk files. Each day, an extraction process creates a daily archive by retrieving all continuous and event-triggered data for the previous day. The daily archive is run through quality control procedures to correct any timing errors, triggered data is reselected based

on the REDI, NCSN, and BSL earthquake catalogs, and the resulting daily collection of data is archived at the NCEDC.

All of the data acquired from the BDSN/NHFN/MPBO Quanterra data loggers are archived at the NCEDC. The NCEDC has made an effort to archive older digital data, and the 16-bit BDSN digital broadband data from 1987-1991 have been converted to MiniSEED and are now online. In late June 2002, the NCEDC initiated a project to convert the remaining 16-bit BDSN data (MHC, SAO, and PKD1) from late 1991 through mid-1992 to MiniSEED. An undergraduate student was hired to read the old tapes and to work on the conversion. All remaining 20 Hz 16 bit BDSN data has been converted to MiniSEED, and we are working on the decimation procedures to create the 1 Hz data channels. Data acquired by portable 24-bit RefTek recorders before the installation of Quanterra data loggers at NHFN sites has not vet been converted to MiniSEED and archived.

4.2 NCSN/SHFN Seismic Data

NCSN and SHFN waveform data are sent to the NCEDC via the Internet. The NCSN event waveform files are automatically transferred from the USGS Menlo Park to the NCEDC as part of the routine analysis procedure by the USGS, and are automatically verified and archived by the NCEDC.

The NCEDC maintains a list of teleseismic events recorded by the NCSN, which is updated automatically whenever a new NCSN event file is received at the NCEDC, since these events do not appear in the NCSN catalog.

The NCSN operates a total of 11 continuously telemetered digital broadband stations in northwest California and southwest Oregon in support of the USGS/NOAA Consolitated Reporting of EarthquakeS and Tsunamis (CREST) system, two digital broadband stations in the Mammoth region, and one digital broadband station in the Parkfield region. The NCEDC established procedures to create an archive of continuous data from these stations, in addition to the event waveform files. These data initially included channels at 50 and 100 Hz, but now are all 100 Hz sampling and are archived continuously. At the USGS's request, the 3 component 500 Hz data from the Mammoth Deep Hole are now continuously archived.

4.3 Parkfield High Resolution Seismic Network Data

Event seismograms from the Parkfield High Resolution Seismic Network (HRSN) from 1987 through June 1998 are available in their raw SEGY format via NCEDC research accounts. A number of events have faulty timing

Volume of Data archived at the NCEDC

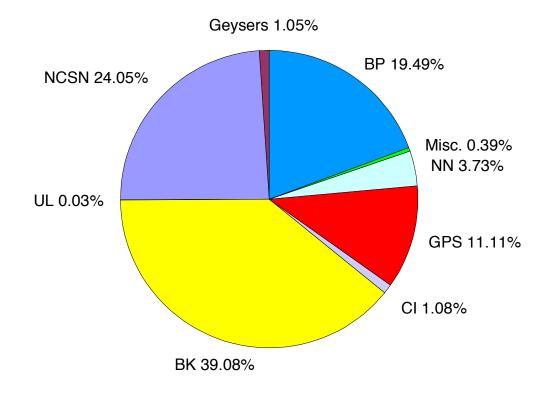


Figure 10.1: Chart showing the relative proportion of each data set at the NCEDC.

Data Type	GBytes
BDSN/NHFN/MPBO (broadband, electric and magnetic field, strain) waveforms	1,414
NCSN seismograms	870
Parkfield HRSN seismograms	705
BARD GPS (RINEX and raw data)	402
UNR Nevada seismograms	135
SCSN seismograms	39
Calpine/Unocal Geysers region seismograms	38
USGS Low frequency geophysical waveforms	1
Misc data	14
Total size of archived data	3,618

Table 10.1: Volume of Data Archived at the NCEDC by network

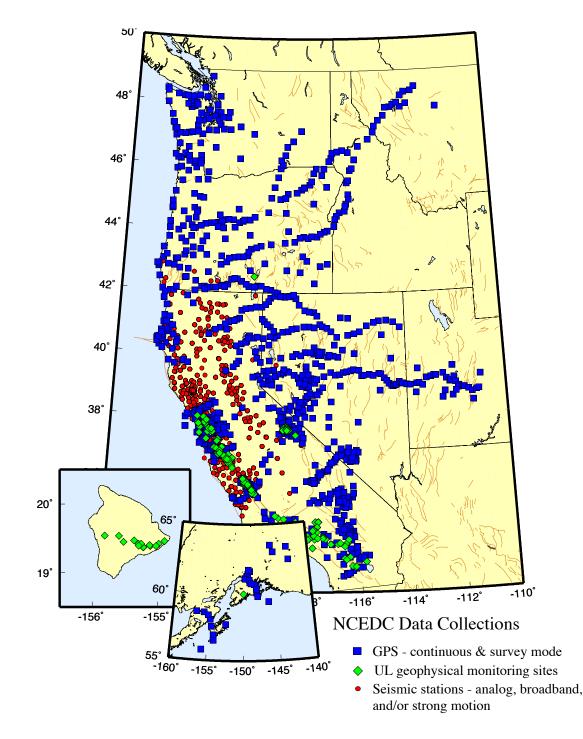


Figure 10.2: Map showing the location of stations whose data are archived at the NCEDC. Circles are seismic sites; squares are GPS sites, and diamonds are the locations of USGS Low-frequency experiments.

