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Solar radiation flux, irradiance, is a fundamental driver of almost all hydrological and biological processes. Ecolog-
ical models of these processes often require data at the watershed scale. GIS-based solar models that predict in-
solation at the watershed scale take topographic shading into account, but do not account for vegetative shading.
Mostmethods that quantify subcanopy insolation do so only at a single point. Further, subcanopymodel calibra-
tion requires significant field effort and knowledge of characteristics (species composition, leaf area index &
mean leaf angle for each species), and upscaling to watersheds is a significant source of uncertainty.
We propose an approach to modeling insolation that uses airborne LiDAR data to estimate canopy openness as a
Light Penetration Index (LPI). We couple LPI with the GRASS GIS r.sun solar model to produce the Subcanopy
Solar Radiation model (SSR). SSR accounts for both topographic shading and vegetative shading at a landscape
scale.
After calibrating the r.sun model to a weather station at our study site, we compare SSR model predictions to
black thermopile pyranometer field measurements and to hemispherical photographs using Gap Light Analyzer
software, a standardmethod for point estimation of subcanopy radiation. Both SSR and hemisphericalmodels ex-
hibit a similar linear relationship with pyranometer data, and themodels predict similar total solar radiation flux
across the range of canopy openness. This approach allows prediction of light regimes at watershed scales with
resolution that was previously possible only for local point measurements.

Published by Elsevier Inc.
1. Introduction

Variation in solar radiation is a fundamental control overmost phys-
ical, biogeochemical, and biological processes on Earth. Radiation flux
governs temperature, a major control over air and water movements
as well as biogeochemical cycling and physiological and ecological
rates. Solar radiation is also a key energy source for photo-autotrophs.
Where light is limiting, photo-autotrophs with adaptations for harvest-
ing sparse photon fluxes can still persist in terrestrial (Chazdon &
Pearcy, 1991; Pearcy, 1990) and aquatic (Falkowski & LaRoche, 2004;
Glazer, 1985; Hill, 1996) environments. The ecological importance of
light, even at low levels, requires that we measure it with high spatial
and temporal resolution. Despite its importance, few studies have quan-
tified variation in solar radiation below vegetation canopy across a
landscape at spatial and temporal resolutions relevant to individual or-
ganisms, microclimates, or ecological processes.

The fraction of solar radiation reaching the ground or water surface
is controlled by atmospheric conditions, topography, and vegetation.
ersity of California, Berkeley,
5346.
These factors have been assessedwith bothdirect and indirectmeasure-
ment methods. Direct methods use individual sensors or sensor arrays
to quantify radiation (e.g. total solar energy, heat, or photosynthetically
active radiation (PAR)). Sensors are placed under different types of veg-
etation at many locations to quantify spatial and temporal variability
over some time period. There is a high level of inherent microsite vari-
ability in direct subcanopymeasurements. Aggregating time or increas-
ing the number of instruments can reduce the uncertainty due to high
natural variability (Link, Marks, & Hardy, 2004). Results can be upscaled
using a vegetation distribution map (Julian, Stanley, & Doyle, 2008).

Indirect measurement methods characterize the canopy and topog-
raphy at a location, then model light transmission. A densiometer or
hemispherical photograph is used to quantify canopy and topography
in the hemisphere of sky directly above and around the observer. This
hemisphere is gridded into sky region (Anderson, 1964; Frazer,
Fournier, Trofymow, & Hall, 2001). These sky regions are then analyzed
using software, such as Gap Light Analyzer (GLA), to predict canopy
openness, and daily mean solar radiation (Frazer & Canham,1999). Sky
regions have been used to estimate red:far red ratio (Lakso, 1980), leaf
area index (Rich, 1990) and seasonal changes in canopy characteristics
(Archibold & Ripley, 2004). Solar radiation estimates from hemispheri-
cal photographs have been related to plant growth (Canham, 1988;
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Pearcy, 1983), flowering and fruit ripening (Lakso, 1980), leaf carbon
isotope ratios (Ehleringer, Field, Lin, & Kuo, 1986), and snow melt
(Hardy et al., 2004; Pomeroy et al., 2008; Reid, Essery, Rutter, & King,
2013).

