Tarabay Antoun

Currently, nuclear explosion monitoring relies on semi empirical models to discriminate explosions from earthquakes
and to estimate key parameters, such as explosive yield. While these models have been highly successful in
monitoring established test sites, there is concern that future tests could occur in media and at scaled depths of burial
outside of the domain of empirical observations. The goal of SPE is to replace these semi empirical relationships with
numerical techniques that are grounded in a physical basis and thus applicable to any geologic setting or depth of
burial. The LLNL efforts are focused on developing source-to-sensor modeling capabilities and on elucidating the
physical mechanisms responsible for the observed behavior. This is accomplished through the development and
application of 3D fully coupled near field and far field modeling capabilities, and analysis and interpretation of
multivariate SPE shock and seismic data.
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Souheil Ezzedine

We have performed 3D simulations of underground explosions conducted recently in granitic outcrop as part of the
Source Physics Experiment (SPE) campaign. The main goal of these simulations is to understand the nature of the
shear motions recorded in the near field under condition of uncertainties in a) the geological characterization of the
joints, such as density, orientation and persistency and b) the geomechanical material properties, such as friction angle,
bulk sonic speed, poro-elasticity etc. The approach is probabilistic; joints are depicted using a Boolean stochastic
representation of inclusions conditional to their probability density functions inferred from borehole data. Then, using
a novel continuum approach, joints and faults are painted into the continuum host material, granite. To insure the
fidelity of the painted joints we have conducted a sensitivity study on the numerical depiction of joints. Simulating
wave propagation into heterogeneous discontinuous rock mass is highly non-linear problem and uncertainty
propagation via intrusive methods is practically forbidden. Therefore, using a series of nested Monte Carlo simulations,
we have explored and propagated both the geological and the geomechanical uncertainty parameters using a Bayesian
sampling approach. We have probabilistically shown that significant shear motions can be generated by sliding on the
joints caused by spherical wave propagation. Polarity of the shear motion may change during unloading when the stress
state may favor joint sliding on a different joint set. Although this study focuses on understanding shear wave
generation in the near field, the overall goal of our investigation is to understand the far field seismic signatures
associated with shear waves generated in the immediate vicinity of an underground explosion. Using a filtering
technique, we have abstracted the near field behavior into a probabilistic source-zone model that can be used in the far
field wave propagation study.
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Sean Ford

Comparison of two standard explosion models with each other and with new results from the Source Physics
Experiments (SPE) demonstrate that the models are in substantial agreement for large and normally buried explosions,
consistent with much of the historic data collected during American and Soviet nuclear testing. However for small
and/or deeply buried explosions like SPE, the predictions of the two models can differ significantly.

Analysis of the low-frequency seismic data for a simple model of the SPE explosions, known as a seismic moment
tensor, reveal the size and character of the events. The events easily identify as explosions, though the shear energy is
inconsistent with the model of a simple explosion. We find no single non-explosive source that can fit the observed
shear energy, which is consistent with a more complicated source.

Small changes in the near-source medium can be monitored with an interferometric technique using observations of
the seismic coda. This technique is suited for investigations of the damage due to SPE-2 and illuminated by SPE-3.
The coda-wave observations of SPE-2 and -3 show that any damage was limited to a small region less than 5 meters in
radius, consistent with direct observation from drillback operations.

Spall is the heaving of near-surface material during an explosion and can offer insight to late-time damage, a
phenomenon that may have implications for yield estimation. We analyze the spall records of SPE and compare them
with standard models. The SPE observations compare favorably and confirm that the spall contribution to observations
is small compared to the explosion component.

file:///VVolumes/GNEMshare/Presentations/SPE%20S0AR/LLNLabstract_ford.txt[9/9/13 5:35:29 PM]



Rob Mellors

Three aspects of the Source Physics Experiment are presented: electromagnetic measurements (EM), body wave
amplitudes at local distances, and velocity model estimates using correlation methods. The EM measurements were
made near the shot point at distances of 60 and 90 m for SPE2 using three-component magnetometers and at closer
distances for SPE3. A possible EM signal was recorded for SPE3 at a distance of 25 m. These measurements, as well
as future measurements, may serve to illuminate the EM signals associated with chemical explosions.

The use of high-frequency body wave amplitudes at local distances is explored as a tool to distinguish between the
SPE explosions and local earthquakes. The method appears effective, but some nearby stations show anomalous effects
that may be due to lateral variations in seismic velocities.

Correlation methods are used to construct velocity models of the subsurface centered on the SPE source point. The
analysis yields results that are comparable to velocity models developed using alternate methods such as active source,
surface wave dispersion, and borehole measurements. A shallow low velocity zone is evident on all models on the
granite bedrock but the thickness and velocity variations vary laterally. A large effort using ambient noise correlation
is underway to characterize the SPE testbed and involves approximately 8000 paths between station pairs. This will
yield a high resolution 3D model.
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Arben Pitarka

The objective of our work is the improvement of our understanding of the excitation and propagation of seismic
waves, from underground explosions and shallow earthquakes. The main subjects of our ongoing investigation are the
generation of shear-waves, propagation of seismic energy at local and regional distances, and development of
numerical techniques for simulating ground motion from underground explosions using physics based source models
for different emplacement conditions.

We performed analysis using SPE3 synthetics and observed far-field waveforms recorded by five linear arrays of
stations within 10 km of the shot point, and a small array of stations located in the Yucca Flat, with a 2km epicentral
distance. Analysis of the small array data in the frequency-wave number domain, and investigation of particle motion
in the complex domain allowed us to determine the origin and the kind of far-field waves recorded during the
explosion.

We presented an overview of our investigation results. We tested the efficiency of our local three-dimensional velocity
model and our numerical scheme that uses threed€“dimensional hydrodynamic methods, coupled with an anelastic
wave propagation finite-difference method to model the explosion source and ground motion recorded at far-field
stations. The best source models that fit the recorded shear and compressional near-field motion, and a calibrated 3D
local velocity model, were used to evaluate the sensitivity of wave propagation near the source region to source
process, including spall and source-region fracture network, underground structure, high frequency wave scattering,
and surface topography. In particular, we focused on the contribution of these effects to S-wave generation and P/S
amplitude ratio in the modeled frequency range of 0.1-8Hz.
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Oleg Vorobiev

This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source
Physics Experiments in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). One of
the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the
nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the radial) at many
locations as well as azimuthal variations in radial velocities which cannot be generated by a spherical source in
isotropic materials.

Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and
underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to,
heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion
at the surface caused by material spall and gravity. We have performed a three dimensional computational studies
considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In
the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine
various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet
this approach requires the mesh to be aligned with joints, which may present technical difficulties in 3D when multiple
non-persistent joints are present. In addition, the discrete method is more computationally expensive since the contact
faces may move and create new contacts while encountering new opposite faces.