due to the lack or failure of a precision timesource for the network. Due to funding limitations, there is currently no ongoing work to correct the timing problems in the older events or to create MiniSEED volumes for these events. However, a preliminary catalog for a significant number of these events has been constructed, and the catalog is available via the web at the NCEDC.

As described in Chapter 5, the original HRSN acquisition system died in late 1998, and an interim system of portable RefTek recorders were installed at some of the sites. Data from this interim system are not currently available online.

BK Data Availability 100 95 1 Hz 90 20 Hz 85 80 75 70 65 60 55 50 45 40 35 30 25

Figure 10.3: Chart showing the availability of BDSN/NHFN/MPBO (BK networkc) data at the NCEDC for the 1 Hz and 20 Hz channels from 01/01/1996 - 06/30/2004. The data availability from these networks is better than 95% at nearly all stations. Notable exceptions are MNRC (operated for the first year with only dialup telemetry before the installation of continuous telemetry), YBIB (lost AC power before decomissioning the site), and W02B (experienced significant radio problems). In general, a difference between the 1 and 20 Hz data is indicative of one or more significant telemetry problems. Following a major telemetry outage, BSL staff will recover 1 Hz continuous data but only event data for the 20 Hz channels.

In 2000 and 2001, 3 new borehole sites were installed, and the network was upgraded to operate with Quanterra Q730 data loggers and digital telemetry. The upgraded acquisition system detects events using the HRSN stations and extracts waveforms from both the HRSN and the PASO stations. The event waveform files are automatically transferred to the NCEDC, where they are made available to the research community via anonymous ftp until they are reviewed and permanently archived. In 2000-2003 the PASO array, a temporary IRIS PASS-CAL broadband network with real-time telemetry, was installed in the Parkfield area and its recording system was housed at the HRSN recording site in Parkfield. During this time, the HRSN collected event data from both the HRSN and PASO array and provided this integrated data set to researchers in near-real-time.

The HRSN 20 Hz (BP) and state-of-health channels are being archived continuously at the NCEDC. As an interim measure, the NCEDC also archived the continuous 250 Hz (DP) data channels through late 2002 in order to help researchers retrieve events that were not detected during the network upgrade.

The increased seismic activity related to the magnitude 6.5 earthquake in nearby San Simeon on December 22, 2003 drastically increased the number of triggers by the HRSN network. From December 2003 through August 2004, the HRSN had over 70,000 triggers. The 56Kb frame relay connection from Parkfield to UC Berkeley, which was installed to transmit continuous 20 Hz data, selected 250 Hz channels, and event triggered 250 Hz waveforms from the network, was saturated from the increased activity. The HRSN stopped telemetering the event-triggered waveforms, and the NCEDC started to archive continuous 20 and 250 Hz data from the entire network from tapes created at the HRSN operations center in Parkfield in order to preserve this unique dataset. The NCEDC plans to continue archiving both the continuous 250 Hz and 20 Hz data streams for the forseeable future.

4.4 SAFOD

In July 2002, scientists from Duke University successfully installed a three component 32 level downholeseismic array in the pilot hole at the EarthScope SAFOD site in collaboration with Steve Hickman (USGS), Mark Zoback (Stanford University) and the Oyo Geospace Engineering Resources International (GERI) Corporation. High frequency event recordings from this array has been provide by Duke University for archiving at the NCEDC. We are currently converting the original SEG-2 format data files to MiniSEED, and developing the SEED instrument responses for this data set.

4.5 UNR Broadband Data

The University of Reno in Nevada (UNR) operates several broadband stations in western Nevada and eastern California that are important for northern California earthquake processing and analysis. Starting in August 2000, the NCEDC has been receiving and archiving continuous broadband data from four UNR stations. The data are transmitted in real-time from UNR to UC Berkeley, where they are made available for real-time earthquake processing and for archiving. Initially, some of the stations were sampled at 20 Hz, but all stations are now sampled and archived continuously at 100 Hz.

The NCEDC installed Simple Wave Server (SWS) software at UNR, which provides an interface to UNR's recent collection of waveforms. The SWS is used by the NCEDC to retrieve waveforms from UNR that were missing at the NCEDC due to real-time telemetry outages between UNR and UC Berkeley.

