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Abstract. Finite element models are used to examine the effects of strike-slip
earthquakes on stresses in an elastic layer overlying a finite width viscoelastic
shear zone in the lower crust. The overall dimensions of the model are 300 km
wide, 400 km long, and 50 km deep. Three geometries for the lower crustal shear
zone are considered: (1) a viscoelastic half-space approximation, with a shear zone
that extends to the model boundaries (300 km in width); (2) a wide shear zone
model (70 km in width); and (3) a narrow shear zone model (10 km in width).
Earthquakes are simulated with a fault plane that slips without friction at the
desired time step and is centered above the shear zone, extending to a depth of 15
km and running the length of the mesh. Far-field plate velocity boundary conditions
are enforced at the model edges so that stress on the fault evolves naturally. A
Coulomb-type failure criterion based on the average shear stress on the fault is
set such that the earthquake cycle is ~250 years. The models are run until a
limit cycle is reached and transient stresses have decayed away. We focus on the
maximum changes in the stress field during the earthquake cycle by examining
stresses before and immediately after each earthquake. In addition to comparisons
of the separate components of the stress tensor we present results in the form
of maximum compressive stress orientations, plunge angles of the principal stress
axes, and beach ball diagrams that facilitate visualizing the full tensor. Stresses
are concentrated in the upper crust where it overlies the finite width viscoelastic
shear zone, which causes the plunge angles of the principal stress axes to rotate
from Andersonian orientations of 90° and 0° to angles that approach 45° in the
lower crust. Our results suggest that an examination of stress orientations in the
upper and middle crust from borehole breakouts and focal mechanisms may provide
insight as to the distribution of strain in the lower crust and may eventually allow us
to distinguish between localized and distributed deformation models for the lower

crust in active strike-slip zones.

1. Introduction

The relationship between stress measurements in the
upper crust and earthquake faults is poorly understood.
Extrapolating from laboratory measurements of rock
fracture mechanics to fault mechanics has proven to be
difficult, and in the case of the San Andreas Fault in
California, the two often appear incommensurate. Fur-
ther, and not unrelated, a current debate in tectono-
physics concerns the distribution of strain in the lower
crust beneath continental strike-slip faults. While var-
ious lines of evidence have been used to suggest that
deformation in the lower crust is broadly distributed
about the San Andreas Fault, an unequivocal data set
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has yet to be found that rules out the possibility of
highly localized strain in the deep crust. In this pa-
per, we address both of these topics using finite element
models of crustal stress near a strike-slip fault overlying
a variable-width viscoelastic shear zone.

The primary observations that motivate this work
are stress orientations in the crust. Throughout much
of California, the maximum compressive stress (MCS),
as determined from earthquake focal mechanisms and
borehole breakouts, is nearly perpendicular to the San
Andreas Fault (SAF) [Zoback et al., 1987; Mount and
Suppe, 1992; Hardebeck and Hauksson, 1999]. On a
more local level, the MCS has also been observed to
be nearly perpendicular to faults that experienced ma-
jor earthquakes [Zoback and Beroza, 1993; Hauksson,
1994]. Classical models of faulting and static earth-
quake mechanics cannot explain these observations. An-
derson’s [1951] theory of fau'ting, which is based on the
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Navier-Coulomb friction law, predicts that prior to an
earthquake the orientation of the MCS should be in
the range of 30°-45° with respect to the fault, corre-
sponding to fault pore pressures that range from zero
to the magnitude of the least compressive stress. Modi-
fying this simple analysis by accounting for the smaller
amount of shear stress necessary to reactivate preexist-
ing fault structures, it can be shown that for a coefficient
of friction of 0.6, the absolute maximum angle between
the MCS and fault approaches 60° as the ratio of the
maximum compressive stress to the minimum compres-
sive stress approaches infinity [Sibson and Xie, 1998].
The orientation of the MCS in California would thus
make thrust faulting seem more likely on the SAF than
strike slip. Yet the history of seismicity in California
over the last 150 years shows that > 90% of the mo-
ment released has been pure strike slip [Bakun, 1999;
FEllsworth, 1990]. Further, while there has been success
with modeling some types of fault movements (e.g., af-
terslip, stick-slip, creep) using more modern “rate and
state” friction laws, the orientation of major strike-slip
faults in California with respect to principal stresses is
still difficult to explain.

The apparent misorientation of stress with respect to
major faults can be described as an observation in need
of an explanation. On the other hand, current ideas
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about the distribution of strain in the lower crust are
examples of conjecture in need of discriminating obser-
vations. In other words, even less is known about the
nature of the deformation that takes place below the
seismogenic zone. Very few earthquakes nucleate be-
low depths of 15-20 km in California, but the relative
motion of the faults must be accommodated in some
aseismic fashion below this depth in the lithosphere.
Hints as to the characteristics of this motion come from
deformation recorded at the surface, often in the form
of postseismic strain. To model these observations, two
archetypal approaches have been widely used and their
relative merits debated. In the first conceptual model,
continental faults cut the entire lithosphere, with some
form of continuous slip occurring on the fault below the
seismogenic zone [Savage and Burford, 1970; Thatcher,
1983]. In the second, continental faults cut only to the
seismogenic depth, and ductile deformation accommo-
dates intraplate strain below the fault in a broadly dis-
tributed manner [Nur and Mavko, 1974; Prescott and
Nur, 1981; Thatcher, 1983]. The results from these
models are then compared to geodetic data, or alter-
natively, geodetic data are used to find an acceptable
model using an inverse method. These approaches have
proved to be very useful in California [e.g., Thatcher,
1983; Lisowski et al., 1991]. However, Savage [1990]

Plate 1. The finite element mesh for case 2, the wide shear zone model. Shown are contours of
shear stress in the vertical plane (0,,) immediately following an earthquake, as evidenced by the
concentration of stress in the shear zone beneath the fault and the relative lack of stress on the
fault itself. Also shown is the accumulated displacement at the steady state solution, multiplied
by a factor of 100. The pink lines indicate the cross section plane at which the solution is used
for the all of the rest of the figures (hence, our modeling is 2.5-D). The viscoelastic shear zone
in this case is 70 km wide and is centered beneath the fault. The velcro fault elements run the
entire length of the mesh. Constant velocity boundary conditions are imposed at the mesh edges,

parallel to the fault.
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pointed out that conclusions drawn from these models
are entirely ambiguous with regards to the mechanism
for postseismic strain, and he showed that the two ap-
proaches can give equivalent (indistinguishable) results
at the surface for models with faults of infinite length.

Another data set that may prove useful in this debate
comes from a recently developed method for examining
the stress regime near faults that makes use of the effect
of the Earth’s surface on stress orientations [ Bokelmann
and Beroza, 2000]. Like the studies of the maximum
compressive stress orientation, this method uses earth-
quake focal mechanisms to infer stress. However, the
stress-free boundary condition at the Earth’s surface,
where shear stresses in the horizontal plane must be
zero, is also used as a guide to understand the orien-
tation of the stress tensor. The plunge angles for the
pressure, null, and tension (P, B, and T) axes, deter-
mined from focal mechanisms, are examined, and it is
found that their orientations are aligned with the prin-
cipal stresses near the free surface, one of which must be
perpendicular and the other two coplanar with the hor-
izontal plane. Additionally, Bokelmann and Beroza use
a proxy for the horizontal shear stress derived from the
off-diagonal elements of the moment tensor and show
that this varies from the lowest values at the free sur-
face to a maximum at a depth of 5 to 9 km and then
to lower values again at depths greater than this. They
interpret this observation as an indication of a nearly
traction-free surface in the lower crust due to a weak
zone below that.