While these direct and indirect methods quantify light environ-
ments, they have potential shortcomings. Under forest canopy, brief pe-
riods of direct insolation (sunflecks) can dominate daily and seasonal
solar radiation input (Chazdon & Pearcy, 1991). Sensors separated by
less than a meter can record a three-fold difference in photon flux den-
sity (Chazdon,Williams, & Field, 1988), and this local variabilitymay in-
troduce significant error when a limited number of measurements are
used to estimate solar radiation flux over a large scale. Temporally, it
may be difficult to upscale instantaneous (or daily averaged) values to
monthly or annual totals due to seasonal changes in sun position
(Canham, 1988) and leaf-emergence or leaf-fall (Hill, 1996). In addition,
daily physical conditions may limit sampling and analysis. For example,
hemispherical photographs are best taken in indirect light (full clouds
or dawn/dusk). Full sunlight can reduce canopy information on the
sensor (film or digital camera), distorting canopy openness estimates.
Methods applying Beer's Law require leaf area index, leaf angle
for each species and require an accurate species composition map
(Canham, 1988; Gendron,Messier, & Comeau, 1998).While this is a rea-
sonable approach in relatively homogenous forest stands, it is impracti-
cal in natural, heterogeneous systems, especially those with extensive
riparian areas where species diversity is high. These methods require
considerable ground effort to accurately characterize light environ-
ments at a high resolution across a landscape (Finlay, 2011).

Light modeling at the landscape scale requires Geographical Infor-
mation Systems (GIS) based solar models. GIS solar models operate on
digital elevationmodel (DEM) raster layers, allowing them to accurately
estimate insolation reduction due to slope and aspect and topographic
shading across watersheds (Dozier & Frew, 1990). ESRI's ArcGIS Solar
Analyst refined the technique by adapting the sky region technique
used in hemispherical photos for use with raster grids (Fu & Rich,
2000). R.sun introduced scaling methods to handle very large datasets
(Hofierka & Suri, 2002). While GIS models address orographic shading,
none are designed to account for vegetation. Until recently, spatially ex-
tensive measurements were not detailed enough to resolve vegetation
effects (Hudak, Evans, & Smith, 2009).

Airborne LiDAR (Light Detection AndRanging) can nowprovide crit-
ical structural detail on vegetation that we previously lacked (Slatton,
Carter, Shrestha, & Dietrich, 2007). LiDAR has been used to investigate
vegetation characteristics, including canopy height (Anderson et al.,
2006;Magnussen&Boudewyn, 1998;Nęsset, 1997). It has also been ap-
plied to leaf area index and above ground biomass (Boudreau et al.,
2008; Drake, Dubayah, Knox, Clark, & Blair, 2002; Hurtt et al., 2004;
Hyde et al., 2006; Lefsky et al., 1999;Næsset &Gobakken, 2008) and for-
est 3-dimensional structure (J. Anderson et al., 2006). Leaf-on and leaf-
off LiDAR has been assessed for both canopy height and fractional cano-
py cover in riparian areas (Wasser, Day, Chasmer, & Taylor, 2013).
LiDAR has been applied to subcanopy shading using the point cloud to
predict shade levels at different times of day (Lee, Slatton, Roth, &
Cropper, 2009).

Our goal in this paper was to integrate available tools including
LIDAR tomodel solar radiation for heavily vegetatedwatersheds under-
neath the canopy. Our target habitat has diverse vegetationwith hetero-
geneous, perhaps unknown, size and spatial structure. We propose an
approach tomodeling insolation, termed the Subcanopy Solar Radiation
model (SSR), that uses a GIS based solar model coupled with a LiDAR-
derived index of canopy openness to account for both topographic and
vegetative shading. We apply this method to an 8 km × 8 km area
encompassing rugged terrain, diverse terrestrial habitats and 3 small
watersheds. To validate the approach, we apply both direct and indirect
point methods (black thermopile pyranometer measurements, hemi-
spherical photographs analyzed with Gap Light Analyzer) to our study
site and compare them to the Subcanopy Solar Radiation model output.
2. Methods

2.1. Site

Our study sites are in the upper basin of the South Fork Eel River
within the Heath and Marjorie Angelo Coast Range Reserve in
Mendocino County, California (Fig. 1). The Angelo Reserve, in the Uni-
versity of California Natural Reserve System, has rugged, steep ridge-
valley topography. Elevation ranges from 400 m to 1420 m within the
Reserve. The region has a Mediterranean climate with wet, cool winters
and warm, dry summers. For the purposes of this study, vegetation in
thewatershed can be broadly classified into fourmajor plant communi-
ties: conifers, mixed-hardwood, chaparral, andmeadow. The conifer as-
semblage consists of old-growthDouglasfir (Pseudotsugamenziesii) and
redwood (Sequoia sempervirens). Themixed-hardwood includes several
oaks (Lithocarpus densiflorus, Quercus agrifolia, Q. kelloggi), California
bay (Umbellularia californica), and madrone (Arbutus menziesii).
Chaparral is dominated by several species of manzanita (Arctostaphlos
manzanita, A. columbiana, A. glandulosa). The meadows host native pe-
rennial grasses, European annual grasses, and native and exotic forbs
(Suttle, Thomsen, & Power, 2007).