4.6 Electro-Magnetic Data

The NCEDC continues to archive and process electric and magnetic field data acquired from data loggers at two sites (SAO and PKD). At PKD and SAO, 3 components of magnetic field and 2 or 4 components of electric field are digitized and telemetered in real-time along with seismic data to the Berkeley Seismological Laboratory, where they are processed and archived at the NCEDC in a similar fashion to the seismic data. The system generates continuous data channels at 40 Hz, 1 Hz, and .1 Hz for each component of data. All of these data are archived and remain available online at the NCEDC. Using programs developed by Dr. Martin Fullerkrug at the Stanford University STAR Laboratory (now at the Institute for Meteorology and Geophysics at the Univerity of Frankfurt), the NCEDC is computing and archiving magnetic activity and Schumann resonance analysis using the 40 Hz data from this dataset. The magnetic activity and Schumann resonance data can be accessed from the Web.

In addition to the electro-magnetic data from PKD and SAO, the NCEDC archives data from a low-frequency, long-baseline electric field project operated by Dr. Steve Park of UC Riverside at site PKD2. This experiment (which is separate from the original equipment at PKD1 described in Chapter 3), uses an 8-channel Quanterra data logger to record the data, which are transmitted to the BSL using the same circuit as the BDSN seismic data. These data are acquired and archived in an identical manner to the other electric field data at the NCEDC.

4.7 GPS Data

The NCEDC continues to expand its archive of GPS data through the BARD (Bay Area Regional Deformation) network of continuously monitored GPS receivers in northern California (Chapter 6). The NCEDC GPS archive now includes 67 continuous sites in northern California. There are approximately 50 core BARD sites owned and operated by UC Berkeley, USGS (Menlo Park and Cascade Volcano Observatory), LLNL, UC Davis, UC Santa Cruz, Trimble Navigation, and Stanford. Data are also archived from sites operated by other agencies including East Bay Municipal Utilities District, the City of Modesto, the National Geodetic Survey, and the Jet Propulsion Laboratory.

The NCEDC continues to archive non-continuous survey GPS data. The initial dataset archived is the survey GPS data collected by the USGS Menlo Park for northern California and other locations. The NCEDC is the principal archive for this dataset. Significant quality control efforts were implemented by the NCEDC to ensure that the raw data, scanned site log sheets, and RINEX data are archived for each survey. All of the USGS MP GPS data has been transferred to the NCEDC and virtually all of the data from 1992 to the present has been archived and is available for distribution.

4.8 Geysers Seismic Data

The Calpine Corporation currently operates a microseismic monitoring network in the Geysers region of northern California. Prior to 1999 this network was operated by Unocal. Through various agreements, both Unocal and Calpine have released triggered event waveform data from 1989 through 2000 along with preliminary event catalogs for the same time period for archiving and distribution through the NCEDC. This dataset represents over 296,000 events that were recorded by Calpine/Unocal Geysers network, and are available via research accounts at the NCEDC.

The Lawrence Berkeley Laboratory (LBL), with funding from the California Energy Commission, operates a 22 station network in the Geysers region with an emphesis on monitoring seismicity related to well water injection. The earthquake locations and waveforms from this network are sent to the NCEDC, and the locations are forwarded to the NCSN so that they can be merged into the NCSN earthquake catalog. The LBL Geysers waveforms will be available at the NCEDC once the events have been merged into the NCSN catalog.

4.9 USGS Low Frequency Data

Over the last 26 years, the USGS at Menlo Park, in collaboration with other principal investigators, has collected an extensive low-frequency geophysical data set that contains over 1300 channels of tilt, tensor strain, dilatational strain, creep, magnetic field, water level, and auxilliary channels such as temperature, pore pressure, rain and snow accumulation, and wind speed. In collaboration with the USGS, we assembled the requisite information for the hardware representation of the stations and the instrument responses for many channels of this diverse dataset, and developed the required programs to populate and update the hardware database and generate the instrument responses. We developed the programs and procedures to automate the process of importing the raw waveform data and convert it to MiniSEED format.

We have currently archived timeseries data from 887 data channels from 167 sites, and have instrument response information for 542 channels at 139 sites. The waveform archive is updated on a daily basis with data from 350 currently operating data channels. We will augment the raw data archive as additional instrument response information is assembled by the USGS for the channels, and will work with the USGS to clearly define the attributes of the "processed" data channels.

4.10 SCSN/Statewide Seismic Data

In 2004, the NCEDC started to archive broadband and strong motion data from 15 SCSN (network CI) stations that are telemetered to the Northern California Management Center (NCMC) of the California Integrated Seismic Network (CISN). These data are used in the prototype real-time state-wide earthquake processing system and also provide increased coverage for northern California events. Since the data are telemetered directly from the stations in real-time to both the SCSN and to the NCMC, the NCEDC archives the NCMC's copy of the data to ensure that at least one copy of the data will be preserved.

