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Abstract

This 1:12,000-scale map shows an inventory of debris 
flows caused by rainfall during 1996 in a 94.4 km2 area of 
the southern Coast Range of Oregon. This map and associ-
ated digital data are part of a larger U.S. Geological Survey 
study of debris flows in the southern Coast Range. Available 
evidence indicates that the flows were triggered by a rain 
storm that occurred between November 17 and 19.  The closest 
rain gage in the Coast Range (Goodwin Peak) recorded 245 
mm during the storm. Maximum rainfall intensity during the 
storm was 13.2 mm/hr on November 18. Debris flows were 
photogrammetrically mapped from 1:12,000-scale aerial 
photographs flown in May 1997. The inventory is presented 
on imagery derived from LiDAR data acquired in 2008. We 
classified mapped debris flows into four categories based on 
the type of debris-flow activity: (1) discrete slide source areas, 
(2) predominantly erosion, (3) predominantly transport or 
mixed erosion and deposition, and (4) predominantly deposi-
tion. Locations of woody-debris jams are also shown on the 
map. The area encompassed by debris flows is 2.1 percent of 
the 94.4 km2 map area. 

Introduction

In the Coast Range of Oregon, nearly all drainage basins 
periodically generate debris flows (for example, see May and 
Gresswell, 2004). These flows often affect natural resources 

and roads and structures both within, and at the mouths of 
basins (Hofmeister, 2000; Squier and Harvey, 2000; Mills 
and Hinkle, 2001). During 1996, two major storms, one in 
February and one in November, produced widespread debris 
flows in the Coast Range. In the southern Coast Range, most 
debris-flow activity in 1996 was triggered by the November 
storm (Robison and others, 1999; Wiley, 2000). Two debris 
flows in November caused five fatalities (Mills and Hinkle, 
2001). Two additional storms affected southern Oregon in 
December 1996, and January, 1997, but the debris-flow effects 
from these storms were minimal in the southern Coast Range 
(Wiley, 2000). 

The Oregon State Highway 38 corridor through the 
southern Coast Range is one of the most hazardous debris-
flow areas in Oregon, yet much previous debris-flow map-
ping in the area was limited to point data along the highway 
(Hofmeister, 2000), which is not particularly well-suited for 
debris-flow process studies or as “ground truth” for predictive 
maps of debris-flow hazard. Work by the Oregon Department 
of Forestry following debris flows in 1996 was an exception to 
this statement (Robison and others, 1999). Work by Robison 
and others consisted of detailed field mapping of debris-flow 
source areas and effects on channels in two areas south of 
Scottsburg, Oregon. Griswold and Iverson (2007) used part 
of this mapping to estimate debris-flow travel distances and 
effects on debris fans using the debris-flow modeling program 
LAHARZ (Schilling, 1998; Iverson and others, 1998). 
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Our work expands on this previous work by providing 
detailed debris-flow mapping in a 94.4 square kilometer (km2) 
area along Highway 38 between Reedsport and Scottsburg 
(fig. 1 and map). Our mapping identifies debris-flow source 
areas, areas of predominantly erosion, transport or mixed ero-
sion and deposition, and areas of deposition. We used newly 
available (2009), high resolution (0.91 m cells (3 ft.)), airborne 
Light Detection And Ranging (LiDAR) data from the Oregon 
Department of Geology and Mineral Industries (DOGAMI) as 
the topographic base for our mapping. 

Setting

The map area is between Reedsport and Scottsburg, 
Oregon, and is transected by the Umpqua River and Highway 
38. Elevations in the map area range from about 2 m above sea 
level along the Umpqua River to about 490 m at the summit of 
Deer Head Point (see map). The area has a maritime climate 
with wet winters and dry summers. Average annual precipita-
tion ranges from about 1,520 to 2,540 mm (PRISM Climate 

Figure 1.  Index map showing the location of the map area with respect to the 
Reedsport and Deer Head Point 1:24,000-scale USGS topographic quadrangles.
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Group, 2006). The wet and relatively warm climate results in a 
coastal forest dominated by Douglas fir, western hemlock, red 
alder, and a variety of understory shrubs. Trees are harvested 
throughout the map area, usually by commercial clear-cut 
operations.