All of these data, along with previously used mod-
eling techniques, have guided the development of our
models. The majority of computational models of crustal
deformation due to major strike slip faults in the past
have been either analytical and focused on surface de-
formation and velocity/strain fields [Nur and Mavko,
1974; Thatcher, 1983; Savage and Prescott, 1978; Co-
hen, 1982; Savage, 1990; Pollitz and Sacks, 1992] or
numerical and focused on particular components of the
stress tensor within a cross section of the crust [Lyzenga
et al., 1991; Verdonck and Furlong, 1992]. Both types
of models are two-dimensional (2-D) and assume an in-
finitely long fault, as well as one of the previously men-
tioned mechanisms for relaxation of the crust beneath
the brittle-ductile transition zone. Our goal has been
to build on these models while keeping the overall con-
ceptual ideas as simple as possible. Like the previous
numerical models, we focus on the evolution of stress in
time near a periodically slipping fault. We use a 3-D
finite element method but maintain a 2-D approxima-
tion by considering a fault that is much longer than
its depth. Material models are linear elastic and linear
viscoelastic, and the lower crustal shear zone is purpose-
fully made without geometric complexity. Unlike previ-
ous models, however, we examine the effects of ductile
flow being broadly distributed beneath strike-slip faults
versus being highly localized by prescribing viscoelastic
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shear zones of various widths. The primary result here
is that the orientation of the principal stresses in the
upper crust may give some clues as to the style of de-
formation in the lower crust.

2. Methods

2.1. Model Description

The finite element mesh used for the present study
represents a domain 300 km in width, 400 km in length,
and 50 km deep, and consists of over 7000 elements
(Plate 1). To model the fault, the mesh is split length-
wise at the center to a depth of 16 km, and the element
faces on either side of the cut are defined as contact
elements (described in section 2.2). Directly beneath
the fault, a linear viscoelastic shear zone is prescribed
from a depth of 15 to 50 km. One result of this ge-
ometry is that the fault tip, or bottom of the fault, is
beneath the elastic-viscoelastic transition, which allows
for diffusion of the large coseismic stresses concentrated
there, rather than a buildup from one earthquake to the
next. In order to model the effects of strain localization
in the lower crust the viscoelastic shear zone was varied
in width for each of the three models presented here:
300 km (half-space approximation), 70 km (wide shear
zone), and 10 km (narrow shear zone). Plate 1 shows
the wide shear zone mesh (case 2).

The general purpose, commercial 3-D finite element
package Spectrum™, developed by Centric Engineering
Systems, Inc. (recently acquired by Ansys, Inc.), was
used to model repeating earthquakes on a strike-slip
fault. As we used linear material models, standard finite
element techniques were sufficient for the solution [see,
e. g., Hughes, 1987; Zienkiewicz and Taylor, 1991]. The
exception to this is at the fault plane itself, where it
was necessary to develop a special contact element and
a fault failure mechanism.

2.2. Fault Characteristics

In general, finite element contact problems, a portion
of the boundaries of two contacting bodies are defined
as the contact surfaces and are monitored for poten-
tial interaction. In our case, the contacting bodies are
the two sides of the fault, which become one continuous
body at a depth of 16 km (i.e., at 15 km and above,
nodes are defined as part of contact surfaces for either
side of the fault, and at 16 km and below, the two halves
of the mesh share their nodes and are therefore contin-
uous). Conventionally, one of the surfaces is defined as
the master contact surface, and the other as the slave
contact surface. Contact is determined by the penetra-
tion of the master surface by any of the nodes on the
slave surface. Once penetration is detected, constraints
are enforced at the contacting slave nodes (generally by
a penalty or augmented Lagrangian method) and this
effectively creates the desired type of surface-surface in-
teraction: free-slip (penetration constraint only), no-
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slip (penetration and sliding constraints), or slip with
some type of friction law (penetration and modulated
sliding constraints) (for a review of static contact theory
in the finite element method, see Zhong and Mackerle
[1992]).

In our models we required a fault (the contact sur-
faces) to be in free-slip mode during earthquakes and
no-slip mode during the interseismic period and, addi-
tionally, a way for the solver to decide when to switch
from one mode to the other via a failure criterion.
The result was coined the “velcro” element, essentially
a combination free-slip/no-slip element with a simple
boolean flag to determine which constraints to enforce
at any given time step. The velcro element also uses a
“both sides master” or standard two-pass formulation,
such that the penalty constraints are enforced identi-
cally on both surfaces. This is necessary in order to
achieve results that are symmetric about the fault.

To set the constraint flag to one mode or the other, an
approximation of the average shear stress on the fault is
considered. During the interseismic period the penalty
method is used to constrain the slave nodes to prevent
both penetration and slip tangential to the surface. The
penalty method can be thought of as constraining a
nodal point by means of a spring, the spring constant
of which is the penalty factor. As the penalty factor
is increased, the constraint is enforced more accurately,
but it is never enforced perfectly. The small displace-
ments of the nodes in the penalized direction (of the
order of 107% m for the models presented here) multi-
plied by the penalty factor can be thought of as a force
or traction on those nodes or contact surface. The por-
tion of the force that is tangential to the fault surface
can then be considered as a proxy for the shear stress
on the fault for the purposes of a Coulomb-like failure
criterion [e.g., Ju and Taylor, 1988]. The average of
these tangential forces is monitored at each time step,
and once the average exceeds a predetermined thresh-
old value, the flag is switched from no-slip to free-slip
for one time step. Modeling the fault in this manner
leads to almost complete stress drop (zero shear stress
on the fault) for each earthquake.

The fault failure criterion was chosen such that an
earthquake repeat time of roughly 250 years was achieved
once the model had reached its limit cycle (discussed in
section 3.1), which is of the same order as estimates
for the repeat time for great earthquakes on the San
Andreas Fault. Since the failure criterion is based on
a proxy for the average shear stress, the actual thresh-
old value is meaningless; however, the threshold corre-
sponds to the fault failing when the average shear stress
on the fault is ~13 MPa. Alternatively, an algorithm
could have been used that would cause the fault to fail
with a specific repeat time (e.g., 250 years), though this
would preclude the model from developing a natural
limit cycle.
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2.3. Model Inputs

We solve the linear momentum equation in time as
a quasi-static problem and subject to the model inputs
of material models (constitutive laws), boundary condi-
tions, and a fault failure criterion. Inertial effects and
the dynamics of fault rupture are ignored, as are grav-
itational (body) forces. The model consists of linear
elastic and linear viscoelastic elements, with material
parameters E (the Young’s modulus) and v (the Pois-
son’s ratio) defined as 75 GPa and 0.25, respectively,
for the entire mesh, and n (the Newtonian viscosity)
defined as 10'° Pas from a depth of 21 to 50 km within
the shear zone only. A rough viscoelastic “transition
zone” is defined between the elastic upper crust and
the low-viscosity shear zone, such that n = 102° Pas be-
tween the depths of 15 and 18 km, and = 3.16x10'°
Pas between the depths of 18 and 21 km. We found
that without such a transition zone the solution near
the fault was unstable, leading to convergence prob-
lems. Additionally, this is a more physically reasonable
rheological model for the brittle-ductile transition zone,
though still very simple. The viscosity in the lower part
of the shear zone corresponds to a Maxwell relaxation
time of 7 = n/E = 4.23 years. We ran models with
higher and lower values for the viscosity but found that
as long as 7 was at least an order of magnitude less
than the earthquake repeat time (~250 years), the so-
lutions were indistinguishable in the time steps imme-
diately before and after the slip event time step itself.
Changing the shear zone viscosity only changes the rate
at which the upper crust is reloaded by the relaxing
lower crust during the postseismic period, since for all
viscosities considered (10'® Pas < n < 10%° Pas, cor-
responding to 0.423 years < 7 < 42.3 years), T is such
that the shear zone will be completely (or very nearly)
relaxed before each slip event. Additionally, we model
slip events such that they occur in time increments 2
orders of magnitude smaller than 7, and thus all mod-
els are behaving elastically for that time step. As we
are primarily concerned with the results at these time
steps for the present study, we show results only for the
vertical viscosity structure described above.