4.11 Northern California Seismicity Project

The objective of the Northern California Seismicity Project (NCSP), which commenced in fiscal year 2001, is to transcribe the pre-1984 data for $M_L \geq 2.8$ earthquakes which have occurred in Northern and Central California (NCC) outside of the San Francisco Bay region (SFBR), from the original reading/analysis sheets of the Berkeley Seismological Archives, into a computer readable format. This work complements the ongoing Historical Earthquake Relocation Project (HERP) of the Berkeley Seismological Laboratory, which concentrates solely on the San Francisco Bay Region.

The long-term goal of this project is to characterize the spatial and temporal evolution of northern California seismicity during the initial part of the earthquake cycle as the region emerges from the stress shadow of the great 1906 San Francisco earthquake. The problem is that the existing BSL seismicity catalog for the SFBR, which spans most of the past century (1910-present), is inherently inhomogeneous because the location and magnitude determination methodologies have changed, as seismic instrumentation and computational capabilities have improved over time. As a result, NCC seismicity since 1906 is poorly understood.

Creation of a NCC seismicity catalog that is homogeneous, that spans as many years as possible, and that includes formal estimates of the parameters and their uncertainty is a fundamental prerequisite for probabilistic studies of the NCC seismicity. The existence of the invaluable BSL seismological archive containing the original seismograms as well as the original reading/analysis sheets, coupled with the recently acquired BSL capability to scan and digitize historical seismograms at high resolution, allows the application of modern analytical algorithms towards the problem of determining the source parameters of historical SFBR earthquakes.

The funding level for this project has not allowed us to transcribe all of the pre-1984 reading/analysis sheets from the Berkeley Seismological Archive. However, limiting our work to earthquakes of $M_L \geq 3.0$ provides a significant contribution to the uniformity of the NCC seismicity catalog. Although some funding was provided this year, we were unable to hire staff to work on this project and will complete it in 2004.

4.12 Earthquake Catalogs

Northern California

Currently both the USGS and BSL construct and maintain earthquake catalogs for northern and central

California. The "official" UC Berkeley earthquake catalog begins in 1910, and the USGS "official" catalog begins in 1966. Both of these catalogs are archived and available through the NCEDC, but the existence of 2 catalogs has caused confusion among both researchers and the public. The BSL and the USGS have spent considerable effort over the past years to define procedures for merging the data from the two catalogs into a single northern and central California earthquake catalog in order to present a unified view of northern California seismicity. The differences in time period, variations in data availability, and mismatches in regions of coverage all complicate the task.

Worldwide

The NCEDC, in conjunction with the Council of the National Seismic System (CNSS), produced and distributed a world-wide composite catalog of earthquakes based on the catalogs of the national and various U.S. regional networks for several years. Each network updates their earthquake catalog on a daily basis at the NCEDC, and the NCEDC constructs a composite worldwide earthquake catalog by combining the data, removing duplicate entries that may occur from multiple networks recording an event, and giving priority to the data from each network's *authoritative region*. The catalog, which includes data from 14 regional and national networks, is searchable using a Web interface at the NCEDC. The catalog is also freely available to anyone via ftp over the Internet.

With the demise of the CNSS and the development of the Advanced National Seismic System (ANSS), the NCEDC was asked to update its Web pages to present the composite catalog as a product of the ANSS. This conversion was completed in the fall of 2002.

5. Data Quality Control

The NCEDC developed a GUI-based state-driven system CalQC to facilitate the quality control processing that is applied to the continuously archived data sets at the NCEDC.

The quality control procedures for these datasets include the following tasks:

- data extraction of a full day of data,
- quickcheck program to summarize the quality and stability of the stations' clocks,
- determine if there is missing data for any data channel,
- retrieve missing data from the stations and incorporate it into the day's data,

- optional creation of multi-day timeseries plots for state-of-health data channels,
- optional timing corrections for data,
- optional extraction of event-based waveforms from continuous data channels,
- optional repacking of MiniSEED data,
- creating waveform inventory entries in the NCEDC database,
- publishing the data for remote access on the NCEDC.

CalQC uses previously developed programs to perform each function, but it provides a graphical point-and-click interface to automate these procedures, and to provide the analyst with a record of when each process was started, whether it executed correctly, and whether the analyst has indicated that a step has been completed. CalQC is used to process all data from the BDSN network, and all continuous data from the NCSN, UNR, SCSN, and HRSN networks that are archived by the NCEDC.