Tertiary marine sandstones and siltstones of the Tyee 
Formation (Niem and Niem, 1990; Walker and MacLeod, 
1991) underlie the area.  The drainage network is dense, 
with a dendritic pattern that has often been characterized as 
highly dissected (for example, Benda, 1990). Hillslopes are 
short, steep, and typically mantled by 0.5 to 3 m of colluvial 
soil (Dietrich and Dunne, 1978; Reneau and Dietrich, 1991; 
Montgomery and others, 2002). Debris flows typically 
mobilize from small slides in concave hillslope areas and 
increase in volume by erosion and entrainment of downslope 
channel sediment before depositing material in higher order 
drainage channels and on fans (Benda and Cundy, 1990). 
Woody debris is often incorporated into debris flows, and 
woody-debris jams often influence the locations of debris-flow 
deposition (Montgomery and others, 2003).  

Rainfall in November, 1996
Four rain gages were operating in the vicinity of the 

study area in 1996 (figs. 1 and 2). Three gages, Gardiner, 
North Bend, and Elkton, were located at National Weather 
Service (NWS) Cooperative Network stations, and the 
fourth, Goodwin Peak, was at a U.S. Forest Service Remote 
Automatic Weather Station (RAWS). The Gardiner and North 
Bend stations were along the Pacific coast at elevations of 9 m 
and 2 m, respectively. The Goodwin Peak gage was within the 
Coast Range at an elevation of 557 m. The Elkton gage was 
on the eastern (leeward) flank of the Coast Range at an elevation 
of 37 m. 

Cumulative rainfall in 1996 was greatest at Goodwin 
Peak (3,232 mm, fig. 2A) and lowest at Elkton (2,163 mm). 
Cumulative rainfall at Gardiner and North Bend was 2,418 mm 
and 2,182 mm, respectively. Seasonal antecedent rainfall from 
the beginning of the fall/winter wet season on October 1, 1996, 
to the start of the November 17–19 storm was 441 mm, 232 
mm, 256 mm, and 201 mm at Goodwin Peak, Gardiner, North 
Bend, and Elkton, respectively. With the exception of Elkton 
rainfall, all of these rainfall values exceed the antecedent rain-
fall threshold of 203 mm defined by Wiley (2000) as necessary 
for debris-flow occurrence in Oregon.

The November 17–19 storm was the result of an exten-
sive system of moist subtropical air that originated over the 
tropical Pacific and spread from south to north across Oregon 
(George Taylor, Oregon Climate Service, unpublished data, 
1997). More recent terms used to describe this type of weather 
system are “Pineapple Express” or “Atmospheric River” (for 
example, see Junker and others, 2009). Total rainfall during 
the 3-day storm was 245 mm, 254 mm, 231 mm, and 143 mm 
at Goodwin Peak, Gardiner, North Bend, and Elkton, respec-
tively. Hourly rainfall during the storm was collected at the 
Goodwin Peak and Elkton gages (fig. 2B). The storm had a 
mean intensity of 4.9 mm/hr for 47 hours at Goodwin Peak 
and 3.4 mm/hr for 39 hours at Elkton. Maximum rainfall 
intensity was almost two times greater at Goodwin Peak (13.2 
mm/hr for one hour on November 18) than at Elkton (7.4 
mm/hr for two hours on the 18th). Based on the comparable 
positions of the Goodwin Peak gage and the map area within 
the core of the Coast Range, rainfall within the map area was 
probably most similar to that at Goodwin Peak.