A constant velocity boundary condition is enforced on
each of the two mesh faces parallel to the fault, for a to-
tal of 3.2 cm/yr of fault parallel displacement, which is
comparable to the San Andreas Fault in northern Cali-
fornia [Lisowski et al., 1991]. The remaining boundaries
(top, bottom, and ends) are defined as zero traction or
free surfaces. The only other input to the model is the
fault failure criterion (discussed in section 2.2).

2.4. Model Resolution

Element dimensions vary as a function of distance
from the fault, where the gradients of displacement
and stress are steepest. As we are using eight-node,
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Figure 1. Displacement versus time for four surface
nodes showing the development toward the limit cycle.
The nodes are 150, 35, 5, and 0 km from the fault. The
time before the first earthquake is not shown. The node
at the fault shows stick-slip behavior, while the node at
the boundary reflects the constant velocity boundary
condition. A long-period transient can be seen that
affects the amount of slip and amount of time between
earthquakes for roughly the first 6000 years, after which
the model settles into a regular cycle.

linear hexahedral elements (with eight interior Gaus-
sian integration points), it is crucial to concentrate
elements in the regions where the solution is chang-
ing rapidly (in space and in time) in order to resolve
those gradients. Using a mesh generator created by the
MacNeal-Schwendler Corporation, MSC/PATRAN, we
developed a mesh with elements that are 1.5 km by 1.25
km in the down dip (2) and fault perpendicular (z) di-
rections at the fault and elements that are 3.75 km by
38.4 km at the mesh boundary, with a smooth transi-
tion between the two regions. After performing several
tests (see Appendix A), we felt confident that elements
of this size would resolve the stress gradients near the
fault sufficiently to comment on the applicable data.
Along the strike of the fault (the y direction), the so-
lution changes very little; in fact, for all practical pur-
poses, the formulation here is a 2.5-D model, and we
present the bulk of our results as cross sections through
the center of the mesh (Plate 1). At the mesh bound-
aries where the fault ends, however, edge effects dom-
inate the solution. Therefore we concentrate elements
in that region so as to leave the center of the mesh un-
contaminated by these errors at the ends of the mesh.
This is achieved by defining elements that are 15 km in
length at the edges and that smoothly grow to 45 km in
length at the center. Examining the contours of fault
parallel shear stress in Plate 1, we can see that inside of
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four elements from this boundary the solution is almost
unchanging in the y direction.

Just as it is necessary to increase the mesh resolu-
tion near the fault, it is important to increase the time
resolution immediately following a slip event (the post-
seismic period) for similar reasons. If the time incre-
ment chosen is too large, it is possible to underestimate
the amount of strain energy that is transferred from
the viscoelastic lower crust to the elastic upper crust
and thereby to underestimate the loading of the fault
early in the earthquake cycle. This is a result of the
finite element solver making a linear approximation of
the exponential relaxation of the Maxwell solid over the
time step. Therefore it is necessary for the time incre-
ment, At, to be much less than 7. However, once sev-
eral relaxation times have passed and the lower crust is
relaxed, reloading of the fault reflects the constant ve-
locity boundary conditions only and is therefore linear
in time. During this interseismic period it is computa-
tionally expensive and unnecessary to use such a small
time increment. For this reason, we forced the solver to
take very small time increments during the postseismic
period (At = 0.01 years) and then allowed the time in-
crements to slowly increase to 10.0 years over the next
40 model years (almost 10 relaxation times) for each
earthquake cycle.

3. Results

3.1. Surface Displacements and Velocities

The models were run until both earthquake repeat
times and shear stress magnitudes were roughly the
same for each earthquake cycle. This limit cycle is
reached once the transient effects due to the initial, un-
stressed condition of the viscoelastic material have had
sufficient time to decay away. Larger viscoelastic shear
zones require more time to reach the limit cycle than
smaller shear zones. Figure 1 shows the displacement of
four surface nodes at 0, 5, 35, and 150 km from the fault
versus time for the half-space approximation model.
The initial quiescent period, when stress is building up
to the first earthquake, is not shown. The displacement
curves indicate three zones of surface deformation: the
node at the boundary has a constant velocity (reflect-
ing the boundary condition enforced there); the node
on the fault shows the stair-stepping pattern associated
with its stick-slip behavior; and the nodes in between
these two extremes show both coseismic and postseis-
mic deformation effects. This case took the longest to
reach the limit cycle, as evidenced by the long-period
transient that affects both the coseismic displacement
and the earthquake repeat time for roughly 6000 model
years, starting at the onset of slip events (Figure 1).
This is not unlike the behavior seen by Lyzenga et al.
[1991], and is a reflection of the time required for diffu-
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Figure 2. Velocity profiles at the surface for various
times in a mature earthquake cycle. Distance from the
fault is shown normalized by the depth of the fault, H;
velocity is normalized by the far-field velocity, V; and
time is normalized by the earthquake repeat time, T'.

sive stress propagation throughout the viscoelastic do-
main.

The half-space approximation model that we present
here is so named because of its similarity to analytic
models of strike-slip faulting in an elastic layer over a
viscoelastic half-space [Nur and Mavko, 1974; Savage
and Prescott, 1978; Savage, 1990]. As an example of
the type of results achieved with such models, in Figure
2 we show the surface velocity as a function of distance
from the fault at various times in a mature earthquake
cycle for our half-space approximation model. Except
that it represents a mature fault zone, or limit cycle,
the velocity field is similar to analytical results [e.g.,
Savage, 1990, Figure 2], and we therefore borrow the
notation of those models: z is the distance from the
fault, H is the fault depth, v is the local velocity, V'
is the far field velocity, and T is the earthquake repeat
time. Holding other parameters constant, we find that
the maximum postseismic velocity is inversely propor-
tional to the Maxwell viscosity and to the width of the
lower crustal shear zone. The overall shape of the ve-
locity curves and the distance at which the maximum
velocity is seen is dependent only on the depth of the
fault. Thus a given velocity field can be reproduced
with any number of shear zone width and viscosity
structure combinations, rendering geodetic data unable
to distinguish among such models. This result is simi-
lar to the ambiguity pointed out by Savage [1990] and
Zatman [2000], in that the velocity profile at the surface
is unrelated and decoupled from the velocity profile be-
low the seismogenic layer for models with infinitely long
faults. For this reason, we concentrate the bulk of this
paper instead on modeled deviatoric stresses.
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3.2. Shear Stresses Before and After
Earthquakes

Plates 2 and 3 show contours of deviatoric shear stress
through cross sections in the middle of the mesh for the
three cases. For the o, plot, all three cases exhibit the
same stress magnitudes on the fault. Before the earth-
quake the deviatoric shear stress decreases from well
over 25 MPa at the base of the fault to < 7.5 MPa at
the surface. After the earthquake, shear stress is close
to 0 MPa for the upper 13.5 km of the fault. Shear
stress does not drop to exactly zero at the base of the
fault due to the inaccuracies of the finite element ap-
proximation (see Appendix A). The viscoelastic shear
zone beneath the fault is completely relaxed (059 = 0
MPa) just before the earthquake and reacts elastically
immediately after the earthquake. This gives rise to
a stress concentration at the fault tip, with values of
0zy >20 MPa. In the elastic upper crust away from the
fault the shear stress is relatively constant with depth,
with values of 15-20 MPa above the shear zone in all
three cases, and 2.5-5.0 MPa far from the shear zone
in the finite width shear zone models (cases 2 and 3).
A small concentration of shear stress can be seen in
the finite width shear zone models just above the “cor-
ners” of the viscoelastic shear zone (especially in case
2), which is the result of the arbitrarily sharp material
model transition at the shear zone boundary.

Basal shear stress (oy,, Plate 3) is concentrated at
the interface between the two material models near the
fault. It is equal and opposite in sign on either side of
the fault, reflecting the equal and opposite deformation.
The magnitude of the basal shear stress is of the same
order as that of the fault parallel shear stress in the
same region. Away from the fault tip, oy, is negligible.