When the joints are stiff and other effects such dilatancy, softening, rate-dependency etc.) can be neglected, the
continuum method can be applied. In this approach, the joints are treated as plane material weaknesses and are
imbedded into the computational elements. The advantage of this approach is that it does not require either
sophisticated meshing algorithms or contact detection algorithm, thus alleviating the computational burden. It is also
suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of
this uncertainty quantification study are presented in a separate abstract.

In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-
situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are
performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion
calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an
accompanied work (Pitarka et al.).
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Seismic monitoring is currently a
semi empirical science ‘

= The best monitoring is where there
are regional calibrations

« Capability degrades to teleseismic
level away from the calibrations

« Some areas of interest do not have
calibration

= NEED: the capability to predict the
observed signal from an arbitrary
source for an arbitrary receiver
« Three Dimensional Earth Model

« Source model that predicts P- and S-
wave excitation

= Current numerical simulation
capability does not yet explain all the

past nuclear data including Source Physics Experiments at
« Generation of S-waves (including Love - : it

B e e 0hviaes) NNSS will provide critical data to
. Effects of media and emplacement develop predictive capabilities for

conditions on seismic waves low-yield nuclear test monitoring
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Based on historic testing we have a good empirical understanding of
ID algorithms but lack physics-based predictable models
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The monitoring community does not currently have an
accepted model for explosion S-wave generation

Explosion Source Phenomenology

Cross-section of Explosion Source Region After Patton, LANL

(within 10 - 20 km of the explosion; not to scale)
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The SPE is a bridge from current test site empirically-based
monitoring to a more worldwide Physics-based Monitoring
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Initial ~Green function (GF) shot in a simple geology.
Simulation capability R&D for non-isotropic effects.

Increase shot size to record signals to 100km
Investigate depth of burial (DOB) effects with SPES&6

Investigate damage zone effects relative to SPE2

Minimize spall, ~GF for SPE 5, DOB relative to SPE1

Increase shot size to record signals to 300 km

DOB investigation with SPE2&7, middle depth

Final granite SPE, standard DOB for nuclear test shot

Solution: a series of Source Physics Experiments to provide the
necessary physics-based model development and validation data
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A fully coupled source-to-sensor modeling capability is
being developed and applied to address the major
scientific goals of SPE
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LLNL Overview

Discrete and continuum simulations of near-field
ground motion from the Source Physics
Experiment

Stochastic three-dimensional investigation of
near-source motions from an underground
explosion

Analysis of recorded and simulated far-field
ground motion from the source physics
experiment

SPE Animation

Explosion and spall model comparison with the
Source Physics Experiment

SPE signals and setting: EM, seismic amplitudes
and velocity models
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Stochastic 3D investigation of near-source
motions from an underground explosion
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Uncertainty propagation throughout SPE designs,
analyses, monitoring network and yield estimation
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Uncertainty Quantification enables us to make decision
where /when characterization is limited

= Uncertainties do exist in every walks of life
* It “cannot be eliminated” but minimized
* Uncertainty is not essentially a “bad thing”

* It enables make decision with margin of
confidence

—

= UQuse to be a very expensive task

* UQis becoming relatively to moderately :
inexpensive o . ey S

*  Nowadays, computational tools (hardware & ‘
software) are readily available

 DOE Labs are at the leading-edge in UQ

= Several sites of interest are of limited
access and/or only “remote”
characterization is available
*  Monitoring underground explosion
« Estimating yield and depth of sources

* Probabilistic discrimination of explosives
from EQs in jointed rock

LLNL’'s HPC
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Uncertainties exist in SPE from end to end:
e.g. in data, conceptual and numerical models

= Aleatoric - Characterization is local but
- A SDFN is characterized by: we need to ‘extrapolate’
— e.g. Statistical Models between the wells
— e.g. Set of joints * Epistemic
. Material properties * Physics based uncertainty
— Scale disparity Measurements * Model “uncertainty”
at laboratory scale may not be — Physics (discrete vs
necessarily applicable to large continuum)
scale — Different codes ~ different
— Intrinsic properties can vary outcomes
spatially and temporally = Measurements (direct or indirect)

Lz m e
s v -
in o in

Statistical characterization Multi-scale problem

Numerical simulations
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There are several approaches for representing joints,
DFN is the most appropriate for SPE UQ analyses
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Discrete Fracture Network (DNF) approach offers unique capabilities to not only “mimic”
in-situ fracture characterization but also to assess uncertainties, their propagation and

guantification
Lawrence Livermore National Laboratory lll—

p.5




Fracture (Joint) characterization in a stochastic
discrete fracture network (SDFN) approach

ACOUSTIC OPTICAL

* In-Situ fractures are assumed

* random with a finite size
* belong to different (sets) families
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» Each set of joints is characterized by:
* density, location of centers,
* orientations, aperture & radius PDFs
* PDFs are inferred from in situ characterization
* In line with what is been conducted for SPE
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Several parameters can be tuned to create equally
probable SDFN with same statistics

yz"\; NG,
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Joint orientation and size can be tuned to create equally E?‘ﬁm!‘;'fe of three_equeilly problable rI:eali_zations
probable fracture networks (rock mass) with different statistical control on the size and

orientation of the joints
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WP in jointed rock mass is a highly non-linear problem,

UQ is conducted using brute force Monte Carlo
- 00000

——
=  “Geological” uncertainties: =  “Geomechanical” uncertainties: §
- Statistical Models « Equation of state 73
— Center Density — Density, bulk sound speed.. o
— Orientation Density - Yield surface model L £
— Aperture Density — Tensile strength... %
— Radius Density « Porosity model %
— Fracture Geometry — Friction, cohesion, g
«  Number of Fracture Family compaction... _ _
Model
Density
Normal
Size
A1_|J I A o <-- Aperture
Simulation
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Wave propagation with discrete representation of joints is
CPU time cumbersome

Typical physical dimension A prototype model for SPE3
joint aperture ~1 mm

joints spacing ~1 m
source size ~1 m
region ~300 m

Computational requirements
~20-50 million elements
~100-200 million zones
~3240 CPU for 12 hours

Uncertainty quantification
~ 40 runs a set
~ 9 parameters
~ 200TB

Judiciously conduct the UQ
sampling effectively
reducing model complexity

Source

Continuum representation of joints is adequate and High resolution
accurate for UQ and parametric study near charge

Lawrence Livermore National Laboratory lll—
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Several cases where solved with discrete & continuum joint
representation, both approaches show very similar results
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Continuum approach relies on meshing appropriately the
joints, a mesh sensitivity analysis has been conducted