6. User Interface Development

6.1 SeismiQuery

During 2000 and 2001, the NCEDC developed a generalized database query system to support the development of portable database query applications among data centers with different internal database schemas. The initial goal was to modify the IRIS *SeismiQuery* web interface program to make installation easier at the NCEDC and other data centers, as well as to introduce a new query language that would be schema independent.

In order to support *SeismiQuery* and other future database query applications, we defined a set of Generic Data Views (GDV) for the database that encompass the basic objects we expect most data centers to support. We introduced a new language we call MSQL (Meta SeismiQuery Language), which is based on generic SQL, and uses the GDV's for its core schema. MSQL queries are converted to Data Center specific SQL queries by the parsing program MSQL2SQL. This parser stores the MSQL parsing tree in a data structure, and API's were implemented to browse and modify elements in the parsing tree. These API's are the only datacenter or database specific source codes. We finally modified the Seismi-Query web interface to uniformly generate MSQL requests and to process these requests in a consistent fashion.

We have installed *SeismiQuery* at the NCEDC, where it provides a common interface for querying attributes and available data for SEED format data, and have provided both IRIS and the SCEC Data Center with our modified version of *SeismiQuery*. We envision using this approach to support other database query programs in the future.

6.2 NetDC

In a collaborative project with the IRIS DMC and other worldwide datacenters, the NCEDC helped develop and implement NetDC, a protocol which will provide a seamless user interface to multiple datacenters for geophysical network and station inventory, instrument responses, and data retrieval requests. The NetDCbuilds upon the foundation and concepts of the IRIS $BREQ_FAST$ data request system. The NetDC system was put into production in January 2000, and is currently operational at three datacenters worldwide – the NCEDC, IRIS DMC, and Geoscope. The *NetDC* system receives user requests via email, automatically routes the appropriate portion of the requests to the appropriate datacenter, optionally aggregates the responses from the various datacenters, and delivers the data (or ftp pointers to the data) to the users via email.

6.3 STP

In 2002, the NCEDC wrote a collaborative proposal with the SCEDC to the Southern California Earthquake Center, with the goal of unifying data access between the two data centers. As part of this project, the NCEDC and SCEDC are working to support a common set of 3 tools for accessing waveform and parametric data: *SeismiQuery*, *NetDC*, and *STP*.

The Seismogram Transfer Program or STP is a simple client-server program, developed at the SCEDC. Access to STP is either through a simple direct interface that is available for Sun or Linux platforms, or through a GUI Web interface. With the direct interface, the data are placed directly on a user's computer in several possible formats, with the byte-swap conversion performed automatically. With the Web interface, the selected and converted data are retrieved with a single ftp command. The STP interface also allows rapid access to parametric data such as hypocenters and phases.

The NCEDC has continued work on *STP*, working with the SCEDC on extensions and needed additions. We added support for the full SEED channel name (Station, Network, Channel, and Location), and are now able to return event-associated waveforms from the NCSN waveform archive.

6.4 EVT_FAST

In order to provide Web access to the NCSN waveform before the SEED conversion and instrument response for the NCSN has been completed, the NCEDC implemented EVT_FAST, an interim email-based waveform request system similar to the BREQ_FAST email request system. Users can email EVT_FAST requests to the NCEDC and request NCSN waveform data based on the NCSN event id. The NCSN waveform data is converted to either SAC ASCII, SAC binary, or AH format, and placed in the anonymous ftp directory so that users can retrieve the data. The EVT_FAST waveforms are currently named with the USGS's native NCSN channel names. We have just begun the work to provide EVT_FAST waveform data in SEED format with SEED channel names.

6.5 FISSURES

The *FISSURES* project developed from an initiative by IRIS to improve earth scientists' efficiency by developing a unified environment that can provide interactive or programatic access to waveform data and the corresponding metadata for instrument response, as well as station and channel inventory information. *FISSURES* was developed using CORBA (Common Object Request Broker Architecture) as the architecture to implement a system-independent method for the exchange of this binary data. The IRIS DMC developed a series of services, referred to as the *Data Handling Interface (DHI)*, using the *FISSURES* architecture to provide waveform and metadata from the IRIS DMC.

The NCEDC has implemented the *FISSURES Data Handling Interface (DHI)* services at the NCEDC, which involves interfacing the DHI servers with the NCEDC database schema. We started with the source code for the IRIS DMC's DHI servers, which reduced significantly the implementation's time. We now have the waveform and event *FISSURES* services running in demonstration mode at the NCEDC. These services interact with the NCEDC database and data storage system, and can deliver NCEDC event and channel metadata as well as waveforms using the *FISSURES* interfaces. We have installed the *FISSURES DHI* servers, and worked with the IRIS DMC in 2003-2004 to register with the *FISSURES* naming services which are run at both the IRIS DMC and the NCEDC.