3.3. Normal Stresses

Since only fault-parallel motion is enforced in our
model, 0, and oy, are at least an order of magnitude
larger than the other components of the stress tensor.
Further, outside of a 5 km radius of the fault tip, o4y
is the only significant component. Therefore, when the
principal stresses are examined, one finds the maximum
compressive stress oriented at close to 45° to the fault
everywhere in the mesh and dipping strongly near the
fault tip. In California, observations from boreholes and
focal mechanisms show that the maximum compressive
stress is nearly perpendicular to the San Andreas Fault,
especially at distances greater than a few tens of kilo-
meters [Zoback et al., 1987; Mount and Suppe, 1992;
Hardebeck and Hauksson, 1999]. Anderson faulting the-
ory predicts that the orientation of the maximum com-
pressive stress would range from 30° to 45°, depending
on the amount of pore pressure, or perhaps as high as
60° for preexisting faults [Sibson and Xie, 1998]. Given
these ranges for the orientation of the maximum com-
pressive stress in observation and in theory, we super-
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Plate 2. Cross sections of vertical shear stress contours (0g,) for the three model cases: Case
1 is the half-space approximation, case 2 is the wide shear zone (70 km), and case 3 is the
narrow shear zone. Preearthquake and postearthquake time steps are shown. The scale is in
megapascals. Concentration of shear stress above the shear zone is evident in the two finite
width shear zone models. Note that the vertical lines parallel to the fault line are a result of the
mesh discretization and visualization but do not signify a change in material parameters within

the elastic upper crust.

posed a simple normal stress calculation onto our shear
stress calculations.

Normal stresses for the three cases were calculated
by imposing a displacement that is normal to the fault
at the edges of the mesh that are parallel to the fault
(the same edges on which the constant velocity bound-
ary conditions are imposed for the shear stress calcu-
lations). The amount of displacement was chosen such
that the resultant normal stress on the fault would be 20
MPa for the half-space approximation model, and then
this value was used for all three cases. We chose 20

MPa because this is the minimum addition that would
start to bring the orientation of the maximum compres-
sive stress in our calculations in line with observations
in California. We will discuss the effect of choosing a
larger displacement in section 3.4. The depth-averaged
shear stress on the fault at failure is ~13 MPa, so that
if the lithostatic pressure were considered, the Coulomb
friction coefficient would be < 0.10, putting our model
in the “weak fault” category. However, this is a di-
rect result of a fault that experiences a complete stress
drop with each earthquake and is not affected by the
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Plate 3. Cross sections of shear stress in the horizontal plane (o,;) contours for the three
model cases and the preearthquake and postearthquake time steps. The scale is in megapascals.
Concentration of horizontal shear is at the fault tip, on the boundary between the elastic and
viscoelastic material models, and is near zero elsewhere.

amount or manner in which the stress normal to the
fault is calculated. The amount of normal stress added
(within this order of magnitude), then, is arbitrary, but
choosing a smaller or larger displacement in our calcu-
lation would only change the magnitude of the normal
stress, and not the overall pattern of stress distribution.
Therefore, for all other case 1 results presented below,
the post hoc 20-MPa normal stress has been added,
independent of time. In addition to the enforced dis-
placement the top and bottom boundaries have a zero
displacement boundary condition in the vertical (z) di-
rection. This causes the mesh to bulge slightly at the
ends due to the Poisson effect but leads to a constant
normal stress across the cross section of the half-space
approximation model (Plate 4, case 1).

Cases 2 and 3 do not have a constant normal stress
in space due to the finite width shear zones (Plate 4,
cases 2 and 3). We assume that the normal stresses
remain relatively constant throughout the strike-slip
earthquake cycle and therefore have no time depen-
dence. We also assume that the timescale over which
these normal stresses are relevant is much longer than
the duration of the earthquake cycle and several orders
of magnitude larger than the Maxwell relaxation time
for the viscoelastic shear zone. We therefore define the
normal stress in the shear zone to be zero, which is
equivalent to assuming that all normal stresses would
be completely relaxed over the evolution of the strike-
slip shear zone. This results in a concentration of nor-
mal stress above the shear zones in cases 2 and 3 that
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is similar to the concentration seen in the shear stress
contours in Plate 3 for the same cases. These time-
independent stress calculations are superposed on our
shear stress calculations for cases 2 and 3 for all results
reported below.

3.4. Maximum Compressive Stress
Orientations in the Upper Crust

Figure 3 shows the orientation of the maximum com-
pressive stress (MCS) with respect to the fault plane
as a function of distance from the fault for the three
cases. The superposition of the normal stress calcula-
tion causes the orientation of the MCS to lie between
60° and 90° with respect to the fault plane, as opposed
to the uniform 45° that would be seen without the ad-
ditional normal stress. This range of values is similar to
the range of values seen for the orientation of the MCS
with respect to the San Andreas Fault throughout Cali-
fornia, lending some justification to our chosen amount
of normal stress added.

The orientation of the MCS for both depths is roughly
the same for all three models at the fault: between 70°
and 77° before the earthquake and very close to 90°
after the earthquake. These high angles drop off pre-
cipitously away from the fault zone, indicative of the
higher shear stresses in the nearby crust. In the case of
the half-space approximation model (case 1) the MCS
is oriented at ~63° with respect to the fault plane at
all points away from the fault due to the uniform level
of shear and normal stress there. Cases 2 and 3 both

Case 1

b
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exhibit a local minimum in the MCS at the point in the
elastic crust that overlies the boundary of the viscoelas-
tic shear zone: 35 km from the fault for case 2, and 5
km from the fault for case 3 (more clearly seen in the
preearthquake trace for case 3). A local maximum in
the MCS can also be seen for these cases at ~60 km
from the fault for case 2 and ~25 km from the fault for
case 3, though the locations of the maxima are less cer-
tain due to the decrease in mesh resolution at distances
> 35 km from the fault (see Plate 1). The MCS then
decreases to ~61° at the mesh boundary for case 2 and
~65° for case 3.

Were we to have chosen a larger normal stress to be
added to these models, the effect would be to translate
all of the curves toward higher angles of orientation with
respect to the fault and toward smaller angles had we
chosen less normal stress. Figure 4 shows the orienta-
tion of the maximum compressive stress for the wide
shear zone model before an earthquake for three differ-
ent amounts of normal stress added: 20 MPa (which
is shown in Figure 3), 40 MPa and 60 MPa. Like
Figure 3, 0 and 7.5 km depths are shown with solid
and dashed lines, respectively, but in Figure 4, only the
preearthquake results are shown. As the normal stress
component begins to dominate the MCS, the curves
tend more toward an orientation perpendicular to the
fault and the range of values decreases. For example,
with 20 MPa of normal stress added, the orientations
range from 60° to 75°, whereas with 60 MPa added the
MCS ranges from 75° to 85°, with 5° less variation.

Plate 4. Cross sections of normal stress contours for the three model cases. The compression
causes negative normal stresses, so, blue relates to high stress and red relates to zero stress. The
scale is in megapascals. The concentration of stresses over the finite width shear zones is clearly
evident, and the half-space approximation model shows a constant normal stress.
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Case 1: Half-space approximation
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Figure 3. Maximum compressive stress orientation rel-
ative to the fault at 0.5 km (solid lines) and 7.5 km
(dashed lines) depth versus distance from the fault for
the three model cases. Narrow lines show the orienta-
tions immediately after an earthquake, and the heavier
lines show the same immediately before an earthquake.
Orientations at the fault are 90° to the fault after the
earthquake and around 70° to 75° before the earth-
quake. Away from the fault, orientations are closer to
60° with some variations near the shear zone boundaries
in cases 2 and 3.
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Figure 4. Maximum compressive stress orientation at
0.5 km (solid lines) and 7.5 km (dashed lines) depth
versus distance from the fault for three possible normal
stress calculations in the wide shear zone model. All
results are shown for the preearthquake time step only.
Choosing different amounts of compression moves the
orientation angles up or down but does not change the
overall variation as a function of distance from the fault.