':'-;2 R — 0‘2 =2=T exp —
S5 U15n o EE — % Y S HEEEE — R3 1-2HI‘S 864 CPUS (Xl)
= RE = = FFIRE .
; titgaT 5 oaf R4: 2-4Hrs 864 CPUs (x4)
g ousf g ouosp R5: 6-8Hrs 864 CPUs (x8)
£ 0 £ 0
® -0,05 ® -0,08
- - =
5 01 5 olf R4 is a balance between
2 -0,15 F . = -0,15 F g
Realization 1 Realization 2 _
oolRedlizationt, 0 oglcallzations, accuracy and CPU-Hrs
4 8 12 16 20 4 ] 12 16 20
Ti.lTIE,-lTIS 0‘2 T=3=T exp == 0+2 T=3-T exp =
0"2 - - 2-2-T cxp mmm Q 0"15 3 E "\-m 0+15 i E§ E
» o5} Realization 3 B — S o N !
£ = )
35 0,1 E 0,05 F 2 0,05 F
T 006F = 0 = o
= = 0,05 b = -0,05 |
/:/ s o} T o}
g -0.05F % -0as}  Realization 1 % was|  Realization 2
£ 0.1t 0.2 , , , , , 0.2 , \ . . .
R3 & -0,15 F 4 8 12 16 20 4 ] 12 16 20
0.2 Time,ms Time,ms

4 8 12 16 20 0.2 e 0,2
Time.ms 0.15 | ; 0.15 b
. o f . o1}
—
= 0,05} = 0,05 F

Tangential ¥elocity, m's
Tangential Velocity, w's

0 0
Observed R4 R5 0,05 | ~0.05 }
A =0.1F
e -0,15 | Realization 3 -0.15 Realization 4
R4 & RS are very similar and oal B
oo
within 2% in average - U1sn 7-3-T Tine.ms

R3 is distinctly different

p. 11



UQ analysis: single Layer model --

Radial velocity of 20 Monte Carlo simulations

S
Shallow gages Middle gages Deep gages

15 L Early
arrival

Radial Yelocity, mss
Radial Yelocity, mss
Radial Yelocity, mfs

i
]
n

Radial Yelocity, mss
Radial Yelocity, mss
Radial Yelocity, mds

1

16

()

0

1.5 :
arrival

0.5

Radial Yelocity, m/s
Radial Yelocity, m/s
Radial Yelocity, m/s

Time, ms

Good coverage of velocities at middle and deep gages — discrepancies in arrival times at shallow gages



UQ analysis: single layer model —

Tangential velocity of 20 Monte Carlo simulations
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UQ analysis: double layer model —

Radial velocity statistics based on 40 MCS
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UQ analysis: double layer model —
Tangential velocity statistics based on 40 MCS
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Interestingly observed data lays with 95%CI of the simulations — bias to upper Cl — _—

joint compliances will shift the mean thus ClI — note that the polarization is captured in several gages



Sensitivity Analysis:

Effect of joint density on velocities
- 00000/

Nominal density Nominal density x 10
b b
9-2-F gxp — Radial 9-2-F exp —
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Increasing the density of joints leads to a decrease in velocity fluctuations (spread) UL_
Increasing the density of joints leads to more “homogenized” rock mass p.16



Radial Yelocity, mfs Radial Velocity, mis

Radial Yelocity, mfs

Sensitivity Analysis:

Effect of poro-elasticity of top layer — Radial velocities
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Reducing the top layer poroelastic parameter leads to amplifying the velocities at shallow gages -
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Tangential Welocity, mfs

Sensitivity Analysis:

Effect of poro-elasticity of top layer — Tangential velocities
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' Reducing the top layer poroelastic parameter impacts the velocities at shallow gages

p. 18 E



Sensitivity Analysis:
Effect of thickness of top layer — Radial velocity

Shallow gages Middle gages Deep gages

measured

Radial Yelocity, mds
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Radial Velocity, mfs
l—\
o1
o
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Radial Velocity, mds
I

Radial Welocity, mfs

Radial Welocity, mfs

0.5 | | 7 | ] | | ]

Thickening the top layer impacts arrival times at shallow gages while deeper gages remain unchanged

5 L | | | |




Sensitivity Analysis:
Effect of thickness of top layer — Tangential velocity
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Thickening top layer leads to amplifying the velocities at shallow gages -- deeper ones remain unchanged



Sensitivity Analysis:
Effect of joint orientation on radial velocity
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Re-orientation of vertical set of joints can amplify the spread of velocities and their peak magnitude




Sensitivity Analysis:

Effect of joint orientation on tangential velocity

Tangential Yelocity, mdfz Tangential Yelocity, mfs

Tangential Yelocity, mfs
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Joint orientation of vertical set of joints leads to polarization switch in tangential velocities -

joint compliances may lead to correlation between polarization and rotation angle of joints.



Far Field Monitoring Implications:
Do joints nearby the source impact far-field signatures?

= One-way coupling between nonlinear,
inelastic near-field and linear, visco-
elastic far-field regions using a padding
mortar space in 3D.

4'/’4

r-F|eI¢ 2 A i

= Near-field: 3D Lagrangian
hydrodynamics code with non-linear
material response (GEODYN-L)

— Explosion loading

— Compressional and tensile failure,
yielding, porosity, cavity formation

— source mortar embedded within finite
difference model

= Far-field: 3D-FDM (WPP)

— Driven by interpolated time series from
GEODYN model

— Signals propagated through complex 3D WPP
velocity model of geology to distances of 3D finite-difference code Curvilinear grid for
10’s of kms topography, mesh refinement, viscoelastic model

. . . .Designed for massively parallel systems L
— Coupling verified and validated.

p. 23



Uncertainty propagation to far field monitoring receivers:
source abstraction and WPP simulations

Flow chart of UQ propagation
and estimation for SPE

Characterization
Examples of 3 equally probable sources for far field propagation

@ Characterization

%
%

Near Field -
e o ] e

Yield
prediction

Monitoring
design

4

observations

Our ultimate goal is to estimate yields and design monitoring networks under conditions of uncertainty

Lawrence Livermore National Laboratory lIL

p. 24




Summary & Path forward

= Summary: :
+ A UQframework has been established and ; < AN
streamlined with SPE from end-to-end analyses Far-Field. ff-, Z N

+ Several UQ & SA studies have been conducted | &, 77 \

+ Joints affects significantly near field motions,
impacts on far field motions are been explored

« Vertical joints can lead to horizontal motion
(persistence throughout MCS and their stats)

* Friction angle and joint density (thus spacing)
affect shear motions

+ Joint compliances will attenuate the peak
velocity and will increase pulse spread
= Path forward:

+ Assess the impact of joint compliances on
velocities

* Propagate UQ to Far Field receivers
* Help with SPE4 and SPES designs

- !‘ »
“

+ Design a monitoring network based on “~NSTec
uncertainty e

* Design a yield estimator under conditions of Sanda
uncertai nty Laboratorie

+ Global sensitivity (what does really matter)
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SPE SOAR
Sean Ford, Bill Walter, and Rob Mellors, LLNL

Explosion Model Comparison
— Canonical explosion models compared to SPE

Moment Tensor Analysis
— Inversion for SPE moment tensor solution

Coda-wave Interferometry
— Inferences on slowness perturbation due to SPE-2/-3
Spall

— Standard spall models compared to SPE



An Explosion Model Comparison
with Insights from the
Source Physics Experiment

Sean Ford and Bill Walter
SSA 2013

sean@lInl.gov

LLNL-PRES-635238



Motivation & Introduction

* Predict absolute ground motion for explosions
using non-standard testing practice (i.e., not NTS
or STS media at ~100 m/kT?/3)

 Mueller & Murphy (1971) MM71

— Scaling laws for seismic observables

* Denny & Johnson (1991) DJ91

— Regression analysis for seismic observables



Previous work

* Denny (1998)
— DOB
— DJ91 f_< observed

Corner Frequency (Hz)
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Previous work

* Denny (1998)
— DOB
— DJ91 f_ < observed

* Stump et al. (1999) e —

— NPE
210} A\ \} ]
. 2 |V
— MM71 with r,~ W3 N oot
:.."*

10
eeeeeeeeeeeee



Previous work
* Denny (1998)

— DOB
— DJ91 f_< observed

e Stump et al. (1999)
— NPE
— MM71 with r,~ W3

* Rougier et al. (2011) s —
— Simulation j \\\ \N_Li_
— DJ91 r, = predicted § \\\\\\

0 125 250 375 500 625 750 875 1000
SDoB (m/kt!?)



Model comparison (M)
* Denny & Johnson (1991) DJ91

— Combine chem and nuke data in cavity regression
where r_~ W3 so M, ~ W

— Relate cavity to “measured moment”
Mé)] — 4 2743 % IOIOW(Xzﬁ_l'1544P_O'438510_0'0344GPP



Model comparison (M)
* Denny & Johnson (1991) DJ91

— Combine chem and nuke data in cavity regression
where r_~ W3 so M, ~ W

— Relate cavity to “measured moment”
Mé)] — 4 2743 % IOIOW(Xzﬁ_l'1544P_O'438510_0'0344GPP

 Mueller & Murphy (1971) MM71
— Assume scaling in amplitude and yield for nuke data

— Employ a cavity regression where
r.~ W%23so M, ~ WO-8’
My™ =3.1416W°* o B Ry Fyhy"h™"



Model comparison (f,)

* DJ91 relate cavity to source radius with g/zf.
fCDJ — O.2045W_1/3ﬁ_0'0642P0'5522 100.0025GP p—0.7245



Model comparison (f,)

* DJ91 relate cavity to source radius with g/zf.
fCDJ — O.2045W_1/3ﬁ_0'0642P0'5522 100.0025GP p—0.7245

* MM71 relate elastic radius to w, withe/f,
fcMM — 0.1592W_1/3OCR0_1h61/nh1/n



Model comparison (f,)

* DJ91 relate cavity to source radius with g/zf.

fCDJ — O.2045W_1/3ﬁ_0'0642P0'5522 100.0025GP p—0.7245

* MM71 relate elastic radius to w, withe/f,

fcMM — 0 . 1 592W—1/3aR61h61/nh1/n

 DJ91/MM71 ~ f(DOB)
— Allow for chem/nuke factor

10*

7
7 410°
/7 ]
/ ]
/ J
/ J
/7 ]

E 10?

10!

DOB [m]



Model comparison (W)

* Invert DJ91 and MM71 M, relationship for yield
WDJ — 2940 X 10—10 ﬁ1'1544P0'4385 100.0344GP\_P

WMM — 4-9207p1'1494ﬁ2'2989R63'4483P0_1'1494h60'3831h0'3831\P1<;1494



Model comparison (W)

* Invert DJ91 and MM71 M, relationship for yield
WDJ — 2940 X 10—10 ﬁ1'1544P0'4385 100.0344GP\P

WMM — 4.9207p1.1494ﬁ2.2989R63.4483P0—1.1494h60.3831h0.3831\11(1);1494

% DJ h0.0554

) R
WMM M(()).1494

— Assume shot point p ~ overburden p

a) W [kt] b) wbJ / wMM
10% ¢

— 10*

10° 3 E 10°

4
DOB [m]

DOB [m]
1000
100°0
100
100

10? 3 E 10?
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6



Model comparison (W)

* Invert DJ91 and MM71 M, relationship for yield
WDJ — 2940 X 10—10 ﬁ1'1544P0'4385 100.0344GP\P

WMM — 4.9207p1.1494ﬁ2.2989R63.4483P0—1.1494h60.383 1h0.3831\11<1x;1494

% DJ h0'0554

) R
WMM M(()).1494

— Assume shot point p ~ overburden p

a) W [kt] b) wbJ / wMM
10% ¢
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Model comparison (W)

* Invert DJ91 and MM71 M, relationship for yield
WDJ — 2940 X 10—10 ﬁ1'1544P0'4385 100.0344GP\P

WMM — 4.9207p1.1494ﬁ2.2989R63.4483P0—1.1494h60.383 1h0.3831\11<1x;1494

. ~ WDJ h0'0554
— Assume shot point p ~ overburden p —Fr
WMM MO.1494
0
a) W [kt] b) wb!/ wMM
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SPE-2
R

Data: SPE .
V'
2
- = SPE-1
324 M ——" v L1-20 N
1 km
| =0 o s e M
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Yield [kg] sDOB
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SPE-1 85.2 54.9
SPE-2 991.6 45.7 364




Relative comparison: Spectral ratio

SPE-2/SPE-1
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Relative comparison: Spectral ratio

SPE-2/SPE-1
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Absolute comparison: MT synthetic

Models for GFs SPE-1
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Absolute comparison: MT synthetic

SPE-1
Model 1
1 48.5 ~ N ——— /\/\M
Model 2
2 52.5
Model 3
3 44.8
Note: 1 Ak = 1018 N-m ﬁlg

* DJ91 prediction near the observed displacement

* Best phase and amplitude fit by Model 3 (Patton,
2012)



Absolute comparison: MT synthetic

SPE-1

48.5 251.7 460.1
2 52.5 373.3 682.3
3 44.8 306.3 559.7

Note: 1 Ak = 1018 N-m

* MM71 over-predicts M,

— Synthetic amplitudes are almost doubled
for chem/nuke factor =2

* Johnson (1988) found similar over-
prediction for HARZER & CHANCELLOR v



Conclusions & Future work

* Differences in yield predictions are greatest for
small and/or deeply buried explosions

* SPE is most consistent with D&J-predicted M,
and M&M-predicted f,



Conclusions & Future work

* Differences in yield predictions are greatest for
small and/or deeply buried explosions

* SPE is most consistent with D&J-predicted M,
and M&M-predicted f,

* Future work: Chem/Nuke at depth (Xu et al., ‘12)
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Conclusions & Future work

* Differences in yield predictions are greatest for
small and/or deeply buried explosions

* SPE is most consistent with D&J-predicted M,
and M&M-predicted f,

I I 1 LI I

e Future work: New model z
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Moment tensor analysis of SPE-1 and -2

Sean Ford, Rob Mellors, and Bill Walter
SSA 2012

sean@lInl.gov

LLNL-PRES-552338 Prepared by LLNL under Contract DE-AC52-07NA27344.



