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6. Discussion and Conclusions
The Kolmogorov-Smirnov test can be used to compare the 
patch-averaged GSDs produced by the clustering algorithms to 
test whether they come from the same underlying distribution.

The statistical test suggests that there is a tendency for the 
channel to form a �nite number of patch types that become 
distributed throughout the reach.

Clustering techniques can use information about spatial location 
and GSD characteristics to produce maps of bed surface patches 
objectively, which can then be used to inform assessments of 
habitat, sediment transport, and channel morphology.

Figure 6.1. Number of statistically-di�erent 
patch types resulting from the application of 
the two-sample Kolmogorov-Smirnov test to all 
pairs of clusters resulting from each clustering 
technique for a given value of k. Tests were 
performed at an α = 0.01 signi�cance level.
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1. Introduction
Gravel-bed rivers often display an organization of 
distinct textural patches of similar grain size and 
sorting. Patchiness is a primary control on bed 
mobility, hydrodynamic roughness, and the 
distribution of benthic habitat, but despite its 
importance, we lack answers to the fundamental 
questions like:

What is a patch?
and
How many patches (or patch types) should emerge on 

a river bed?
Objective delineation of bed surface patches from 
high-resolution spatial grain size data is an 
important step towards answering these questions 
and advancing our understanding of the 
morphodynamics of gravel-bed rivers.

2. Testing dataset
A. 1 x 1 mm bed surface DEM from a near-�eld 
scale �ume experiment using a 2-45 mm 
gravel mixture [Nelson et al., 2010].

B. Extract the boundaries of grains from 
hillshade image using automated procedure 
to generate a dataset of grain centroids (x,y) 
and diameters (D). 

Figure 2.2. Example application of the methodology of Graham et al 
[2005] to a portion of the 1x1 mm DEM image [from Nelson et al., 2010].

Figure 2.1. Example of the 1x1 mm DEM showing the strong sorting that 
developed over a bar.

Figure 2.3. Maps of median grain size D50, geometric mean grain size Dg, 
and geometric standard deviation σ, resulting from the automated image 
analysis. Scale bars for D50 and Dg are in mm.

C. The (x,y,D) data are used to generate a 
spatial grid of m grain size distributions: 

where the distributions are discretized into 
N size classes such that the ith grain size 
distribution is represented as: 

where fi,k is the cumulative percent of the 
kth grain size class in fi.

This grid of grain size distributions can now 
be fed into clustering algorithms to 
divide the bed into patches. 
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3. Naive partitional clustering with k-means
Basic idea: Given a set of grain size distributions (GSDs), 
assign each one to a patch type based solely upon its 
distribution characteristics, then map the result.

Although this is the simplest possible method of 
delineating patches based on GSDs, the  method tends 
to produce a quasi-random scattering of di�erent patch 
types, suggesting spatial information must be included 
during classi�cation.

 (a) Input data  (b) Seed point selection  (c) Iteration 2 

 (d) Iteration 3 (e) Final clustering

Fig. 4. Illustration of K-means algorithm. (a) Two-dimensional input data with three clusters; (b) three seed points selected as cluster centers and initial assignment of the
data points to clusters; (c) and (d) intermediate iterations updating cluster labels and their centers; (e) �nal clustering obtained by K-means algorithm at convergence.

How it works:
Iteratively assign distributions fi to clusters c

α
, with 

cluster mean μ
α
, until the sum of squared errors over 

all k clusters is minimized:

Figure 3.2. Map of k-means clustered GSDs corresponding to CDFs in Figure 3.1, for k=4. 
Color corresponds to patch-averaged D50, as shown in the color bar.

Figure 3.1. Cumulative distribution 
functions (CDFs) classi�ed by k-means, 
with k=4. Colors correspond to the map in 
Figure 3.2.

[from Jain, 2009]
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4. Spatially-constrained agglomerative clustering

Here, the similarity dij between clusters i and j (with grain size distributions fi and fj) is computed with 
the Minkowski distance of order p:

Basic idea: Initially assign each grain size distribution to its own cluster. Then merge the two adjacent 
clusters that are the most similar, and repeat until all distributions comprise the same cluster. This 
creates a hierarchy of clusters, which can be thresholded to produce a partition of the bed.
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Here, if p = 1 the distance is the “Manhattan” distance while if p = 2 it is the Euclidean distance. In this 
exercise we use p = 1.

A     B     C     D    E     F     G
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How it works:
1. Assign each GSD to its own cluster.
2. Calculate the similarity between clusters dij
3. Merge the two adjacent (8-neighborhood) GSDs 
that are the most similar to form a new cluster. The 
GSD of the new cluster is the area-weighted 
average of its components.
4. Repeat steps 2-3 until all GSDs are in the same 
cluster.
This produces a dendrogram showing the 
hierarchy of merges, which is thresholded to 
produce a �nal partitioning of the data.Figure 4.1. Dendrogram from spatially constrained 

agglomerative clustering. Individual GSDs lie on the bottom 
axis, the heights of branches signify the order of clustering.

Figure 4.2. Patch maps from agglomerative clustering for k=2 to 40 total clusters. Patch color corresponds to the patch-averaged D50 shown on the color scale.

D50 (mm)

Figure 1.1. Hand-drawn patch map of Wildcat Creek, CA [drawn by 
Laurel Collins and presented in Dietrich et al., 2005].

[Figure adapted from Jain, 2009]

5. Spectral clustering using Normalized Cuts
Basic idea: Each GSD is a node on a graph, connected to other 
GSDs with edges with weights that correspond to the 
similarity between the GSDs. Edges with low weights are 
selectively cut so that within-cluster similarity is maximized 
while between-cluster similarity is minimized.

Method:
1. Compute the edge similarity weights wij.  We use a Gaussian:

W
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Figure 5.1. Similarity matrix W computed with 
r = 10 nodes, σ1 = 0.008, σ2 = 10, and p = 1 
(Manhattan distance between GSDs).
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Figure 5.2. Bed discretization from Ncut using the 
similarity matrix shown in Fig. 5.1, for k=2 to 11 
patches. Patch color corresponds to 
patch-averaged D50 as shown in the color scale.

How it works:
Normalized Cuts [Shi and Malik, 2000] minimizes the cost 
function:

In the weighted graph on the right, the blue line segments 
the graph into A (red nodes) and B (black nodes). cut(A,B) is 
the sum of the dashed (removed) edges, assoc(A,V) is the sum 
of the red edges and dashed edges, and assoc(B,V) is the sum 
of the black edges and dashed edges.

where Xi are the (x,y) coordinates of the ith node, r is a threshold Euclidean distance beyond 
which similarity is forced to be zero, dijnorm is the Minkowski distance between grain size 
distributions normalized to scale between 0 and 1, and σ1 and σ2 are parameters that scale the 
relative importance of the di�erences between grain size distributions and the physical distance.
2. Summarize similarity in the matrices W and D, where W(i,j) = wij and D is a diagonal matrix with 
d on the diagonal where 
3. Solve (D - W)x = λDx for eigenvectors x with the smallest eigenvalues λ.
4. The eigenvector with the second-smallest eigenvalue is used to bipartition the graph by 
�nding a splitting point such that Ncut is minimized.
5. The segmented parts of the dataset are recursively partitioned until a prespeci�ed number of 
segments is achieved.
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