The limit would be reached with an infinite amount of
normal stress added, and the MCS would be 90° to the
fault everywhere.

3.5. Evolution of the Maximum Compressive
Stress Orientations

As an example of the time-dependent behavior of the
stresses in our calculations, we show in Figure 5 the
orientation of the maximum compressive stress at the
fault for the half-space approximation model (case 1)
as a function of time normalized by the length of the
earthquake cycle. The low-viscosity shear zone causes
the stress regime on the fault to change rapidly following
an earthquake. This is especially true for the 7.5 km
depth time history, where the maximum compressive
stress angle goes from 90° with respect to the fault plane
immediately after an earthquake to almost 75° after
only 20% of the earthquake repeat time. Results for the
other two cases are similar, and while the narrow shear
zone model (case 3) reloads the fault more slowly in the
early part of the cycle and nearly linearly in time, the
beginning and ending orientations are nearly identical
to case 1.

3.6. Plunge Angles of the Principal Stress Axes

In Figure 6 we show the plunge angles for the three
principal stress axes as a function of distance from the
fault for each of the three cases and at three depths.
All plots are shown for the time step immediately be-
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Figure 5. Maximum compressive stress orientation at
0.5 km (solid lines) and 7.5 km (dashed lines) depth
versus time for nodes at the fault. The majority of
the postseismic effect takes place in the first 20% of the
earthquake cycle, or after ~10 Maxwell relaxation times
(r = 4.23 years, T = 250 years).

fore a slip event. The plunge is measured as the angle
between the given axis and its projection into the hori-
zontal plane and therefore varies from 0° to 90°.

As with the orientation of the maximum compressive
stress, the three model cases yield similar results at the
fault itself, while variations in the models can be seen
in the surrounding crust. The maximum compressive
stress axis remains in the horizontal plane for much of
the model domain, with the exception occurring at the
fault near the shear zone boundary, where it reaches
values of roughly 20° at 14.5 km. The minimum and
intermediate compressive stress axes roughly mirror one
another about the 45° plunge angle for each of the three
cases. At the fault, the minimum and intermediate axes
go from ~30° and ~60°, respectively, near the surface,
to ~45° for both at midcrustal depths, to ~30° and
~45°, respectively, in the lower crust. The fact that
these axes are not oriented parallel and perpendicular
to the free surface at the 0.5 km depth will be discussed
in section 4.2.

The half-space approximation model shows no varia-
tion in the plunge angle of the three axes away from the
fault, with the intermediate axis at 90° and the other
two at 0°. This orientation is what would be expected in
a classic Andersonian tectonic regime. In the two finite
width shear zone models, however, the intermediate and
minimum compressive stress axes exhibit local maxima,
or minima above the shear zone lateral boundary. This
feature is most noticeable in the 14.5 km depth figures,
where these two axes go from their Andersonian orien-
tation in the far field, to plunge angles of roughly 30°
and 60° above the shear zone boundary, and back to
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an Andersonian orientation above the shear zone. This
is the result of the concentration of shear and normal
stresses at the shear zone corners seen in Plates 2 and
4.

3.7. Visualization of the Stress Tensor in the
Seismogenic Zone

As we have seen in section 3.6, the deviatoric stress
tensor is not oriented in a classical Andersonian way in
the lower crust. The presence and relative magnitude of
the horizontal shear stress, as well as the concentration
of shear and normal stress near the shear zone corners,
cause the principal axes to rotate about horizontal axes,
making an examination of the maximum compressive
stress plotted in the horizontal plane alone (as in section
3.4) an inadequate way of describing the stress state. As
a partial solution to this problem, we present here the
stress tensor plotted as so-called “beach ball” diagrams,
using a method for plotting moment tensors.

In order to plot the stress tensor as a beach ball, we
decompose the full stress tensor (o) and plot only what
is equivalent to the major double couple component of
the moment tensor, represented by the tensor [after Jost
and Herrmann, 1989]

(1)

where o3 is the most negative eigenvalue (most com-
pressive principal stress) of o; o} is the deviatoric part
of the eigenvalue, given by

o3 (V3vs — vVava),

(2)

. 1
o, = 0;— —(0’1 +0’2+0’3);

3

v; = (Viz, Viy, Viz) is the eigenvector of o associated with
o; which forms the dyadic tensor by

2

Viz VigViy VizViz
2
Vivi = | VigViy Vi,  Vigliz | . 3)
2
VigViz ViyVliz Uiy

The dyadic tensor describes a dipole in the direction of
the given eigenvector.

This representation of the stress tensor allows us to
visualize the orientations of all three of the principal
stresses. Figure 7 shows an illustration of the stress ten-
sor beach ball. The most and least compressive princi-
pal stress axes are oriented at 45° to the nodal planes,
and the intermediate principal axis lies along the in-
tersection of the nodal planes. The orientation of the
maximum compressive stress with respect to the fault
plane (6) is also printed above the beach ball.

The danger with this representation is the association
of beach balls with focal mechanisms for earthquakes.
Nodal planes for focal mechanisms are the two possible
slipping planes, whereas for the stress tensor they are
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Case 1: Half-space approximation

Case 2: Wide shear zone
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Case 3: Narrow shear zone
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Figure 6. Plunge angles of the principal stress axes. Each column shows the results from
each of the models, and the three rows are for depths of 0.5, 7.5, and 14.5 km. The maximum
compressive stress is shown in the solid line, the intermediate in the sparsely dashed line, and the
minimum in the densely dashed line. Results are plotted for the preearthquake time step only.
The plunge angles are aligned in Andersonian fashion at the Earth’s surface, with two principal
axes in the horizontal plane and one perpendicular to it (deviation from this orientation near the
fault is discussed in section 4.2 and Figure 11). The interface between the elastic upper crust
and viscoelastic lower crust also acts as a near free surface, resulting in Andersonian alignment

above the shear zones at 14.5 km depth.

the planes of maximum shear stress. The P and T
axes of focal mechanisms can therefore be quite different
from the maximum and minimum compressive stress
axes. If brittle fracture in the crust occurs on planes
between 30° and 60° (and perhaps > 60°) from the
maximum compressive stress direction, we would expect
there to be as much as 15° difference between the nodal
planes presented here and potential fault planes.
Figures 8-10 show the stress tensor beach balls for
the three cases before and after the earthquake. The
plots are of a cross section covering the elastic thick-
ness of the upper crust (0-15 km) and the uppermost,
3-km-thick layer of the viscoelastic shear zone and from

the fault out to a lateral distance of 90 km, beyond
which the results change little. A beach ball is plotted
at each node, with some nodes near the fault omitted
where they are closer together and results are redun-
dant. Even with these omissions, there is a greater
density of beach balls near the fault due to the concen-
tration of elements there. Though Figures 8-10 are cross
sections, the stress tensors are plotted in their conven-
tional map view orientation (i.e., they were rotated 90°
about the z axis) to facilitate viewing multiple depths
simultaneously.

Much like in sections 3.1-3.6, the three plots are qual-
itatively the same at the fault. The upper two thirds of
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fault plane

least compressive
stress orientation

45

most compressive
stress orientation

Figure 7. An example of the shear stress beach ball.
The most compressive stress axis bisects the unshaded
portion of the beach ball, the least compressive axis
bisects the shaded portion, and the intermediate axis
lies along the intersection of the two nodal planes. The
number printed above the beach ball is the orientation
of the MCS with respect to the fault.

the fault show orientations of the maximum compressive
stress at 66°—77° with respect to the fault before the
earthquake and ~90° after the earthquake. The lower
portion of the fault has orientations of 46° —58° both
before and after the earthquake. From the beach balls
we can also see the plunge of the maximum compres-
sive stress, as well as the orientation of the other two
principal stress axes. In both time snap shots, there is
a rotation of the beach balls from the top to the bottom
of the fault that can be seen most clearly in the orien-
tation of the intermediate principal stress. The axis is
nearly vertical at the top of the fault and rotates toward
the horizontal plane and pointing nearly along strike at
the bottom of the fault. This rotation is especially clear
in the postearthquake plots, where one of the planes of
maximum shear is nearly coplanar with the horizontal
plane near the bottom of the fault.