Calibration 1: Response

* H/V ratios of regional events similar between SN and TPNV
— H/V noise ratio SN=5 TPNV=1% (much noisier horizontals)

* Long-period (15-25s) ratio of SN to TPNV teleseismic event
provided ground-motion gain corrections
— CMG-40T =1, Trillium-120= 1.5

TPNV (STS-2)

L5-16 (CMG-40T)

L4-23 (Trillium-120)



Calibration 2: Orientation

* Horizontal particle motion of teleseismic event
— L1-20/L2-20/L3-20/L4-20/L5-16 = +5/0/?/0/-1

L1.20

/ £2:20
L5:16 /

L3.20

/20 .

L4.23



Data BP: 0.5-2 Hz
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Velocity model

e V,/V, =5000/2700 [m/s]
— V,/V,=1.852 v =0.294

20m thick weathered
layer

— V,/V, = 2900/1600 [m/s]
p =2600/2650 kg/m3

Q =600/ 300

Constant to depth
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Source-type plot (Hudson et al., 1989)
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Source-type plot (Hudson et al., 1989)

\
a
1

+—F -
\

S Full VR=48.4%
@ Iso VR=44.5%
@ Dev VR=42.3%
Bl DC VR=36.7%




SPE-1
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SPE-1 Explosion - 6x10%° N-m (M,,1.2)
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Deconvolution for relative moment-rate

e Deconvolve SPE-1 from SPE-2 on L5-16 vertical at <40 Hz
9 —

_1®

0.1s

0

a1e. O\ annelay



Deconvolution for relative moment-rate

e Deconvolve SPE-1 from SPE-2 on L5-16 vertical at <40 Hz
9 —

e Convolve moment-rate function with SPE-1 L5-16 all channels

a1e. O\ annelay

Tangential Radial Vertical



Denny & Johnson (1991) scaling relations

* Regression for cavity radius as a function of yield obtained

147 x10°W"°
R 7 174

¢ B0.3848 P0.2625 1 0 0.0025GP
0

* Regression for seismic moment obtained

4
MO — LMIPOO.34910—O.O27GP Where Mt — —ﬂpOCzRf
311 3

* Prediction of R_for SPE-1/-2=0.79 /1.79 m

* Explosion M, predicts W for SPE-1/2 =98 / 945 kg TNT



Preliminary findings

* SPE-2 best-fit isotropic M, 6.3x10'! N-m = 10 x SPE-1 isotropic
IVIO
* SPE-1/-2 low-frequency waveforms are very similar

* Full MT low-frequency point-source inversion cannot fit
tangential displacement

* Evidence for multipathing requires >1D velocity-model

Future work

* Distributed source

* Variable 1D models to capture M, error

* Higher frequency and greater bandwidth inversions
* Variable weighting of low-amplitude initial arrivals
* Use of eGF for kinematic source inversion



Coda wave interferometry of SPE-2/-3
for velocity change due to damage



Approach

GS11D-vertical observations of SPE-2/-3
Non-overlapping windows of 0.4 s (10 x T, )

Damage should change elastic properties
leading to velocity change and travel-time
perturbation

Use coda wave interferometry to measure
travel-time perturbation [Snieder et al., 2002]

ov__ot

V [



g
. MHVW

time lag (s)

time (S)

'gWNMmew.MMW

Example from Gret et al.
[2006] Geophys. J. Int.

Two waveforms, one
measured at 4.14 MPa of
pressure in the cell (blue)
and one measured at
12.41 MPa (red). The
upper panel shows the
early time window and
the lower panel part of
the coda.

The seismic record (top
panel), and estimates of
ot for multiple time-
windows (bottom panel).
The first three points are
computed from the early
part of the waveform
and are not sufficiently
sensitive to detect the
velocity change.
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Analysis at all stations
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Near-field data
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1D inversion for slowness perturbation

dt (SPE3-SPE2) [ms]
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1D inversion for slowness perturbation
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To Do

* Note SPE W and h
* Note historical parameters



A Spall Model Comparison with Insights from the
Source Physics Experiment

Sean Ford and Rob Mellors, LLNL



Spall model £4
£ Time
)
D Z
> —
L r ]
I
/\IS
h
Study Depth (d) Lateral extent (r) Maximum gap (s) Peak velocity (v)
[m] [m] [m] [m/s]
Viecelli (1973) 10344 W2/3h-1 100 W1/3 10882 |W4/3p-4 from s via eq (2)
Sobel (1978) 22 W1/3 10284 |§0.37p-0.16 1057 [/052h4-050  from s via eq (2)

Patton (1990)* 54 Wo.25 334 W25 from vviaeq (1) 104 Wt61/3 p-161
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Model comparison with SL-10 (15m-NW)

80 ;
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Time [s]
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1.06 10.00 45,51 2.18 92.9 15.6
S78 1.45 28.72 53.24 24.62 108.7 15.6

P90 1.04 59.39 45.15 75.73 92.2 15.6



Explosion moment and spall force functions
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Far-field displacement functions
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SPE Signals and Setting: Seismic Amplitudes and
Velocity Models

R. J. Mellors, J. Sweeney, W. Walter, S. Ford, E. Matzel, A.
Pitarka

|!| Lawrence Livermore

National Laboratory

LLNL-PRES-642636

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC




Overview

- EM & Aftershocks
[Sweeney et al., 2013]

- Earthquake/explosion differences
[Walter et al., 2013]

- Velocity models [Matzel and Mellors, 2013]
- Next steps

Lawrence Livermore National Laboratory L pres oo B



Electromagnetic measurements

Schumann resonance

Question: Is a low-frequency electromagnetic pulse produced by chemical
explosions?