We have 3 nested spatial scales to our study sites. To capture oro-
graphic effects of shading, we included steep east and west ridges of
the local terrain. This area produces an 8 km × 8 km square. We used
the 2004 LiDAR dataset described below.Within this area we examined
radiative transfer through vegetation, with higher resolution LiDAR
from 2009 at 3 km × 6 km. Finally, our validation datasets used 26
point locations, including a weather station, within the study area
(Fig. 1).

2.2. LiDAR data collection

Two leaf-on Airborne LiDAR datasets (2004, 2009) were used in this
study. Bothwere collected by theNational Center forAirborne LaserMap-
ping (http://www.ncalm.org) and are archived at OpenTopography.org.
The first surveywas flown in June 27–30, 2004 and covered the headwa-
ters of the South Fork Eel river (Fig. 1, Table 1, DOI: 10.5069/G9639MPN).
First returns were used to construct the canopy digital elevation model
(DEM) and last returns were used to construct bare-earth DEM. The sec-
ond surveywas flown in September 4–7, 2009 on a narrow swath 0.5 km
to either side of the South Fork Eel river main stem (Fig. 1, Table 1, DOI:
10.5069/G93F4MH1). First, second, third, and last returns were collected.
Only last returns were used from the 2009 dataset for vegetation struc-
ture analysis.

Both LiDAR datasets were classified into ground and non-ground
returns by NCALM using TerraScan (TerraSolid Ltd., Finland) each pro-
ducing two point clouds: filtered (ground) and unfiltered (both ground
and non-ground) using a TIN densification filter (Axelsson, 1999), see
Fig. 5a below. Each point has a location (X, Y), laser intensity, and sever-
al returns at varying elevations. The 2004 point cloud was processed
into bare-earth and canopy DEMs. 1 m bare-earthDEM was produced
by kriging the groundfiltered point cloud using Surfer (Golden Software
Inc.), then was resampled to 2 m cell size. We developed a 2 m canopy
DEMusing an algorithm that took themaximumunfiltered pointwithin
each cell as the canopy top. Manual post-processing removed hits on
flying birds and other errors. By subtracting canopy elevation from
bare-earth elevation, we derived a vegetation height map (Fig. 2). The
ground filtered and total point clouds from the 2009 dataset were
imported into GRASS and converted into 2 m raster grids of density
(point counts per 4 m2 cell).

2.3. Scale dependence issues with LiDAR data

LiDAR data densities present computational challenges for solar
models. Many GIS functions will fail on a very large raster layer,
but can be run on tiled subsets of the raster. This makes them scale
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Fig. 1. Location of the Angelo Reserve, LiDAR 2004 & 2009 datasets, sample sites, and weather station. The weather station is used as a reference point in subsequent maps.
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independent. Processing time increases linearly with dataset size. Solar
models, on the other hand, are highly scale dependent. To properly cal-
culate topographic shading, a solar model requires data for all moun-
tains that block sunlight to the target area, even if they are kilometers
away. Our study area, for example, included an 8 km× 8 kmsquare nec-
essary to capture the relevant ridgelines. At 2 m cell resolution this pro-
duced a raster with 16 million cells. Not being able to tile the data
increases CPU, RAM, and Disk I/O intensity in a non-linear fashion. The
high RAM requirements (~16 GB per process)make the use of high per-
formance computing clusters impractical, as they do not have enough
Table 1
LiDAR survey specifications.