6.6 GSAC

Since 1997, the NCEDC has collaborated with UN-AVCO and other members of the GPS community on the development of the GPS Seamless Archive Centers (GSAC) project. This project allows a user to access the most current version of GPS data and metadata from distributed archive locations. The NCEDC is participating at several levels in the GSAC project: as a primary provider of data collected from core BARD stations and USGS MP surveys, and as a wholesale collection point for other data collected in northern California. We helped to define database schema and file formats for the GSAC project, and have produced complete and incremental monumentation and data holdings files describing the data sets that are produced by the BARD project or archived at the NCEDC so that other members of the GSAC community can provide up-to-date information about our holdings. Currently, the NCEDC is the primary provider for over 120,000 data files from over 1400 continuous and survey-mode monuments. The data holdings records for these data have been incorporated into the GSAC retailer system, which became publicly available in late 2002.

7. Database Development

Most of the parametric data archived at the NCEDC, such as earthquake catalogs, phase and amplitude readings, waveform inventory, and instrument responses, have been stored in flat text files. Flat files are easily stored and viewed, but are not efficiently searched. Over the last year, in collaboration with the Southern California Earthquake Data Center (SCEDC) and the California Integrated Seismic Network (CISN), the NCEDC has continued development of database schemas to store the parametric data from the joint earthquake catalog, station history, complete instrument response for all data channels, and waveform inventory.

The parametric schema supports tables and associations for the joint earthquake catalog. It allows for multiple hypocenters per event, multiple magnitudes per hypocenter, and association of phases and amplitudes with multiple versions of hypocenters and magnitudes respectively. The instrument response schema represents full multi-stage instrument responses (including filter coefficients) for the broadband data loggers. The hardware tracking schema will represent the interconnection of instruments, amplifiers, filters, and data loggers over time. This schema will be used to store the joint northern California earthquake catalog and the ANSS composite catalog.

The entire description of the BDSN/NHFN/MPBO, HRSN, and USGS Low Frequency Geophysical networks and data archive has been entered into the hardware tracking, SEED instrument response, and waveform tables. Using programs developed to perform queries of waveform inventory and instrument responses, the NCEDC can now generate full SEED volumes for these networks based on information from the database and the waveforms on the mass storage system.

During 2002-2003, the NCEDC and NCSN jointly developed a system consisting of an extensive spreadsheet containing per-channel information that describes the hardware of each NCSN data channel and provides each channel with a SEED-compliant channel name. This spreadsheet, combined with a limited number of files that describe the central-site analog digitizer, FIR decimation filters, and general characteristics of digital acquisition systems, allow the NCSN to assemble its station history in a format that the NCEDC can use to populate the hardware tracking and instrument response database tables for the NCSN.

During 2003-2004, the NCEDC and NCSN finalized the CUSP-to-SEED channel mapping for the NCSN waveforms, and entered all of the hardware tracking and response information into the NCEDC database for the sites operated by the NCSN, and can now generate complete SEED responses for all of those data channels. There is, however, additional work that needs to be done in conjunction with contributing networks such as CA DWR, UNR, and SCSN to provide responses for shared stations.

The second part of this project is the conversion of the NCSN waveforms from their native CUSP format into MiniSEED, the standard NCEDC waveform format. Multiple problems needed to be addressed, such as ambiguous or erroneously labeled CUSP data channel, sensors that were recorded on multiple data channels, and ensuring that each distinct data channel is mapped to a distinct SEED channel name. The NCEDC developed programs to use the time-dependent NCSN instrument response spreadsheet and NSCN-supplied channel name transformation rules to determine the SEED channel naming, and to provide feedback to the NCSN on channel naming problems. In 2004, the NCEDC converted all of the NCSN waveform data from the period 1984 through 2003 from CUSP format into MiniSEED format. We entered the waveform descriptors into the NCEDC database, and provided association information between the NCSN event ids and the corresponding waveform data. We are currently developing procedures to convert new NCSN waveforms into MiniSEED format and archive them as they are received by the NCEDC, and to convert the remaining 2004 CUSP waveforms.

The NCEDC has developed XML import and export procedures to provide better maintenance of the hardware tracking information and resulting instrument responses for stations in our database. When changes are made to either existing hardware or to station configurations, we export the current view in XML format, use a GUI-based XML editor to easily update the information, and import the changes back into the database. When adding new stations or hardware, we can easily use information from existing hardware or stations as templates for the new information. This allows us to treat the database as the authoritative source of information, and to use off-the-shelf tools such as the XML editor and XML differencing programs as part of our database maintenance procedures.

We distributed all of our programs and procedures for populating the hardware tracking and instrument response tables to the SCEDC in order to help them populate their database.