Two three-component magnetometers deployed

[EMI BF-5 magnetometers sampled at 500 Hz; 60 hz notch; measure B field]
SPE2 60and 90 m

SPE3 25and 30 m

Lawrence Livermore National Laboratory Official Use Only LLNLPRES xoo0s
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aftershocks

Aftershock Detection Capability at the SPE Borehole
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Earthquakes and explosions: motivation

MDAC corrected 4-6 Hz Pn/Lg at MDJ BHZ10

o
@ i Resicus

T | 200 2013
WAt % *
2006,

2/16/04 earthquake

| |

| |

: Ly  MDJBHZ10 4-6 Hz
|

! |

| |

: °
® o

I 2/12/13 declared nuclear test p—

Past Earthquakkes ,

Mw

Example of using P and S ratio to discriminate explosions from earthquakes.

Lawrence Livermore National Laboratory Adapted from Walter et al., 2013 LN PRES oo



In the 1990’s we discovered empirically that high-frequency P/S
discriminates explosions from earthquakes at all the major test sites

6-8 Hz Eggﬂquake and Explosion pairs ___ ok

MNV
A 54 N 54N
BRVK
38°N 38°N
km
® o

S0 50N
aron | Nevada Test Site ! son O

118°W 117°wW 116°W km
—
) 100 200

118°wW 117°wW

Semipalitinsk

. —— —
75'N 72E 75E 78 E

RE S 2 500
o[ Novaya Zemlya |*" ™ ™ LopNor S |

30°E 40°E 50°E 60°E 82°E 84°E 86"

Can we predict the frequencies where P/S discriminates?
Lower frequencies propagate further extending the range of P/S

Lawrence Livermore National Laboratory From Walter et al., 2013 LN PRES oo



Discrimination at local/regional distances

8

Lawrence Livermore National Laboratory From Walter et al., 2()?3 LLLLLLLL Sooooce



Local distance P/S may not discriminate explosions from

Note P/S ratio
discriminates SPE
from nearby
earthquake at
regional and some
local distances as
expected.

However at SGV
compared to
TARNV — appears
to be a structural
focusing/defocusing
effect

Using Source +
Path modeling we
will test this
hypothesis

earthquakes without 3D corrections

Lawrence Livermore National Laboratory From Walter et al., 2013

q (=
LLNL-PRES-xxxxxx



Path modeling: Need velocity model

topography
top Tertiary

& v
4
-

top Paleozoic

" top granite

3D WPP finite difference
simulation
Simple source representation

Climax Stock (granite)

37.24° - //
topographic Ai Line 1
effect -
Line
37.22° B
? slow alluvium
Line4 /* iA Yucca Flat
AAA Line 3= contourinterval: 100 m
T
-116.08° -116.06° -116.04°

Lawrence Livermore National Laboratory
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Question: How good is the model?

Goals:

- Improve model

- Site characterization
Active source
Well logs

- Use seismic data
Travel times
Surface wave dispersion
Inversion
Noise/coda correlation

Strategy: start with granite and move outward

Lawrence Livermore National Laboratory

LLNL-PRES

XXXXXXX



0 | | | O | | | |
Matzel, Vs
xcorr
Needed: 1D spatially L/
A standard velocity model . 5 vl o
_ £
1D representation not good
enough.
~100 ~100
All'Vs
(Abbott sqdled by 1.73)
[ [ [ [ | [ [
0 2 3 4 O 1 2 3 4
0 I IRo IeVsI VpI
5 ‘ y Wi ,
Climax Stock ‘average’ and LLLy—\ L182,1D
near borehole profiles
4 —50 1
g
Vp
—100 7 =100 7 Apbott, Gz, B009, B189 [
Sonic logs, B009, B189
I I I I I I I I I I I I
0123 456 7 01 2 3 45 6
km/s km/s
Thanks to C. Rowe, R. Abbott, M. Townsend
Lawrence Livermore National Laboratory 12 L rresons




geology

Lawrence Livermore National Laboratory 3 L PRES xoons



Coda interferometry

- Use shot records from SPE2

- Correlate station with another

- Yields Green’s function between stations

- Filter Green’s function between 5-10 Hz

- Invert for best-fitting 1D model for each (<5 km)
[simulated annealing with FK]

- Combine into 2D profiles along each line

Use absolute value of Green’s function

L2-05.L.2-15

i Jk L1-05.L1-15

i N““b% h L3-05.L.3-15
- !A &M L4-05.L4-15

- l‘ﬂ L5-05.L5-15

correlation GF
synthetic

-10 5 0 9 10 15

Epoch time

20

Lawrence Livermore National Laboratory
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Test model with waveforms

NAN~ e~ TN
L1-09 (900 m ) W
—/\/‘M/\""W
L1-06 (600m) ‘\‘:‘\/?f\f\'\/\'
_/\/\/\/_,._
L1-03 (300m) '\"/v;/\/\,
_/\/\\M,v
L7-01(100m) /\/\
| I j\/\\/\lr I |
0.0 0.2 0.4 time(s) 0.6 1.0
Coda model [2.5 D] travel times delayed w.r.t data SPE2 data
Surface wave generation enhanced. geology model

[geology model here does not include layer]
Need to improve. Use ambient noise.

correlation model

Lawrence Livermore National Laboratory
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Ambient noise correlation

37.26° )

In progress o °

3 months of high-gain data °"** B b ‘

All available velocity stations

(gs11 and broadbands) y ' 3

~ 8,000 pairs AN 5
Automatically model SR
Should yield detailed model of &

i
J A
. o 0 i
region within 2-5 km. & rottiona £
A G40T o
[ ] Trillium A
3720 T ] broadband 0 B
A Episensor L4 3 Yucca Flat
1 O Infrasound
a GS11D (Z,R, T)
GS11D (Z only) ®<
) Py contour interval: 100 m
37.18 T T T T T
-116.12° -116.1° -116.08° -116.06° -116.04° -116.02°
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Next steps

= Interferometry appears feasible.

= Ambient noise tomography of all stations (~ 8000
pairs in progress — hope to present at SR/AGU).

= Will yield a 3D velocity model of Climax Stock
and northern Yucca Flat.

= Will combine with improved source (e.g. Vorobiev
et al., Pitarka et al.)

= Should help resolve path effects.

1 8 LLNL-PRES-xxex?( uL'
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Analysis of Recorded and Simulated Far-Field Ground Motion
From the Source Physics Experiment

Arben Pitarka, Robert J. Mellors, Oleg Y. Vorobiev, Ezzedine Souheil,Arthur J. Rodgers,
William R. Walter, Tarabay Antoun, Anders Petersson, and Jeff Wagoner.

Lug Lawrence Livermore
National Laboratory

State-of Analysis Review
Meeting, Las Vegas

August 22, 2013

LLNL-PRES-753593

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
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Overview

Objective: Improve understanding of the excitation and propagation of
seismic waves, especially shear waves, from underground explosions.