2004 LiDAR 2009 LiDAR

Flight dates June 27–30, 2004 September 4–7, 2009
Sensor Optech 2033 Optech GEMINI
Scan angle (cutoff) ±20° (±17°) ±21° (±18°)
Average flying height 600 m 800 m
Pulse rate frequency 33.3 kHz 100 kHz
Swath overlap 50% 50%
Returns collected First, last First, 2nd, 3rd, last
Point density 2.64 points/m2 9.64 points/m2

Total area 236 km2 371 km2

Area used in study 59.2 km2 19.3 km2
RAM per node (~2 GB RAM/node). As a result, we used a single Linux
compute-workstation with 8 CPU cores and 96 GB of ram. We tested
several solar models, but most could not open or process rasters larger
than 2 million cells. ESRI's ArcGIS and its solar model, Solar Analyst,
functioned on raster layers of up to 4 million cells before failing. We
chose the open-sourceGRASS for GIS processing because it is designed
to handle large datasets (http://grass.osgeo.org). GRASS successfully
processed our 16 million cell rasters.

2.4. GRASS r.sun light model

GRASS GIS r.sun, is a clear sky solar model designed to take topo-
graphic angles and shading into account (Hofierka & Suri, 2002). Clouds
are considered “real-sky” conditions, instead of “clear-sky” and increase
the complexity of themodel considerably, hence are left out. Themodel
has only 4 inputs: digital elevation model (DEM), Julian Day, time-step,
and Linke Turbidity Index. Linke Turbidity Index (TL) is a single value ag-
gregating non-cloud atmospheric conditions (Remund, Wald, LefÈvre,
Ranchin, & Page, 2003). We used the 2004 LiDAR dataset for the r.sun
model. Both the standard bare-earth and the canopy DEM were run
through the model. The r.sun model will output one layer for a given
Julian Day (1–365). R.sun operates on a user-definedtime-step, default
15 min, in our study set to 6 min. Individual time-steps of irradiance
are aggregated to a 24 h insolation total in Wh/m2. To produce a time-
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Fig. 2. Maps illustrating a) bare-earth filtered LiDAR hillshade, b) canopy filtered LiDAR colored by vegetation height for the study site.
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series of light map layers, we developed a set of scripts in Python
(http://www.python.org). Code can be downloaded from our public re-
pository (https://github.com/cbode/ssr/). We chose to run the model
once a week for the entire year. The weekly time-step was chosen to
produce ecologically meaningful differences between layers without
losing critical temporal resolution.

Linke Turbidity Index values, (TL),were retrieved from theHelioClim
project website (Helioclim, 2011), which has a satellite derived global
database of TL. We used linear interpolation to derive weekly values
from the monthly dataset. TL ranges from a minimum of 1.0 (very
clear) to a maximum of 8.0 (very hazy). Angelo Reserve values ranged
from 2.9 (Dec) to 3.8 (July).

The r.sun model calculates direct, and diffuse, and reflected short-
wave radiation. In addition it produces global (direct + diffuse +
reflected) radiation (Fig. 3). Ray-tracing is used for direct and reflected
radiation, while diffuse radiation uses isotropic radiation based on the
amount of sky visible (Šúri & Hofierka, 2004). Surface-reflected radia-
tion does not exist in the understory, so we excluded reflection from
our subcanopy model, but it is included in the gap model. For each
day calculated we received 4 layers per DEM. With 2 DEMs (bare-
earth, canopy) and 52 runs (weekly), 416 map layers were produced
from the 2004 dataset.

2.4.1. GRASS r.sun calibration
We calibrated the r.sun model using our weather station and porta-

blefield pyranometers (Hukseflux LP02) at the Angelo Reserve.Wepick-
ed a clear sky day with zero cloud cover (Aug 25, 2011). The r.sun global
radiation was within 5% of the portable field pyranometer and weather
station sensor (Fig. 4). However, r.sun assumes 20% diffuse radiation
for our level of atmospheric turbidity (TL) where our measurements
showed only 10% diffuse radiation. A permanent solar monitoring site
at Humboldt State University, 130 km north of the Angelo Reserve, also
shows 10% diffuse radiation for the same time period (MIDC, 2013), sug-
gesting that our measurements were accurate. No adjustment of the
model parameters would get both the global and the diffuse outputs to
matchmeasured values. Therefore, we included a calibration adjustment
bymultiplying the diffuse radiation output by 0.50. The rest of themodel
has no empirical calibration.