Away from the fault, stress orientations are simpler,
with the intermediate principal stress near vertical for
most of the crust. The exception to this is in the elastic
crust above the shear zone boundary for cases 2 and 3.
Near 35 km from the fault in Figure 9, the lateral extent
of the viscoelastic shear zone, the intermediate stress
axis again rotates toward the horizontal plane but in
the opposite sense in comparison to the rotation at the
base of the fault. The result is similar, though, in that
one of the planes of maximum shear is rotated toward a
horizontal orientation. It is interesting to note that the
fact that the rotation is in the opposite sense in compar-
ison to that at the fault is not possible to discern from
the plunge angles shown in section 3.6, since there is
no measurement of whether the principal axes lie above
or below the horizontal plane. The state of stress in
the remaining crust is described reasonably well with
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the orientation of the maximum principal compressive
stress, as it lies within the horizontal plane.

4. Discussion
4.1. Stress Results

In our numerical models of crustal stress the three
controlling factors for the concentration of shear stress
in the vertical plane (0gy) at any given point are its
depth, its proximity to the shear zone, and its proxim-
ity to the fault. The constant velocity boundary con-
ditions lead to a state of simple shear, so that the ver-
tically averaged shear stress is the same for all depth
profiles. Since the viscoelastic shear zone cannot sus-
tain any shear stress over the duration of the earthquake
cycle, the elastic crust above the shear zone must ac-
commodate the same total shear stress over its depth of
15 km as the elastic crust away from the shear zone ac-
commodates over its depth of 50 km. As a result of this,
models with a finite width shear zone see a dramatic in-
crease in shear stress in the upper crust near the fault
when compared to the far field, as seen in Plate 2. The
slight increase in shear stress midway between the fault
and the boundary seen in the preearthquake time step
of case 1 is most likely due to the use of a low-viscosity
Maxwell solid for the lower crust and its tendency to
broaden the zone of high deformation within the crust,
as pointed out by Roy [1998].

While the effect of the finite width shear zone on the
upper crust is clear, the actual width chosen does not
significantly affect the state of stress on the fault. Dur-
ing the initial buildup of shear stress to the first earth-
quake the fault is loaded equally at all depths. Once a
regular earthquake cycle is established, however, stress
becomes concentrated at the base of the fault as a re-
sult of the loading and unloading of the shear zone be-
neath the fault. The shear stress at the base of the fault
does not drop completely to zero during the earthquake
in our solution because of the high stress gradient at
the fault tip. The extreme gradient is approximated
linearly and becomes “smeared” over two to three fi-
nite elements, thereby artificially increasing the amount
of shear stress on the lower fault element faces imme-
diately after an earthquake (see Appendix A). Above
these elements, however, the shear stress on the fault
is significantly lower than in the crust more than 15-20
km (or one fault depth) away from the fault at all times.
This “stress trough” due to the fault has been observed
in other models as well [Lyzenga et al., 1991; Verdonck
and Furlong, 1992].

The shear stress in the horizontal plane (o) is close
to zero everywhere but within a radius of 5 km from the
fault tip, where it is of the same order of magnitude as
the shear stress in the vertical plane. Each earthquake
causes a shearing between the elastic upper crust and
viscoelastic lower crust near the fault tip, which creates
the “basal” shear stress in this zone. This component
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Figure 8. Shear stress beach balls for case 1, the half-space approximation model, (a) before
and (b) after an earthquake. Plot only covers one half of the mesh and only out to a distance of
90 km from the fault. Numbers above each beach ball refer to the orientation of the maximum

compressive stress with respect to the fault.

The rotation of the principal stress axes away

from their Andersonian orientation is clear near the fault. Also note the 45° orientation of the
maximum compressive stress in the viscoelastic substrate (below 15 km), a result of the inability
of the shear zone to retain normal stresses. When viewing the shear stress beach balls in Figures
8-10 and 13, keep in mind that while looking at & cross section through the mesh, the beach balls
are plotted as though being viewed from map view.
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Figure 9. Shear stress beach balls for case 2, the wide shear zone model, (a) before and (b)
after an earthquake. The rotation of the stress axes near the viscoelastic shear zone boundary

(35 km from the fault) is clear between 10 and 15 km depth. See Figure 8 for further notes.

of the total shear stress affects such a narrow zone near
the fault that the results are indifferent to the width
of the shear zone. In the beach ball diagrams (Figures
8-10) it can be seen that the basal shear stress causes
one of the maximum shear stress planes to rotate to-
ward a horizontal orientation in this region, while the

component of shear stress parallel to the fault rotates
the other plane of maximum shear stress toward a ver-
tical orientation (coplanar with the fault plane). This
is the result of the two components of shear stress being
roughly equal in magnitude at the base of the fault, and
moreover, it indicates that they are both significantly
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Figure 10. Shear stress beach balls for case 3, the narrow shear zone model, (a) before and (b)
after an earthquake. See Figures 8 and 9 for notes.

greater in magnitude than the 20-MPa normal stress.
This region of the mesh is where our solution is least
accurate with regards to stress levels (see Appendix A).
However, the inaccuracy of the solution here is only
of major concern for the immediately postearthquake
snapshots, since the solution has had enough time to
re-equilibrate by the preearthquake snapshot.

The relative importance of the normal component of
the stress tensor as it relates to the San Andreas Fault
in California warrants some discussion here. Though
very little strain normal to the fault has been observed
geodetically [e.g., Argus and Gordon, 1991; Kelson et
al., 1992; Savage and Simpson, 1998], there is ample
geologic and seismic evidence for the San Andreas Fault
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system being a transpressive plate boundary [Namson
and Davis, 1988; Bloch et al., 1993; Jones et al., 1994].
The stress data in California do not appear unreason-
able, then, with respect to such observations, so long as
a suitable explanation can be found for the San Andreas
Fault’s dominantly strike-slip behavior.

Our calculation of normal stress (Plate 4) shows a
concentration of stress above the finite width shear
zones in cases 2 and 3 due to the effective thinning of
the elastic crust, similar to the concentration of shear
stress in the same region discussed above. The result
of this is that the maximum compressive stress shows
little change in its orientation from the far field, where
stress levels are overall lower, to the higher stress areas
over the viscoelastic shear zone. The reason for this
is that while the elevated shear stress above the shear
zone tends to rotate the maximum compressive stress
toward lower angles, the elevated normal stress tends
to rotate the MCS in the opposite direction. Therefore
the finite width shear zone models have similar MCS
results as the half-space approximation model.

However, our calculation of normal stress ignores any
possible contribution from the shear zone, simply as-
suming that the timescale over which the normal stress
develops is much greater than the Maxwell relaxation
time of the viscoelastic solid. There are, of course,
other possibilities. For example, as a first-order approx-

imation of fault-normal stress, we first tried a constant
amount of stress to be added to the o,; component of

the stress tensor at all nodes in the mesh. The assump-
tion of a constant normal stress is reasonable in the half-
space approximation model, since the lower viscoelastic
portion of the model cannot maintain any stress. In this
case, it is equivalent to the assumption that the crustal
block is under a constant load, normal to the fault, sim-
ilar to the calculation discussed in section 3.3. In the
finite width shear zone models, however, this is most
likely a poor approximation. Although the shear zone
is defined to be viscoelastic in its shear modulus only,
and not in bulk modulus, it will relieve normal stresses
through shearing nonetheless by essentially “squeezing”
out the ends and bottom of the mesh. Were this not
the case, and the viscoelastic material were not allowed
to escape the shear zone channel, then the shear zone
would behave elastically in compression. The result of
this would be our first-order approximation of the fault-
normal stress, i.e., constant at all points throughout
the domain. As an example of the consequences of this
simplified assumption for the normal stress, we show in
Figure 11 the orientation of the MCS as a function of
distance from the fault for the wide shear zone model,
where it can be seen that the MCS rotates to much
higher angles (75°—80°) away from the shear zone than
in the previously presented results (i.e., Figure 3).
Interestingly, this result has some similarity to the
data described by Hardebeck and Hauksson [1999], where
in profiles across the SAF in southern California, they
found that the MCS rotates from high angles (80°—90°)
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Figure 11. Maximum compressive stress orientation
at 0.5 km (solid line) and 7.5 km (dashed line) versus
distance from the fault for the wide shear zone case
with a constant normal stress added, post hoc, to the
shear stress calculation. Only the preearthquake results
are shown. In this case, the orientation of the MCS is
closer to being perpendicular to the fault in the far field,
while similar to the orientations seen in Figure 3 near
the fault.