Approach:

=  Simulate near-field ground motion from underground SPE3 explosion
using a physics based source model coupled with far-field viscoelastic
wave propagation

= Compare with observed waveforms from Source Physics Experiment.

= Analyze path effects (scattering, topography, and structural variations)
at close distances (< 20 km)

« Long-term Goal: Create a physics-based end-to-end model for
monitoring that couples hydrodynamics to elastics and allows for
both scenario prediction and detailed analysis of observed signals

Lawrence Livermore National Laboratory il



SPE Shots

= Emplaced in granite 87.26" 7=
= SPE1: 100 kg TNT at 55 m
37.24° *\
= SPE2: 1000 kg TNT at 45 m
= SPE3: 1000 kg TNT at 45 m .
Sensors
« Array of near-field borehole and
surface accelerometers 37.2" -
Episensor Yucca Flat
* Instruments deployed along 5
radial lines out to 20 km Sario z o |
» Mix of short-period and broadband ... ‘ a_ contolali R NI |
A |nfl’aSOUHd -116.12° -116.1° -116.08° -116.06° -116.04° -116.02°
w_ _Topography Along L1
L1-16
iz L1-12
% 1600 Gz L1-04 L8 y
Dist(m)
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Observed Far-Field Shear Wave Energy

Broad-Band

780-

180°

400m

&

S 2.

(800m) R

X 90°
AP

750+

800m

180°

&

Significant shear wave energy on the tangential component
Causes:

- source effects
- wave propagation effects?
(structural heterogeneity, surface topography)

Lawrence Livermore National Laboratory e
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FK Analysis Using Small Array Data
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S-waves are produced in the near-field and seem to be consistent
with motion on joints

8 T T 15 T T
— SPE 3 Data —— SPE 3 Data
---- Discrete Element ---- Discrete Element
---- Continuum ---- Continuum

6- |

0.5+

@
@ £
£ z
> o
3 3 i
3 = 0 Vi
> S P
g s 8—2—T,s‘lhd’>t level
< 2 i
T . 5

=

05

s
/
/
/
7
/
7
L

-6 8-1-R,30ft below shot level -

8-1-T,30ft below shot level

R L i | i i i
80 0.002 0.004 0.006 0.008 0.01 0.01 (o} 0.002 0.004 0.006 0.008 0.01 0.012
Time(s) Time(s)

Efforts are underway to improve the quantitative agreement with the near field data and correlate the observed
anisotropic behavior to the underlying physical mechanisms

[ o JRC=11,DRY]
| © JRC=11,WET,

a N

=)

Shear Stress (1) [MPa]

o Triaxial Compressi
(Confining Prossure = 5

VON MISES STRESS (kbar)

PRESSURE (kbar) 0 .\'gnml Stress fu_vl L\hg.\l
faults & Constitutive Joint properties Effect of saturation
eologic behavior of the rock .
glayergs after Vorobiev et al 6



Near-Field and Far-Field Coupling

= One-way coupling between nonlinear, T RS
inelastic near-field and linear, visco-elastic ' o/ ‘ :
far-field regions using a padding mortar ‘Far-Field. > g
space in 3D. 8

= Near-field: 3D Lagrangian hydrodynamics
code with non-linear material response
(GEODYN-L)

— Explosion loading

— Compressional and tensile failure, yielding,
porosity, cavity formation

— source mortar embedded within finite
difference model

= Far-field: 3D-FDM (WPP)

— Driven by interpolated time series from
GEODYN model

— Signals propagated through complex 3D

velocity model of geology to distances of 10’s WPP
of kms 3D finite-difference code Curvilinear grid for
: I : topography, mesh refinement, viscoelastic
— Coupling verified and validated. model .Designed for massively parallel systems

Lawrence Livermore National Laboratory IFESEERERY




3D Underground Structure
Large Scale Constraints of the 3D Velocity Model

(Wagoner,2012)

topography

N

top Tertiary

top Paleozoic

T~ - .
T~ > top granite
=

Lithology Vp(km/s) Vs(km/s)
i Softer Granite 434 250  H=60m
. Surface mapping Granite: 6.20 3.58 no gradient
- Boreholes Paleozoic: 5.60 3.24 small gradient
. Geophysical models Tertiary: 4.20 242 small gradient
Quaternary: 3.00 1.50 no gradient
Top Quaternary 2.00 0.90 H=80m

Stochastic Small Scale Heterogeneity (I=1km,up 15%)

Lawrence Livermore National Laboratory il



Coda Interferometry  ° * 03
(Matzel et al. 2013

2.5D Modeling of Shallow Structure
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Small Scale Shallow Variations

[

-100 H

-200

-300

Depth(m)

400
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—700 J

0
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1000 2000 3000 4000
I L L )

0

Vp(m/s)
1000 2000 3000 4000
! ! ! )

sigma=187.4

sigma=460.3

sigma=461.1

k

0

-100

Velocity Model

Stochastic Small Scale Heterogeneity
(L=1km,up 15%, Gaussian weighting)

i

Lawrence Livermore National Laboratory
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Simulations reveal very complex propagation and clear
conversions of P and Rg energy to S-wave energy

Lawrence Livermore National Laboratory IR



Line 1 Granite L1 Vertical Transverse Radial
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Line 3 Alluvium L3 Vertical Transverse Radial
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The alluvium structure needs improvements
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Depth(km)

Vertical ‘
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Vertical velocity,m/s

Sensitivity of Far-Field Motion To Source Modeling
(Effect of Gravity)

af with gravity
and reduced strength
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3D Velocity contours

Lawrence Livermore National Laboratory

LLNL-PRES-75359319 LLL



Effects of Gravity
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1.2

Effects of Gravity Max Freq: 6Hz
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Sources With Different Equally Probable Joint Network
Using Site Fracture Characterization

Model 1 Model 2 Model 3

Snapshots of particle velocity amplitude at 10ms, for different sources, computed with
3 different realizations of fracture networks embedded in Geodyn-L.

Lawrence Livermore National Laboratory IFESREREE,



Effects of Joints Orientation on the Far-Field

Max Freq: 6Hz
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Conclusions

*Coupling of explosion 3D hydrodynamic simulation with anelastic wave
propagation modeling improves the quality of simulated waveforms for the
SPE

*The combined effects of surface weathered layer, surface topography and

small scale structural heterogeneities have a significant impact on creation
and amplitude of shear motion during underground explosions

* In addition to shear waves generated at the source, shear waves
generated by near-surface structural complexities propagate at local
distances. The increase in shear-wave energy could explain why the P/S
discriminant for SPE explosions does not work well for some azimuths at
local distances.

» Stochastic realizations of joints based on site fracture characterization
produce similar shear and compressive far-field ground motion in the
modeled frequency range up to 6Hz.
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What can we learn from near field modeling ?