2.5. Subcanopy Solar Radiation model (SSR)

The SSR model estimates subcanopy radiation at the watershed
scale. For light modeling, we used the GRASS GIS r.sun. To calculate
light levels underneath vegetation, we used the LiDAR point clouds. In-
stead of using the point cloud to indicate obstructions to light, as has
been done in previous studies (Lee et al., 2009; Mücke & Hollaus,
2011), we used the LiDAR to indicate the probability of light reaching
the ground, by using the laser as a proxy for beams of direct sunlight hit-
ting the forest floor. This probability is estimated by the Light Penetra-
tion Index (LPI) = (Ground Hits) / (Total Hits) (Fig. 5) see also
(Barilotti, 2006). The understory sub-model, described below, applies
the LPI to both direct and diffuse radiation, producing layers of under-
story global radiation (watt-hours/m2). The understory sub-model
tends to blur edges, such as stream channels, meadow edges, and
large individual trees. Blurring is caused by the neighborhood analysis
function used to create the LPI, as explained below in Section 2.5.1. To
model edges better, we developed a sub-model for large open gaps. A
gap is defined here as one ormore contiguous 2m cells where themax-
imumvegetation height is lower than 2m. SSR is the combination of the
two sub-models. Each component will be described further below.

2.5.1. Light penetration index (LPI)
To assess canopy openness, we developed the Light Penetration

Index (LPI) from LiDAR point cloud data. LPI is an index of the probabil-
ity that a direct beam of light will penetrate the vegetation and hit the
ground (Fig. 5b). Sunlight penetrates vegetation at changing angles
throughout the day. Fortuitously, the scan angles of the laser beam
from the LiDAR sweep a swath left and right, perpendicular to the
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Fig. 3. GRASS GIS r.sun global output a) bare-earth, b) canopy. Values are scaled from peak summer insolation to minimumwinter insolation.
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forward path of the aircraft. This swath causes laser beams to hit targets
on the ground or canopy surfaces with a range of angles which can be
equated roughly with the way sunlight hits these surfaces (Fig. 6). The
characteristics of the LiDAR sweep allow us to use aggregates of the
LiDAR points to represent sunlight penetration from angles other than
vertical.

We adjusted for diel changes in solar angle. To integrate the influ-
ence of neighboring vegetation as the solar angle changes throughout
the day, we used a GIS function, neighborhood analysis (Shapiro,
2010). Neighborhood analysis is a moving window which sums all
points within a square around each target cell. This will smooth the
data spatially, because each cell will aggregate similar data as the cell
next to it. Neighborhood analysis accounts for the shading caused
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by vegetation in nearby locations. The maximum obstructing distance
(d) is the diameter of the neighborhood analysis, and is the distance
away froma target locationwhere vegetationwould obstruct significant
amounts of sunlight from reaching the location. This value can be de-
rived as a statistical fit to measurements (Musselman, Margulis, &
Molotch, 2013). To minimize local calibration of the model, we derived
maximumobstructing distance using the fortuitous correspondence be-
tween natural sun beams and LiDAR swath angles. We computed the
modal height of trees and bushes within our study area (h = 22 m).
With scan angle (Table 1, 2009 scan angle = 18°) and tree height, we
found the maximum obstructing distance (d) for the LiDAR beam
would be 7.14 m (Eq. 1 and Fig. 7).

d ¼ h= tan θ; θ ¼ 90∘−18∘
� �

: ð1Þ

Our raster resolution is 2 m cells, so the maximum obstructing dis-
tance (7.14 m) translates to 8 m. The GIS neighborhood analysis (i.e.
r.neighbors) operates in a square around the target cell. Our square is
18 m × 18 m, because we have 8 m obstructing distance per side
(16 m) plus a 2 m center cell (Fig. 8). All LiDAR points for ground and
total are summed within the aggregation square and the ratio is
assigned to the target square as LPI.

We also compensated for seasonal shifts in solar noon. Solar noon is
the point in the sky where the sun is at the greatest angle from the ho-
rizon. In the northern hemisphere, when the sun is at summer solstice
(in June), the neighborhood analysis square is roughly centered on its
target cell. As the season progresses from June to December, the
model moves the square south relative to the target cell, matching the
sun angle at solar noon (σ). From December to June, the square moves
northward relative to the target cell. This adjustmentwould be inverted
for the southern hemisphere. Angelo Reserve is at 39.5°N latitude, giv-
ing it a solar noon from σ = 73.1° at summer solstice to σ = 27.3° at
winter solstice (SOLPOS, 2012). The offset of the aggregation square
can be defined as the maximum obstructing distance (d) multiplied by
oneminus the cosine of solar noon for the number of cells north (Cnorth)
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of the target square (Eq. 2). Csouth is the number of cells south of the tar-
get square (Eq. 3). Ceast and Cwest= d represent diurnal variation and do
not change seasonally.