During 2002-2003, the BSL had been processing events detected by the HRSN (BP) network. The waveform data and event parameters (picks and hypocenters) are stored in separate HRSN database tables, and will be merged with events from the NCSN when the NCSN catalog is migrated to the database. However, human event processing stopped after the San Simeon earthquake due to the rapid increase in seismicity related to that event.

Additional details on the joint catalog effort and database schema development may be found at http: //quake.geo.berkeley.edu/db

8. Data Distribution

The NCEDC continues to use the World Wide Web as a principal interface for users to request, search, and receive data from the NCEDC. The NCEDC has implemented a number of useful and original mechanisms of data search and retrieval using the World Wide Web, which are available to anyone on the Internet. All of the documentation about the NCEDC, including the research users' guide, is available via the Web. Users can perform catalog searches and retrieve hypocentral information and phase readings from the various earthquake catalogs at the NCEDC via easy-to-use forms on the Web. In addition, users can peruse the index of available broadband data at the NCEDC, and can request and retrieve broadband data in standard SEED format via the Web. Access to all datasets is available via research accounts at the NCEDC. The NCEDC's Web address is http://quake.geo.berkeley.edu/

The NCEDC hosts a web page that allows users to easily query the NCEDC waveform inventory, and generate and submit *NetDC* requests to the NCEDC. The NCEDC currently supports both the *BREQ_FAST* and *NetDC* request formats. As part of our collaboration with SCEDC, the NCEDC provided its *BREQ_FAST* interface code to SCEDC, and has worked with them to implement *BREQ_FAST* requests at the SCEDC.

The various earthquake catalogs (including phase and earthquake mechanism) can be searched using NCEDC web interfaces that allow users to select the catalog, attributes such as geographical region, time and magnitude. The GPS data is available to all users via anonymous ftp. Research accounts are available to any qualified researcher who needs access to the other datasets that currently are not available via the Web.

The GPS data archived at the NCEDC is available over the Internet through the GSAC retailer system, which became publicly available in late 2002, as well as by anonymous FTP.

8.1 Web Pages

The NCEDC developed its Web pages in the early days of the Web. Unfortunately, time constraints have kept the pages somewhat static and limited in their use. In June of 2002, the NCEDC began a project to update and expand their Web offerings. This project was completed in October 2002, and provides the NCEDC with a uniform look-and-feel for all web pages.

9. Acknowledgements

The NCEDC is a joint project of the BSL and the USGS Menlo Park and is partially funded by the USGS.

Doug Neuhauser is the manager of the NCEDC. Stephane Zuzlewski, Rick McKenzie, Mark Murray, André Basset, and Lind Gee of the BSL and David Oppenheimer, Hal Macbeth, and Fred Klein of the USGS Menlo Park contribute to the operation of the NCEDC. Doug Neuhauser, Lind Gee, and Stephane Zuzlewski contributed to the preparation of this chapter.

Chapter 11

Outreach and Educational Activities

1. Introduction

The BSL is involved in a variety of outreach activities, ranging from lectures and lab tours to educational displays and the development of classroom materials for K-12 teachers. We maintain an earthquake information tape (510-642-2160) and an extensive set of Web pages, providing basic earthquake and seismic hazard information for northern and central California.

2. Outreach Overview

The BSL has several on-going outreach programs, such as the educational displays, WWW development, and the Earthquake Research Affiliates Program.

2.1 Educational Displays

As part of the BSL's outreach activities, we have made REDI earthquake data available to a number of universities, colleges, and museums as educational displays. As noted above, this year marked the expansion of this program to the K-12 environment. Participating organizations receive a REDI pager and the Qpager software to display the earthquake information. The Qpager program maps the previous seven days of seismicity, with earthquake shown as a dot. The size of the dot indicates the magnitude of the event, while the color of the dot indicates its age. These educational displays have been installed at UC Berkeley (McCone Hall, Earthquake Engineering Research Center, LHS), California Academy of Sciences, CSU Fresno, CSU Northridge, CSU Sacramento, Caltech, College of the Redwoods, Fresno City College, Humboldt State University, San Diego State University, Sonoma State University, Stanford University (Blume Engineering Center, Department of Geophysics), UC Davis, UC Santa Cruz, UC San Diego, and USC. In a pilot project initiated two years ago, the San Francisco Unified School District has been given two pager systems for use in middle school classrooms.

In addition to the seismicity displays, the BSL provides local waveform feeds for helicorders at several visitor centers associated with BDSN stations (CMB and MHC). Organizations such as LHS, KRON, and KPIX receive feeds from BKS via dedicated phone lines for display, while the USGS Menlo Park uses data from CMB for display in the lobby of the seismology building. The BSL has also loaned a seismometer and helicorder display to the San Leandro Unified School District for their use in science classes.