Map Description

Mapping Debris Flows

Initially, we mapped debris flows from 1:12,000-scale, 
color, stereo aerial photographs onto a topographic base map 
using a Kern PG–2 photogrammetric plotter (Pillmore, 1989). 
The PG–2 had 5×, 10×, and 20× zoom magnification capa-
bilities. The topographic base map used on the PG–2 was 
created by plotting digital versions of the Deer Head Point 
and Reedsport U.S. Geological Survey (USGS) 7.5-minute 
quadrangles at 1:12,000 scale. The aerial photographs were 
flown in May 1997. The 1:12,000 scale of the photography 
allowed us to accurately identify debris-flow features as small 
as about 1 m in clear-cut areas. For areas under trees, our 
ability to identify debris-flow features was highly variable and 
poorly constrained. Debris flows were mapped if their features 
were fresh, that is, they had a lighter tone than their surround-
ings (fig. 3). Many parts of the study area had dense tree cover 
making it difficult to see complete paths affected by debris 
flows. We extended mapped debris flows through these areas 
if we saw obvious evidence for debris flows in upstream and 
downstream locations. 

Table 1. Rain-gage station information
Gage name National Weather 

Service (NWS) ID
Latitude1 Longitude1 Elevation

(m)
Goodwin Peak 352545 43°55'41" 123°53'25" 557
Gardiner 353193 43°45'00" 124°07'00" 9
North Bend 356073 43°25'00" 124°15'00" 2
Elkton 352633 43°36'00" 123°35'00" 37

1 Latitude and longitude locations are approximate
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Figure 2.  Diagram showing A, cumulative precipitation during 1996 and 1997, and B, cumulative 
hourly rainfall during the November 17–19 rainstorm. See figure 1 for rain gage locations.
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Work by Brardinoni and others (2003) and Robison and 
others (1999) indicates that most (up to 85 percent and greater 
than 95 percent, respectively) landslides (or debris flows) 
may be missed by conventional aerial photographic inter-
pretation in mature forested areas of the Pacific Northwest. 
Conventional aerial photographic interpretation and mapping 
consists of landslide identification using a desktop stereoscope 
(typically with 3× to 8× magnification) and manual transfer of 
identified landslides to a topographic base map. Even though 
our photogrammetric methods utilized more sophisticated 
equipment with higher magnification, we acknowledge that 
fewer debris flows are shown on the map compared to the 
unknown actual number of flows that occurred in 1996. 

Subdivision of Debris Flows   
During mapping, debris flows were subdivided into 

discrete slide source areas, areas dominated by erosion, those 
dominated by transport or mixed erosion and deposition, and 
areas dominated by deposition. We follow Varnes (1978) 
terminology and define “slide” as a displaced mass where 
movement has occurred by shear displacement along one or 
more surfaces. Discrete slides were mapped where we could 
see or interpret both the upslope and downslope extent of fail-
ures. Areas mapped as discrete slides included both evacuated 
areas (scars) and deposits. The downslope extent of discrete 
slides could often be defined as the location where the width 
of the failure narrowed and became channelized. At the heads 
of many mapped debris flows, we observed a headscarp and 
downslope erosion, but no indicator of the downslope extent 
of failure. These areas were mapped as eroded areas with no 
discrete landslide source area. Eroded areas were devoid of 
vegetation, topographically concave, very light in color, and 
exhibited sharp tonal contrast compared to vegetated sur-
roundings (fig. 3). Areas dominated by deposition tended to 
have topographically convex or planar surface morphologies 
that were more jumbled (rougher) than eroded areas. Rem-
nants of in-situ vegetation (for example, standing trees) were 
sporadically present in some deposition areas. In areas mapped 
as transport zones or as areas of mixed erosion and deposi-
tion, pre-flow topographic surfaces were visible, or surfaces 
exhibited features suggestive of both erosion and deposition 
(described above). Woody-debris jams were mapped in loca-
tions where we observed topographically convex bumps in 
channels that contained large tree trunks. Sediment deposition 
was often located upstream from these jams.