Cnorth ¼ d 1− cosσð Þ ð2Þ

Csouth ¼ d 1þ cosσð Þ: ð3Þ
Target cells

Fig. 6. Correlation between daily sun angles and LiDAR scan angles. LiDAR can only be a
rough proxy for sunlight, since the airplane flight-lines do not match the path of the sun.
The square sizes are rounded to the nearest 2 m cell and are shifted
monthly, providing 4 seasonal shifts for LPI (Fig. 8). Using seasonal shifts
allows us to refine LPI without being burdened by the computational
load of ray-tracing through the point cloud. In contiguous forest stands
seasonal shift would be unnecessary. It is valuable for edges and transi-
tions, such as species transitions, riparian areas, and meadows. A
18o 

Modal Tree 
Height, H = 22 m

Target Cell,  
2 m

Max Obstructing Distance, 
D = 7.14 m, 4 cells

72o 

Fig. 7.Maximumobstructing distance of vegetation is a function of the height of the neigh-
boring vegetation and the scan angle of the laser. For sunlight this would be infinite, since
the sun sets at the horizon, but using the LiDAR scan angle provides a practical starting
point.
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meadowmay have a different speciesmix on its north side compared to
its south side due to differing seasonal light regimes.

2.5.2. Understory sub-model
The Understory component combines the LPI with bare-earth r.sun

output. Bare-earth is used because we are modeling light penetrating
to the ground underneath the forest vegetation. The LPI provides attenu-
ation of light due to the vegetation. Direct and diffuse radiation are calcu-
lated separately then combined into global subcanopy insolation (Eq. 4).

Globalunder ¼ Dirunder þ Diff under : ð4Þ

We use LPI without modification to produce understory insolation
(Dirunder), since LPI is a measure of the probability of direct light hitting
the forest floor (Eq. 5).

Dirunder ¼ LPI � Dirabove: ð5Þ
Fig. 9. SSR components: a) understory, b)
Direct r.sun output can be considered above canopy insolation
(Dirabove). Diffuse radiation penetrates vegetation better than direct ra-
diation, but despite the extensive studies on light flecks and subcanopy
light, diffuse light remains a difficult value to quantify (Pearcy, 1990).
The issue is further complicated by selective absorption of photosyn-
thetically active radiation (400–700 nm) by plants. While we have
some indications that the extinction rate is nonlinear, we decided to
keep our model simple and uncalibrated. Experimentation with cali-
bratedmethods did not improve the results enough to warrant splitting
our pyranometer measurements into a calibration and validation
datasets. We used a simple linear regression predicting diffuse under-
story light from diffuse canopy light (Eq. 6) (Gendron et al., 1998).
This is the only calibration used in themodel other than the 0.5multipli-
er on diffuse radiation in r.sun. Fig. 9a shows Understory output.

Diff under ¼ 1:024� LPI � Diff above þ 0:01719: ð6Þ
gap (colored areas), and c) final SSR.
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2.5.3. Gap sub-model
The Gap sub-model estimates insolation for edges and open areas.

The Gap sub-model runs the r.sun light model on the canopy DEM, in-
stead of the bare-earth DEM. R.sun parameters are otherwise identical
to bare-earth model runs. LPI is not used in the Gap sub-model. R.sun
treats the treetop canopy as if areas between canopy hits are solid: the
trees are small stone mountains, producing highly detailed shadows.
The goal of the model is to estimate insolation at the ground level in
open areas. All cells covered by vegetation higher than 2 m are set to
null, i.e. removed from the output. The 2m height is a user-specified pa-
rameter and should be adjusted as appropriate to the study site. The
resulting Gap sub-model layers estimate insolation with detailed tree
shading (Fig. 9b). This captures narrow stream channels, individual
tree shading, sharp vegetation ecotones, and other edges. Gap output
will underestimate the insolation in shaded areas, because there is no al-
gorithm to allow direct sunlight to pass through obstructing vegetation.