far from the SAF to angles closer to the expected brit-
tle fracture orientation (30°—60°) in close proximity to
the SAF. The interpretation of these data is the source
of some controversy [Scholz, 2000]. If rock fracture ex-
periments are a reasonable analog for fault behavior,
then the maximum compressive stress (MCS) should
make an angle of ~30° with respect to the fault plane
(based on a static coefficient of friction of 0.6 [Byer-
lee, 1978]). Elevated pore pressures or inherently weak
materials within the fault zone can rotate the MCS to
angles to 45° [Byerlee, 1990; Rice, 1992], and preex-
isting planes of weakness can further rotate the MCS
to 60° [Sibson and Xie, 1998]. However, an MCS at
nearly 90° to slipping strike-slip fault planes [Zoback
and Beroza, 1993; Hauksson, 1994] and zones of ro-
tated maximum compressive stresses much wider than
the fault zone (of the order of tens of kilometers [Hard-
ebeck and Hauksson, 1999]) are difficult to explain with
these models. Though the boundary conditions for the
results shown in Figure 11 are somewhat awkward to
justify, the possibility that finite width shear zones may
provide an alternative explanation for wide zones of
near fault MCS rotation is intriguing and merits fur-
ther investigation. Additionally, stresses in California
are inferred from boreholes or seismic data, which gen-
erally have resolving power in either the upper or mid
to lower crust, respectively. If stress orientations are
a function of depth, as seen with our model, then this
might explain discrepancies between the two data sets
(e.g., Hardebeck and Hauksson [1999] versus Mount and
Suppe [1992)).
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4.2. Plunge Angles of Principal Axes:
Possible Key?

The rotation of the principal stress axes seen in Fig-
ures 6 and 8-10 implies that a finite width shear zone
may leave some signature in the stress orientations in
the upper crust. Specifically, the concentration of stress
above the shear zone and at its corners cause the stress
tensor to rotate away from its Andersonian orientation.
This rotation is minimal in the maximum compressive
stress axis but approaches 45° for the minimum and in-
termediate principal axes. In both of the finite width
shear zone models this rotation can be seen most clearly
at depths near the elastic-viscoelastic boundary. Be-
cause of the small Maxwell relaxation time of the shear
zone in relation to the earthquake repeat time, this
boundary approximates a traction-free boundary con-
dition. Therefore shear stresses in the horizontal plane
must approach zero, and the principal stress axes should
align with the horizontal plane in an Andersonian fash-
ion. This is seen in the finite width shear zone models
at distances of 10 to 30 km away from the fault for
the wide shear zone model and 5 km from the fault
for the narrow shear zone model, corresponding to the
widths of the shear zones in each model. Beyond those
distances, however, we see the rotation of the principal
axes such that the plunge angles of the intermediate and
minimum compressive axes are 35°—40° and 50°—55°,
respectively.

The Earth’s surface is also a traction free boundary
and should therefore align the principal stress axes with
the horizontal plane. In Figure 6 it can be seen that
at the 0.5 km depth this is not the case. However,
in Figure 12 we show the total horizontal shear stress

(4/02, +02,) as a function of depth at the fault before

and after an earthquake. Using this measure, we can
see that the upper surface of our mesh is approaching
that of a traction-free surface. In other words, though
the plunge angles indicate that the minimum and in-
termediate principal stress axes are not aligned with
the free surface, in fact, the magnitudes of these prin-
cipal stresses are approaching zero, and therefore their
orientations are somewhat meaningless. Figure 12 also
shows that before the earthquake, the viscoelastic shear
zone (below 15 km depth) is completely relaxed, and af-
ter the earthquake, shear stress is concentrated at the
elastic-viscoelastic boundary, where it reaches its max-
imum value.

In their study of northern California faults, Bokel-
mann and Beroza [2000] found a similar maximum in
their proxy for the horizontal shear stress derived from
moment tensor solutions, though at depths of 5 to 9
km. In our models this depth is controlled by the tran-
sition from the elastic to viscoelastic material models.
Were we to smooth this transition further, such that it
took place more gradually from 10 to 20 km (instead of
15 to 18 km), we would see the horizontal shear stress
reach a higher values at shallower depths. Beneath this
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maximum, Bokelmann and Beroza [2000] see a gradual
decrease in the horizontal shear stress and interpret this
as the transition from a brittle upper crust to a weaker
lower crust. While this general result agrees well with
our modeling results, it does not favor any one of the
case geometries examined over another. However, it
does indicate that if work of this kind could be extended
to examine changes horizontal shear stress as a function
of lateral distance from the fault, it may be possible to
detect some signature of a finite width shear zone.

4.3. Modeling Considerations and Limitations

It should be pointed out that the models used here
are as simple as possible while still effectively testing hy-
potheses about the lower crust. Certainly, the material
models, shear zone geometries, and fault failure mech-
anisms presented here do not represent the real earth,
yet the models exhibit certain features relevant to the
earthquake cycle and observations of stress in Califor-
nia. Some issues related to our modeling simplifications
are as follows:

1. The material models used here are all linear, and
the velocity boundary conditions imposed at the do-
main edges are constant in time. However, the loading
of the fault is nonlinear in time once the cycling of earth-
quakes is introduced. To clarify this point, in Figure 13
we show the stress tensor beach balls for the half-space
approximation model before and after the first earth-
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Figure 12. Horizontal shear stress (y/02, + 02,) as a

function of depth for the wide shear zone model. Re-
sults are taken from stresses on the fault, with the
preearthquake time step shown in the thick line, and
the postearthquake time step shown in the thin line.
Horizontal shear stress approaches zero at the the free
surface (0 km depth) and a maximum at 15 km depth.
When the shear zone is relaxed (the preearthquake
trace), horizontal shear stress approaches zero below 15
km depth. After the earthquake the horizontal shear
stress is maximized in the shear zone.
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Figure 13. Shear stress beach balls for the first earthquake in the half-space approximation
model (a) before and (b) after the earthquake. Before the first earthquake, stresses are uniform

throughout the mesh, indicating simple shear.

quake to occur in model time. This plot is substan-
tially different from Figure 8, which is the same model
at a later time in the calculation. Before the first earth-
quake the crust is in simple shear, and normal and shear
stresses at all depths are constant, as seen by the identi-
cal beach balls and maximum compressive stress orien-

tations in Figure 13a. In the postearthquake snapshot,
while Figures 8b and 13b are similar, the concentration
of stress at the base of the fault is more noticeable for
the mature fault zone. As more earthquake cycles oc-
cur, the concentration of shear stress increases in the
viscoelastic shear zone, causing it to load the overly-
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ing fault rapidly and nonlinearly immediately following
an earthquake. The most noticeable effect of using a
non-Newtonian power law flow rheology would likely
be an even greater localization of stresses at the base
of the fault, as was seen with similar modeling done by
Lyzenga et al. [1991].

2. A finite width shear zone concentrates stresses
above the shear zone. The geometry for the shear zone
used here was a simple “channel” of viscoelastic ele-
ments, uniform in thickness and width. However, the
concentration of stress above the channel is a general re-
sult, and altering the geometry of the shear zone would
mainly affect the magnitude of the stresses in the upper
crust. For example, a shear zone that is narrow at the
top and wider with depth would lead to a more gradual
increase in the stress magnitudes from the model edge
to the fault, rather than the abrupt change seen at the
shear zone boundary here.