2.2 WWW

Over the last year, we have continued to expand our presence on the WWW. Our primary goal has been to provide a source of earthquake information for the public, although we also provide information about the networks, such as station profiles, which benefits the research community as well. We provide such information as seminar schedules, course advertisements, descriptions of operations and research, updates on recent earthquake activity, details on Bay Area seismicity and hazards, and links to other earthquake and earth science servers. We also use the WWW server for our own information distribution, with such details as the computing and operational resources, rosters, and schedules for various purposes. Last year, we began an effort to update and revamp our Web pages, as described below.

2.3 Earthquake Research Affiliates Program

The UC Berkeley Earthquake Research Affiliates (ERA) Program is an outreach project of the BSL, the Department of Geology and Geophysics, and the Earthquake Engineering Research Center. The purpose is to promote the support of earthquake research while involving corporations and governmental agencies in academic investigation and education activities such as conferences and field trips. The ERA program provides an interface between the academic investigation and practical application of earthquake studies.

3. 2003-2004 Activities

3.1 Tours and Presentations

BSL staff spent considerable time with public relations activities during the past year. Several tours are given each month, with audiences ranging from middleschool students to scientists and engineers from China and Japan.

The BSL hosted several special groups during 2003-2004. Several large groups visited, including classes from Ecole Normale Superieure (Paris, France), Sixth Form College (Colchester, England) and the Coast Guard.

In addition to the tours, Drs. Romanowicz, Dreger, Gee, Hellweg, and Uhrhammer, presented talks on earthquakes and related phenomena to public groups. Dr. Gee gave a lecture during Homecoming Weekend.

3.2 Open Houses

The BSL participated in *Take Your Child to Work Day* this year. The attendance for the open house was quite good - visitors showed up before we opened the doors! The visitors learned about UC Berkeley's role in earthquake monitoring, watched a streaming feed of earthquake data, jumped up and down to "make a quake", played with the earthquake machine, made P and Swaves with springs, learned about earthquake preparedness, and were given sample seismograms.

3.3 1906 Centennial

The centennial of the great 1906 San Francisco earthquake is rapidly approaching! A number of Bay Area organizations are participating in the '06 Earthquake Centennial Alliance and beginning to plan activities commemorating the event and celebrating the progress we've made in reducing earthquake losses.

Although UC Berkeley was spared major damage, the 1906 earthquake did have a significant impact on the campus community. These effects were documented in an issue of the Chronicle of the University of California in 1998 which describes the refugee camps established on the campus and the dispatch of University cadets to help maintain order in San Francisco. Professor Andrew Lawson chaired the State Earthquake Investigation Commission which produced the first comprehensive governmentcommissioned report on an earthquake.

Given the many ties between the 1906 earthquake and fire and the University, many UC Berkeley units are beginning to coordinate plans for centennial activities. Ideas for centennial activities include new classes, public lecture series, symposia, displays on the progress of the SAFER program, exhibits of 1906 artifacts and photographs, film series, walking tours, and many others. A small group of people are meeting quarterly at the BSL to plan activities. Information about their plans is available at http://www.seismo.berkeley.edu/seismo/1906/.

Lawson Lecture

As part of centennial activities, the BSL established an annual lecture in 2003. The public lecture is held each April and focus on issues of earthquakes and society. This year was the second Lawson Lecture and Dr. Ross Stein of the USGS, Menlo Park, gave an excellent presentation on *Earthquake Conversations*, that is, how earthquakes interact through the transfer of stress, such as the progression of mainshocks along a fault, aftershocks, seismic quiescence, and earthquake clustering. If you missed the lecture, don't despair! A Web cast of the talk is available at http://www.seismo.berkeley. edu/seismo/news/lawson_lecture.html.

SSA 2006

The BSL will co-host the annual meeting of the Seismological Society of America (SSA), scheduled for 4/18/2006 - 4/22/2006, with the USGS. Plans are moving ahead to hold the 100th Anniversary Earthquake Conference as a co-convened meeting by the SSA, the Earthquake Engineering Research Institute, and California Governor's Office of Emergency Services. The joint conference, which will be held in the Moscone convention center in San Francisco, will focus on what has been accomplished during the last century, showcasing best practices and research results in science, engineering, and emergency management.

Lind Gee is on the Steering Committee for the anniversary conference and has been participating in monthly conference calls to plan for the meeting. In particular, there is much activity related to setting up the program, developing a realistic budget, and planning for special events such as a banquet celebrating the centennial of SSA. The development of the program is particularly exciting, as the conference is a unique gathering of people in earthquake-related fields. A plenary session is planned for each day, with presentations designed to cross disciplinary boundaries.

4. Acknowledgements

Lind Gee oversees the outreach activities at the BSL. Barbara Romanowicz, Peggy Hellweg, Bob Uhrhammer, Rick McKenzie, and many other faculty, staff, and students at the BSL contribute to the outreach activities. Lind Gee contributed to the preparation of this chapter.