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§  Shear-wave generation, implications for 
monitoring 

§  Role of site characterization 
§  Role of surface and gravity 
§  Scalability with yield 
§  Source model for the far field 

What can we learn from near field modeling ? 
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Joints can redirect energy flow from the source 

Sugar shot (Melzer, 1970) 

Small charge 

Sugar cubes 

Small scale experiment High confinement Low confinement 

Joint sets at SPE site 

Random joints 

Vorobiev, IJNME, 2010 
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Parallel nonlinear code GEODYN-L is used to model 
near-source ground motion 

Dimensions:  
joint aperture ~1 mm 
 joints spacing ~ 1 m 

 source size ~1 m 
 region ~300 m 

 
Computational model: 

~20-50 million 
elements 

~100-200 million zones 
3240 CPU for 12 hours 

N 

Fault 2 

Fault1 

150 m
 

15 m 
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Discrete-continuum simulation of SPE3  using GEODYN-L 

SPE3 discrete model: horizontal shear wave generation 
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Vertical joint sets define polarity of horizontal shear 
motion  

Horizontal shear motion of different polarity 

p-wave 

Sliding joints 

Side view 

Top view 

Joint planes 
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3D discrete model with 3 joint sets : sliding joints produce 
shear motion 
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Two vertical joint sets used in calculations cannot explain 
observed shear motion 

Data vs calculations at 20 m Range 

T 
R 

#9-2 located at the source level 
in normal direction to vertical joint 
set 1 (which corresponds to high 
dip angle sets Set-1 and Set-2) 
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A single vertical  joint generates shear motion but not 
over sufficiently wide azimuth 

One joint, t=9 ms 2D:  Motion at 10 and 20 m range for locations 
oriented at various angles relative to the joint direction: 

Joints slide if  m >  the friction angle Not 
transmitted 
across the 

joint 
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Increasing the number of joints widens the 
azimuthal region of shear motion  

Velocity vectors and tangential velocity directions at 7 ms 
Blue clock-wise, red counter-clock-wise. 

Friction coefficient=0.6. Slip on the joints is shown in dark grey 

Sliding joints Increased joint density 
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The azimuthal region with shear motion also widens 
with decreasing friction 

Friction ~0.8 Friction ~0.4 
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Anomalous high velocity can be explained by various joint 
properties in the vicinity of that gauge 

Assumptions: 
#7-2: 

 joint spacing= 2.5 m 
Friction =0.4 

Azimuth =30 degrees 
#9-2: 

Joint spacing = 1.6 m 
Friction =0.2 

Azimuth= 170 degrees 
Time =6 ms 

#9-2 #7-2 

Data Calculations 
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Both discrete and continuum  joint models assume that the joint spacing 
is bigger than  the element size 

DISCRETE JOINT 

Contact 
element 

•  Nonlinear normal compliance 
•  Coulomb friction 
•  Valid for large slips and 

separations  

Isotropic 
material 

Elastic-plastic 
anisotropy 

 
 
 
 
 
 
 
 
 

CONTINUUM JOINT 

Weakness plane 

•  No compliance 
•  Coulomb friction 
•  Small deformations 

Isotropic 
material 

plastic 
anisotropy 

Bigger domains, 
more runs 

verify 

We have employed a continuum joint modeling to study 
effects of  joint orientations and gravity 
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Discrete and continuum joint methods produce similar 
results where the flow is controlled by plasticity (2D) 

Q=1 kJ/g 
f=0.4 

DISCRETE 

CONTINUUM 

Q=1 kJ/g 
f=0.2 

Q=0.4 kJ/g 
f=0.2 
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Discrete and continuum methods show similar results (3D)  

Explosion in hard 
rock with three 
Cartesian  
sets of  
joints 

Dependence on joint friction 

Discrete joint representation 

Friction=0.6 Friction=0.2 

Continuum joint representation 

Friction=0.6 Friction=0.2 

Pressure contours (0-50 MPa) 
Joint spacing 1 m, friction ~0.2 

3 

1 

2 
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Material tensile strength affects the vertical velocity 
calculated at the surface 

T=50 ms 

Free surface 
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3D Velocity contours 

source 

A6 
A7 

Calculation set up with gravity 
G 
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Continuum model with gravity provides reasonable  
agreement with the surface measurements in SPE3 

Continuum joint model, 600mx600mx300m domain, 834 CPU, 6 hours 
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We expect similar near field velocities in SPE4 as in SPE1 
with less damage near the surface 

Plastic Slip at the joints 

R= 20 m 

Calculated surface motion (SPE1 vs SPE4) 
the model is calibrated for SPE3 data first 
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Conclusions 

§  Vertical Joints can cause significant 
horizontal motion comparable with 
that observed in the SPE 
experiments 

§  Both joint spacing and friction angle 
affect the amount of  produced 
shear motion. 

§  The higher the friction, the shorter 
and more delayed is the pulse of the 
shear wave.  

§  By controlling the  joint friction and 
spacing in a reasonable interval one 
can describe shear waves that 
correlate with larger than expected  
P-wave motion.  

§   Gravity is important to model the 
vertical velocity as well as the radial 
velocity near the surface 

Effect  of joint friction 

Tangential motion cased by one set of joints 
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2D:Transverse and radial motion at 10 and 20 m ranges 
for 60-70 degree angles 

The joints can explain not 
only 

tangential motion but also 
wider radial displacements 
due to energy redirection 

(some azimuthal directions 
will have more and the other 

ones less energy) 
  

Joint spacing ~2.5 m 
Friction angle  ~30 deg 
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Increasing friction delays the shear motion and makes 
shear pulse shorter 

A10 

A45 

A60 

Friction effect Location effect 

Apparent delay 

Friction angles=21,31,41 

#7-2, R=20 m 
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Gravity does not affect  velocity histories at R < 20 m 

Lawrence Livermore National Laboratory 
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Generation of horizontal shear motion by vertical joints 

T=1 ms 
T=3 ms 

T=7 ms 

Sliding joints 

Clock-wise shear 
Friction coef.=0.4 



p. 25 

Pressure and velocity iso-surfaces 
for SPE4 explosion simulation (cross-section) 

T=10 ms 

T=50 ms 
T=70 ms 

Lithostatic pressure 

Spherical wave Reflected wave 
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Polished joint in Limestone loaded by 
a shock wave 

Vorobiev, O.Yu.,(2010),”Discrete and continuum methods for numerical simulations of non-linear wave 
propagation in discontinuous media”, International Journal for Numerical Methods in Engineering,83,482-507 

Joint model has been validated for dynamic conditions 
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Joint model has been validated for quasi-static 
conditions 

Shear test simulation 

Joint softening effect Nonlinear dilatancy 