Based on the prevalence of debris flows in the southern 
Coast Range in 1996 (Robinson and others, 1999; Hofmeister, 
2000; Squier and Harvey, 2000; Wiley, 2000), we infer that 
debris flows were responsible for creating the areas of erosion, 
transport, and deposition shown on the map. However, as 
debris flows and water-dominated flows (floods) can often 
occur together on the west coast of the United States (for 
example, Ellen and Wieczorek, 1988), it is possible that 
flooding also contributed to the formation of features in 
the mapped areas. Also, modification of mapped features 

by running water or additional debris flows between the 
November 1996 storm and the May 1997 acquisition of aerial 
photography is also possible. We could not account for these 
possibilities in our mapping. 

Once mapped, debris flows were digitized from the 
1:12,000-scale, quadrangle-based maps into the Environmental 
Systems Research Institute, Inc. (ESRI®) ArcGIS® and then 
transferred to a LiDAR-derived, shaded-relief base map. The 
LiDAR data were acquired in 2008 and became available to us 
in August 2009. The shaded-relief base map has 0.91 m (3.00 
ft) cells and is illuminated from an azimuth of 315 degrees 
and a vertical angle of 45 degrees. The process of transferring 
mapped debris flows to the LiDAR map was difficult because 
the topographic details visible in the LiDAR were often 
not visible in, or were different from, the more generalized 
topography onto which the debris flows were initially mapped. 
When we transferred the debris flows, we attempted to retain 
their original shapes and sizes as much as possible. In general, 
travel distance lengths were not affected during the transfer 
process, and debris flow widths were minimally affected. 
However, in many instances, the debris-flow polygons, 
particularly in steep channel areas, had to be moved laterally 
by about 25 m (about 2 mm at 1:12,000-scale) to properly fit 
the LiDAR topography. Steep channels were the typical areas 
where this was a problem. There, large portions of debris-
flow travel paths mapped onto the USGS quads often did not 
occupy channel bottoms on the LiDAR map, but rather were 
located entirely on side slopes of channels. In order to correct 
this situation, debris flows were moved laterally until they 
were positioned within channel bottoms on the LiDAR map.       

Field Checking

We did not systematically field check our mapping 
because most areas that were affected by debris flows in 1996 
were covered by vegetation in 2008 and 2009 when we did 
our mapping from aerial photographs. Based on the sporadic 
field observations that we did make, we found that it was dif-
ficult to differentiate 1996 scars and deposits from pre- and 
post-1996 scars and deposits from field observations alone. 
Additionally, we observed that many (most?) of our mapped 
debris flows from 1996 could not be identified using the 2008 
LiDAR data alone. This observation indicated that it would be 
difficult to use LiDAR alone, without any supplemental infor-
mation from aerial photographs, satellite images, or field work 
to map the relatively small, shallow debris flows that are com-
mon in heavily forested areas of the Pacific Northwest. This 
assertion is similar to that made by Burns and others (2010) in 
the northern Coast Range of Oregon.

Debris-Flow Polygons

The area encompassed by all types of debris-flow 
polygons (slide, erosion, transport, and deposition) was 2.0 
km2, which is 2.1 percent of the 94.4 km2 map area. For 
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the 155 discrete slide source areas mapped, the minimum, 
maximum, and mean sizes were 17 m2, 1,685 m2, and 370 
m2, respectively. Thus far, the map data have been used for 
evaluating predictions of debris-flow source areas (Baum and 
others, 2011), developing models for estimating debris-flow 
travel distances (Coe and others, 2011), and for estimating 
volumes of sediment eroded and entrained into debris flows 
for accurate predictions of debris-flow volumes expected 
in channels and at the mouths of drainage basins (Coe and 
Michael, 2009).

Digital Data

Digital data included with this map report include a 
polygon showing the extent of mapping, debris-flow polygons, 
woody-debris jam locations, and the bare-earth LiDAR data 
used for the base map. Data are available as ESRI® shape and 
grid files within a single zipped archive file. Debris-flow poly-
gon data are not intended for use at scales larger than 1:12,000 
(for example, 1:6,000). 

Image from U.S. Bureau of Land Management,
Coos Bay District Office, North Bend, Oreg.
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123°56’00”
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Figure 3.  Example of a 1:12,000-scale aerial photograph used for mapping.  Area covered by the photograph 
is shown on map.
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