2.5.4. SSR
SSR is a simple combination of theUnderstory andGap layers to pro-

vide a complete subcanopy radiation output. Using map algebra
(Shapiro & Clements, 2010), for every cell in the layer, Understory and
Gap are compared. The higher value is chosen as the final SSR value
for global insolation (Eq. 7). For example, consider a large oak tree in
themiddle of ameadow,with a loose open canopy. Lightmeasurements
would show the area of a cell on the north side of the tree as receiving
significant direct radiation due to light penetration through the canopy.
The Gap sub-model would show that same cell as getting only diffuse
light and no direct sunlight. In this circumstance, the Understory sub-
model would be more accurate than the Gap sub-model, despite the
cell being less than 2 m in an open field. To address this, SSR compares
output of the two sub-models on a cell-by-cell basis and accepts the
higher radiation value as the final output (Fig. 9c).

SSR ¼ max Globalunder ;Globalgap
� �

: ð7Þ
Fig. 10. SSR output a) winter solstice (De
2.6. Validationmeasurements: pyranometers & hemispherical photographs

To validate the SSR model, we used direct and indirect field mea-
surements. For direct measurements, we used 2 pyranometers measur-
ing global and diffuse radiation. For indirect measurements, we used
hemispherical photographs and Gap Light Analyzer (GLA) software
(Frazer & Canham, 1999). We made measurements at 26 sites across a
range of canopy and topography conditions. The measurements were
taken between August 26 and November 2, 2011. We used black ther-
mopile based Hukseflux LP02 pyranometers, because silicon-based
pyranometers are calibrated for direct sunlight and perform erratically
under tree shade (Vignola, Stoffel, & Michalsky, 2012). To capture
both direct and diffuse radiation, we used two pyranometers, one
with a shade ring. We are aware that the high level of microsite varia-
tion decreases the value of a single set of direct measurements per site
(Link et al., 2004). To significantly improve the samplingwould have re-
quired 8 pyranometers, which was beyond our means. We recorded
global and diffuse radiation and derived direct radiation. The shade
ring was oriented so that the sensor would not receive any direct sun-
light at any time and was placed north of the global sensor to prevent
accidental shading. Sensorswere leveledwith a bubble-level, connected
to a Campbell CR1000 datalogger and placed at 1 m height above
ground on tripods. Each location was measured for at least 24 h, with
the clearest contiguous 24 h used for estimates. Measurements were
logged at 5 minute intervals as average irradiance (W/m2). Data were
aggregated to hourly averages for comparison with r.sun and summed
to a 24 h period as Wh/m2 for validation of SSR.

We performed indirect measurements using hemispherical photo-
graphs. Hemispherical photographic analysis has four steps: take a pho-
tograph, get the location and orientation of the photograph, manipulate
the image to estimate canopy openness, and simulate sun flyover to es-
timate photonfluxdensity through thedifferent sky regions (Chazdon&
Field, 1987; G. C. Evans & Coombe, 1959; Frazer et al., 2001; Rich, 1990).
We used a fish-eye lens (4.5mm focal length, Sigma Corp.) with an 180°
field of view to capture hemispherical canopy photographs. The lens
c. 21), b) summer solstice (June 22).
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wasmounted on a digital SLR (NikonD200) and a bubble level was used
to vertically center the camera. A Trimble GeoXT GPS unit was used to
determine location. A compasswas used to orient a north–southmarker
on the initial photograph. We then removed the marker and took a sec-
ondphotograph. The initial photographwasused to register (orient) the
second photograph. The second photograph was processed and ana-
lyzed with Gap Light Analyzer software. GLA calculates the proportion
of the sky visible in the photo. From the percentage canopy openness,
GLA then models sunlight passing over the location for a particular
day of year. The outputs are percent canopy openness, below-canopy
(transmitted) direct, diffuse, and total solar radiation.

3. Results & discussion

SSR and Gap Light Analyzer exhibit a similar linear relationship with
our pyranometer data, and both models predict similar total solar radi-
ation flux across the range of canopy openness. Both do an excellent job
capturing the direct radiation, but have a lower predictive value for dif-
fuse radiation. SSR, however, can predict light regimes at watershed
scales with resolutions equivalent to GLA or pyranometer point mea-
surements (Fig. 10, Animation 1). This avoids the errors involved in
upscaling point data to the watershed scale and makes possible high
resolution modeling of light dependent watershed processes.

3.1. Comparison with pyranometer measurements

SSR total solar radiation predictions match pyranometer measure-
ments well (R2 = 0.92), although it consistently underestimates light
levels (Fig. 11a). Direct solar radiation dominates that result, having
similar values (Fig.11b). Low light conditions in heavily vegetated
areas are a major source of error. This may be as much a measurement
issue as a modeling issue. The lower the insolation level, the larger
role a single sun fleck can play in the total radiation input. Forest edge
is also a key source of error (0.18 b LPI b 0.40).

