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What can we learn from near field modeling ?

= Shear-wave generation, implications for

monitoring
= Role of site characterization
= Role of surface and gravity
= Scalability with yield
= Source model for the far field
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Joints can redirect energy flow from the source

Small scale experiment High confinement Low confinement
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Parallel nonlinear code GEODYN-L is used to model
near-source ground motion
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Dimensions:
joint aperture ~1 mm 200 ©
joints spacing ~1 m
source size ~1 m
region ~300 m

Computational model:
~20-50 million
elements
~100-200 million zones
3240 CPU for 12 hours
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SPE3 discrete model: horizontal shear wave generation
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limestep 1, t = 501.638

Discrete-continuum simulation of SPE3 using GEODYN-L
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Vertical joint sets define polarity of horizontal shear

motion
T,

Horizontal shear motion of different polarity

Sliding joints
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3D discrete model with 3 joint sets : sliding joints produce
shear motion

Time,ms

Time.ms
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Two vertical joint sets used in calculations cannot explain
observed shear motion

#9-2 located at the source level
in normal direction to vertical joint
set 1 (which corresponds to high

dip angle sets Set-1 and Set-2)
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Radial Velocity, m/s

Rose diagram Map




A single vertical joint generates shear motion but not

over sufficiently wide azimuth

2D: Motion at 10 and 20 m range for locations One JOInt! t=9 ms
oriented at various angles relative to the joint direction:
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Increasing the number of joints widens the
azimuthal region of shear motion

Increased joint density >
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Velocity vectors and tangential velocity directions at 7 ms
Blue clock-wise, red counter-clock-wise.
Friction coefficient=0.6. Slip on the joints is shown in dark grey
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The azimuthal region with shear motion also widens

with decreasing friction
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Anomalous high velocity can be explained by various joint
properties in the vicinity of that gauge

Assumptions:
#7-2:
joint spacing= 2.5 m
Friction =0.4
Azimuth =30 degrees
#9-2:
Joint spacing = 1.6 m
Friction =0.2
Azimuth= 170 degrees
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We have employed a continuum joint modeling to study

effects of joint orientations and gravity

DISCRETE JOINT

Isotropic
material

Contact
element 7 s

Elastic-plastic

" anisotropy

Nonlinear normal compliance
Coulomb friction
Valid for large slips and

separations

Bigger domains,
more runs

verify

CONTINUUM JOINT

Isotropic
material

\Weakness plane

plastic

No compliance .
anisotropy

Coulomb friction
Small deformations

Both discrete and continuum joint models assume that the joint spacing
is bigger than the element size
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Discrete and continuum joint methods produce similar
results where the flow is controlled by plasticity (2D)
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Discrete and continuum methods show similar results (3D)

Explosion‘in hard

rock with three ..
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Continuum

Pressure contours (0-50 MPa)
Joint spacing 1 m, friction ~0.2

Discrete joint representation
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Material tensile strength affects the vertical velocity
calculated at the surface

Experiment
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Continuum model with gravity provides reasonable

agreement with the surface measurements in SPE3
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Continuum joint model, 600mx600mx300m domain, 834 CPU, 6 hours

Range=15 m Range=30 m Range=100 m
150 100
exp A5 exp L1
exp A12 exp L3
50 G ------- 30 L1 -=----
100 no G ........ L3
60 -
; 20 '
® 50 @ @ :
£ S € i
(&] [&] (&)
3 8 S
) 0 ) <> 10
> > >
S S 8
= € =
(] (] (]
> -50 > >
0
-100 j
| -10
-40 :
_1 50 1 1 1 1 1 1 1 1 1
50 100 150 200 50 100 150 200 50 100 150 200
Time,ms Time,ms Time,ms

(2

p. 17



We expect similar near field velocities in SPE4 as in SPE1
with less damage near the surface

Calculated surface motion (SPE1 vs SPE4)
the model is calibrated for SPE3 data first
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Conclusions

= Vertical Joints can cause significant 07— Effect of joint frction
horizontal motion comparable with 06 a0

: ASOE
that observed in the SPE . 05 |AGOF

[ A60 F41
experiments

= Both joint spacing and friction angle
affect the amount of produced
shear motion.

Tangential Velocity, m/

= The higher the friction, the shorter .
and more delayed is the pulse of the 02, . -
shear wave. Time.ms
- By cc?ntrglllng the jOInt f!"lCthﬂ and Tangential motion cased by one set of joints
spacing in a reasonable interval one exp| ¢ | calc 7.2
can describe shear waves that 2 > 05k
¢ ‘C
correlate with larger than expected S
. 0
P-wave motion. % s
e s s #9-2 = )
= Gravity is important to model the Eg, 0.5 -
©

vertical velocity as well as the radial
velocity near the surface
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2D:Transverse and radial motion at 10 and 20 m ranges

for 60-70 degree angles
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Increasing friction delays the shear motion and makes

shear pulse shorter
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Tangential Velocity, m/s

Gravity does not affect velocity histories at R<20 m
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Pressure and velocity iso-surfaces
for SPE4 explosion simulation (cross-section)

T=70 ms

Spherical wave Reflected wave

Lithostatic pressure




Joint model has been validated for dynamic conditions

Polished joint in Limestone loaded by
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Joint model has been validated for quasi-static

conditions
T,

Shear test simulation
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