3. The fault failure criterion used here is based on
a threshold average shear stress on the fault, and once
the threshold is exceeded, the entire fault slips without
friction. These simplifications lead to earthquakes with
complete stress drops and large stress concentrations at
the base of the fault. Our model is therefore in the weak
fault category for the San Andreas, in which stress drops
associated with large events (~10 MPa) are assumed to
relieve all shear stress on the fault. This model is sup-
ported by the previously discussed stress observations
in California as well as arguments from heat flow data
[Lachenbruch and Sass, 1980], and we feel it is there-
fore reasonable. However, our model failure mechanism
does not allow for postseismic slip, creep, or nonprinci-
pal (i.e., smaller) events. These mechanisms for strain
release may be justifiably neglected in the present study
though, since the overwhelming majority of seismic mo-
ment release on the San Andreas has been from princi-
pal, strike-slip events [e.g., Bakun, 1999].

5. Conclusions

Using finite element models of an elastic crust over-
lying a viscoelastic shear zone, we have shown the ef-
fects of varying the width of the shear zone on stress
orientations in the elastic portion of the crust. Three
model cases were considered: a half-space approxima-
tion model, with a shear zone that is essentially infinite
in its width; a wide shear zone model of 70 km width;
and a narrow shear zone model of 10 km width. While
the effects of the width of the shear zone on the orienta-
tion of the maximum compressive stresses were remark-
ably small, there were significant differences among the
three models when the plunge angles of the principal
stress axes were examined. Most notably, the inter-
mediate and minimum compressive stress axes dipped
away from their Andersonian orientations at the Earth’s
surface (of either 90° or 0°) to plunge angles approach-
ing 45° near the elastic-viscoelastic boundary depth
and near the finite width shear zone boundaries. This
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change in plunge angle is the result of stress concen-
trations above the finite width viscoelastic shear zone,
and it implies that stress orientations near faults can
change as a function of lateral distance from the fault,
and perhaps more importantly, there can be large vari-
ations with depth.

The effect of a finite width shear zone with a Maxwell
relaxation time that is much less than the earthquake
repeat time is to attenuate the elastic thickness of the
crust near the fault. Since the depth averaged shear
and normal stresses must be equal over any depth pro-
file along the width of the mesh, the thinner elastic
crust over the shear zone must then accommodate a
greater concentration of stress over its depth than does
the thicker elastic crust away from the shear zone. The
distribution of this stress in the upper elastic crust is
also governed by the slow concentration of stress at the
elastic-viscoelastic boundary over many earthquake cy-
cles and would not be observed in models that only
consider a single event. Additionally, the concentration
of shear stress at the base of the fault in both the hor-
izontal and vertical planes leads to large variations in
the orientation of the stress tensor with depth at the
fault.

While our original hypothesis in this study was that
finite width shear zones may help to explain maximum
compressive stresses that are almost perpendicular to
major strike-slip faults in California, we found that un-
less the shear zone is somehow constrained so that it
acts elastically in compression but viscoelastically in
shear, this hypothesis was incorrect. However, the ro-
tations of the principal stress axes near the shear zone
borders that we observed in the upper crust may prove
useful in determining the nature of the deformation in
the lower crust, especially given recent advances in the
acquisition and interpretation of stress data from earth-
quake focal mechanisms and moment tensors.

Appendix A: Element Resolution
at the Fault Tip

Solving for stresses near the tip of the fault plane
poses a difficult problem in the finite element method.
While it is not strictly a singularity, the concentration of
stress at the transition from a freely slipping surface to
a continuum is very large. As this region of the mesh is
of great interest, we ran some simple tests to determine
the capability of our method to resolve those stresses.

In our model, earthquakes are simulated by allow-
ing the two fault surfaces to slide freely for one time
step. The symmetric boundary conditions mean that
each node on one side of the fault will move an equal
and opposite distance with respect to its starting point
as each corresponding node on the opposite side of the
fault. It also means that nodes directly below the fault
(in the lower half of the z = 0 plane) will remain in their
original positions for the entire model run. While this
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lower continuation of the fault plane does not experience
any deformation, it does defuse stress viscoelastically.
However, in the time step immediately following an
earthquake the viscoelastic material is responding elas-
tically, since the earthquake takes place on a timescale
much smaller than the Maxwell relaxation time. It is
this time step, and the transition on this plane from the
moving upper fault surface to the immobile lower “fault
zone,” that we focus on here.

Our model resolution experiment was designed to ex-
plore these issues without any additional complications.
As an introduction to our approach, consider the follow-
ing thought experiment: If a shearing motion is enforced
on one face of a cube while the opposite face is held
motionless (zero displacement), the cube will exhibit
a constant shear stress throughout its domain. This
situation is analogous to the models presented in this
paper during the interseismic period, where the moving
face of the cube is like one of the moving edges of our
model domain, and the zero displacement face is like
the fault plane within the model domain. In order for
our thought experiment to be analogous to our mod-
els during an earthquake, instead of holding the entire
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“fault plane” face of the cube fixed, we fix only one half
of the face and define the other half of the face as a free
or zero traction surface. In this way, the fixed half of
the face is like the lower continuation of the fault in our
model, and the upper half is like the freely slipping fault
plane. Our resolution experiment, then, is to determine
the effect of element size on the solution near the fault
plane.

Plate 5 shows an example of the mesh that we used for
these tests. The basic, low-resolution mesh, case 1, is a
cube of elements, 8x8x8 (elements are 1x1x1). Cases 2
and 3 are meshes of 16x8x16 elements (shown, with ele-
ments that are %xlx%) and 32x8x32 elements (elements
are ixlxi), respectively. Because of our 2-D approxi-
mation for the models presented in this paper, we were
not concerned with the resolution in the along strike
direction, and we therefore only altered the number of
elements in the downdip direction and fault perpendic-
ular direction. Also shown in Plate 5 are contours of
shear stress, with the boundary between the held and
free portions of the cube’s fault plane face clearly seen.

To compare the different resolutions, we examine the
two components of shear stress relevant to our models

Plate 5. The mesh used for the resolution test. The dimensions of the mesh are 8x8x8, and this
example has element dimensions of %xlx%, making the number of elements 16x8x16. Shown are

contours of shear stress () for the resolution test problem. Also a red line shows the sampled

nodes for the stress profile shown in Figure Al.
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Figure A1l. Stress profiles across the fault plane face
of the cube used in the resolution test. The thin lines
show 04y, and thick lines show o,,. The three different
cases are shown with solid (32x32 case), dashed (16x16
case), and dotted (8x8 case) lines. While the 32x32 case
certainly has the best resolution, it is clear that when
the solution is examined more than two elements away
from the fixed-face/free-face interface the three cases
agree well.

for a profile across the cube. The profile shows the
stresses at nodes along a line from the bottom of the
fault face to the top, centered along the fault, as shown
by the red line in Plate 5. In Figure A1l the component
of shear stress that is parallel to the cube face (ogy,
thin lines) and the component of shear stress in the
horizontal plane (oy,, thick lines) are shown for the
three resolution tests: 8x8x8, 16x8x16, and 32x8x32.

There are two important features in Figure Al. First,
we expect 0y, to be zero on the fault (abcissa dis-
tance > 4). This is numerically realized about two to
three elements away from the fault tip. Second, for the
constrained portion of the graph (<4) the two lower-
resolution models agree well with the higher-resolution
model at one element away from the fault tip (i.e., at
z = 3 for case 1, and at z = 3.5 for case 2). The
mesh used for our fault model most closely resembles
the 16x8x16 mesh in terms of resolving power. For
these reasons, we feel confident that the mesh presented
in this paper can sufficiently resolve the stresses within
two elements of the fault tip.
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