Both GLA and SSR had difficulty predicting diffuse radiation
(Fig. 11c). This is unsurprising as diffuse radiation is difficult to model
and the light levels are very low. Other attempts at using LiDAR for
subcanopy shade modeling only modeled direct radiation and did not
try to include diffuse (Lee et al., 2009; Mücke & Hollaus, 2011;
Musselman et al., 2013). SSR shows split behavior due to having two
sub-models. Values b300 Wh/m2 come from the Understory sub-
model and show broad scatter when compared to pyranometer mea-
surements. Values N300 Wh/m2 come from the Gap sub-model and
match pyranometer measurements. This should be a target for im-
provement in subcanopy modeling, especially since our measurements
showed diffuse to be 50%–100% of subcanopy insolation in under dense
canopy. In addition, good modeling of diffuse radiation will allow prac-
tical modeling of real-sky conditions, because cloudy days increase dif-
fuse radiation considerably, even when total radiation is lower.

3.2. Light penetration index as a measure of canopy openness

For applications related to vegetation structure, LPI can stand on its
own as a method to assess canopy openness at the watershed scale.
Gap Light Analyzer's canopy openness and LPI are well correlated
(R = 0.88, p b b 0.001, n = 25, Fig. 12) across a range of vegetation
densities. Their methods are very different, whichwill cause divergence
in very open areas. Dense low vegetation will cause LPI to show low
openness even on a flat plane, while GLAwill show 100% at the same lo-
cation. A bare rock outcropping in a valley will be 1.0 on LPI indexwhile
GLAwill show significant constraint due to the visual obstruction of the
Fig. 11. Relationships betweenfieldmeasurements of solar radiation, point estimates from
Gap Light Analysis (spherical photography at given points), open circles; and predictions
from the Subsurface Radiation model (filled squares) for a) total, b) direct, and c) diffuse
radiation.
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rock hillslope. Nonetheless, as with SSR,LPI provides a way to assess
canopy openness across entire watersheds without extensive field sur-
veys, as has been pointed out by (Barilotti, Sepic, Abramo, & Crosilla,
2007).

3.3. Comparison with other efforts using LiDAR

There have been several efforts in recent years to capitalize on LiDAR
for use in vegetative light modeling (Lee et al., 2009; Mücke & Hollaus,
2011; Musselman et al., 2013). All of these have focused on shadow
modeling using voxels (volumetric pixels). The advantage of voxel
modeling is that shadowing can bemodeled for each time-step through
a single day. In relatively open areas this provides much better resolu-
tion than SSR. There are several weaknesses, however, which our ap-
proach is well suited to address. First, most voxel-based calculations
remove the most important part of the LiDAR dataset, the ground hit.
Ground hits provide verification that light penetrated the vegetation
reaching the understory floor. Second, as vegetation gets denser,
LiDAR loses resolution in the lower canopy as the laser hits are blocked
in the upper canopy. With dense vegetation, voxel shading will
over-estimate light penetration at low angles due to an absence of hits
near the ground. Third, computationally, it is not clear how scalable
voxel based calculations are. Current efforts have been on the scale of
150 m × 250 m (Mücke & Hollaus, 2011) to 800 m × 800 m
(Musselman et al., 2013). SSR runs on scales an order ofmagnitude larger
(8000m× 8000m). Finally, SSR integrates topographic shading with the
vegetative shading within an insolation model, where current voxel
methods are modeling vegetation shading only.

4. Conclusions

The SSR model presented here estimates ground and stream surface
level solar radiation for entire watersheds. It couples r.sun, a GIS based
light model with orographic shading, with LPI which accounts for radi-
ative transfer through vegetation. We validated SSR with direct and in-
direct measurements. SSR's estimates match the resolution quality of
the best current point estimation techniques. It does so, however, atwa-
tershed scale, enabling high resolution modeling of light-dependent
processes. SSR estimates light in areas with little to no field measure-
ment as long as the area has LiDAR coverage. We validated the model
with only partial calibration, providing a proof of concept. The model
was developed in GRASSGIS, but the basic approach, could be used
with other GIS-based solarmodels. By increasing the spatial and tempo-
ral scope and resolution of light data, ourmodel will be useful for inves-
tigating the ecology, hydrology, and biogeochemistry of heavily
vegetated watersheds.
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