= Shear-wave generation, implications for

monitoring
= Role of site characterization
= Role of surface and gravity
= Scalability with yield
= Source model for the far field

North Korea
Explosion
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North Korea
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Explosion
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%5 k " Mine Collapse
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Joints can redirect energy flow from the source

Small scale experiment High confinement Low confinement

Sugar ShOt (Melzera 1970) 1IV.20x20 blocks |. Continuum L 8 8 Y M N
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& o T T T T T e i elastic wave
i I O O ™ elastic wave 1 /
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_____
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[TTIIIT] | | sl S
=400 =200 o 200 I1l.10x10 blocks
I11.10x10 blocks I1.5x5 blocks II. 5x5 blocks

Plastic Strain 00,001 Pressure 0-0.3 GPa

Random joints

s Vorobiev, IJNME, 2010 26 UL'



Parallel nonlinear code GEODYN-L is used to model
near-source ground motion

N
-~y

Dimensions:
joint aperture ~1 mm 200 ©
joints spacing ~1 m
source size ~1 m
region ~300 m

Computational model:
~20-50 million
elements
~100-200 million zones
3240 CPU for 12 hours

b



SPE3 discrete model: horizontal shear wave generation

. T C e

limestep 1, t = 501.638

Discrete-continuum simulation of SPE3 using GEODYN-L

L



Vertical joint sets define polarity of horizontal shear

motion
T,

Horizontal shear motion of different polarity

Sliding joints

L >

Timestep 9, t = 4503.34




3D discrete model with 3 joint sets : sliding joints produce
shear motion

Time,ms

Time.ms

b



Two vertical joint sets used in calculations cannot explain
observed shear motion

#9-2 located at the source level
in normal direction to vertical joint
set 1 (which corresponds to high

dip angle sets Set-1 and Set-2)

Tangential Velocity, m/s
Radial Velocity, m/s

Rose diagram Map




A single vertical joint generates shear motion but not

over sufficiently wide azimuth

2D: Motion at 10 and 20 m range for locations One JOInt! t=9 ms
oriented at various angles relative to the joint direction:

Joints slide if m > the friction angle Not
transmitted
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granite with one set of joints . joint
| i
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Increasing the number of joints widens the
azimuthal region of shear motion

Increased joint density >

ST iy
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L s - —{'—-Pf’:‘p

Velocity vectors and tangential velocity directions at 7 ms
Blue clock-wise, red counter-clock-wise.
Friction coefficient=0.6. Slip on the joints is shown in dark grey
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The azimuthal region with shear motion also widens

with decreasing friction
- 000000/

Friction ~0.4 Friction ~0.8

..
-

wanaaba.ll
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Anomalous high velocity can be explained by various joint
properties in the vicinity of that gauge

Assumptions:
#7-2:
joint spacing= 2.5 m
Friction =0.4
Azimuth =30 degrees
#9-2:
Joint spacing = 1.6 m
Friction =0.2
Azimuth= 170 degrees
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We have employed a continuum joint modeling to study

effects of joint orientations and gravity

DISCRETE JOINT

Isotropic
material

Contact
element 7 s

Elastic-plastic

" anisotropy

Nonlinear normal compliance
Coulomb friction
Valid for large slips and

separations

Bigger domains,
more runs

verify

CONTINUUM JOINT

Isotropic
material

\Weakness plane

plastic

No compliance .
anisotropy

Coulomb friction
Small deformations

Both discrete and continuum joint models assume that the joint spacing
is bigger than the element size

e



Discrete and continuum joint methods produce similar
results where the flow is controlled by plasticity (2D)

CONTINUUM

Plastic strain  Pressure
A 300 -
400
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100 4 -
~ -~ -
i £
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- "
: <
>
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-200
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4 T - : T T T T T T T
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DISCRETE

(2
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Discrete and continuum methods show similar results (3D)

Explosion‘in hard

rock with three ..
) >

Cartesian 1»:5:?;:}?5
sets of 32 <2
joints

Discrete

Continuum

Pressure contours (0-50 MPa)
Joint spacing 1 m, friction ~0.2

Discrete joint representation
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Material tensile strength affects the vertical velocity
calculated at the surface

Experiment
1.5 T T T
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Continuum model with gravity provides reasonable

agreement with the surface measurements in SPE3
- 000000/

Continuum joint model, 600mx600mx300m domain, 834 CPU, 6 hours
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150 100
exp A5 exp L1
exp A12 exp L3
50 G ------- 30 L1 -=----
100 no G ........ L3
60 -
; 20 '
® 50 @ @ :
£ S € i
(&] [&] (&)
3 8 S
) 0 ) <> 10
> > >
S S 8
= € =
(] (] (]
> -50 > >
0
-100 j
| -10
-40 :
_1 50 1 1 1 1 1 1 1 1 1
50 100 150 200 50 100 150 200 50 100 150 200
Time,ms Time,ms Time,ms

(2

p. 17



We expect similar near field velocities in SPE4 as in SPE1
with less damage near the surface

Calculated surface motion (SPE1 vs SPE4)
the model is calibrated for SPE3 data first

Plastic Slip at the joints

SPE1
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25 25 8
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Conclusions

= Vertical Joints can cause significant 07— Effect of joint frction
horizontal motion comparable with 06 a0

: ASOE
that observed in the SPE . 05 |AGOF

[ A60 F41
experiments

= Both joint spacing and friction angle
affect the amount of produced
shear motion.

Tangential Velocity, m/

= The higher the friction, the shorter .
and more delayed is the pulse of the 02, . -
shear wave. Time.ms
- By cc?ntrglllng the jOInt f!"lCthﬂ and Tangential motion cased by one set of joints
spacing in a reasonable interval one exp| ¢ | calc 7.2
can describe shear waves that 2 > 05k
¢ ‘C
correlate with larger than expected S
. 0
P-wave motion. % s
e s s #9-2 = )
= Gravity is important to model the Eg, 0.5 -
©

vertical velocity as well as the radial
velocity near the surface

(3
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2D:Transverse and radial motion at 10 and 20 m ranges

for 60-70 degree angles
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Increasing friction delays the shear motion and makes

shear pulse shorter
- 000000/
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Tangential Velocity, m/s

Gravity does not affect velocity histories at R<20 m
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Pressure and velocity iso-surfaces
for SPE4 explosion simulation (cross-section)

T=70 ms

Spherical wave Reflected wave

Lithostatic pressure




Joint model has been validated for dynamic conditions

Polished joint in Limestone loaded by
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friction angles:
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Experiment

Vorobiev, O.Yu.,(2010),”’Discrete and continuum methods for numerical simulations of non-linear wave
propagation in discontinuous media”, International Journal for Numerical Methods in Engineering,83,482-507
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Joint model has been validated for quasi-static

conditions
T,

Shear test simulation
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