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SUMMARY

This paper presents a comparison of ray-theoretical and finite-frequency traveltime to-

mography for compressional waves. Our data set consists of 86,405 long-period P and

PP-P traveltimes measured by cross-correlation. The traveltime of a finite-frequency wave

is sensitive to anomalies in a hollow banana-shaped region surrounding the unperturbed

ray path, with the sensitivity being zero on the ray. Because of the minimax nature of

the surface reflected PP wave, its sensitivity is more complicated. We compute the 3D

traveltime sensitivity efficiently by using the paraxial approximation in conjunction with

ray theory and the Born approximation. We compare tomographic models with the same

χ
2 fit, for both ray theory and finite-frequency analysis. Depending on the depth and size

of the anomaly, the amplitudes of the velocity perturbations in the finite-frequency to-

mographic images are 30%–50% larger than in the corresponding ray-theoretical images,

demonstrating that wavefront healing cannot be neglected when interpreting long-period

seismic waves. The images obtained provide clear evidence that a limited number of

hotspots are fed by plumes originating in the lower mantle.

Key words: global seismology, tomography, P waves, ray theory, Fréchet derivatives,

mantle plumes
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1 INTRODUCTION

Global P-wave tomographic models have so far been obtained by applying ray theory. In this paper, we

investigate the effects that the ray approximation has on the tomographic images, especially on smaller

objects. Waves propagate as rays only in the high-frequency limit of the elastodynamic equations of

motion. All scattering interactions of the wave with the heterogeneities in the propagation medium are

neglected under the assumption that the velocity field varies slowly on the scale of the wavelength.

Rays might bend and be deviated by the velocity structure, but energy is conserved along the ray and

is only influenced by the earth’s properties along an infinitesimally narrow path that follows Snell’s

law. The velocity information contained in a P or S wave is reduced to a single number, the time of the

first break, which is assumed to correspond to the arrival of the highest-frequency observable wave.

This simplifies the mathematics, but it is quite far from physical reality for finite-frequency waves.

If the scale length of 3D velocity heterogeneities is comparable to the width of the Fresnel zone,

finite-frequency effects are important. In regions where shadow zones or strong diffractors are present,

waves may scatter or diffract, and ray theory also breaks down. In ray theory, waves preserve the time

shifts accrued upon passage through an anomaly somewhere along its path. Because of an intrinsic

diffraction phenomenon called “wavefront healing”, finite-frequency wavefronts do not. Diffraction

acts to fill in or heal irregularities in the wavefront. Also, diffracted waves of significant amplitude

might interfere with the direct wave and introduce a bias in the traveltime measurements. Conse-

quently, the traveltime of a finite-frequency seismic wave is sensitive to velocity anomalies off the

geometrical ray. Simple diffraction theory shows that a region around the ray path affects the trav-

eltimes, whereas structure far from the ray paths play minor roles. Such a volume surrounding the

geometrical ray path is called the first Fresnel zone and is loosely defined as the region where sig-

nificant constructive interference of seismic energy takes place (Wielandt, 1987; Nolet, 1987; Nolet,

1990; Müller et al., 1992; Nolet & Dahlen, 2000). The size of the Fresnel zone depends on the epicen-

tral distance and on the frequency content of the propagated wavefield (Kravtsov, 1988): the higher

the frequency, the narrower the Fresnel zone.

The widespread availability of broadband digital data has led to the recent development of accurate

techniques for traveltime measurements using cross-correlation of an observed body-wave phase with

the corresponding spherical-earth synthetic phase (Bolton & Masters, 2001). Cross-correlation meth-

ods have also been used to measure the differential traveltime of two phases at the same station (Kuo

et al., 1987; VanDecar & Crosson, 1990; Woodward & Masters, 1991; Su et al., 1994). The measure-

ment obtained in this way provides an integrated arrival-time difference between two waveforms, not

simply the difference between onset times. Therefore the ray-theoretical description for a traveltime

along the ray may no longer be valid, and finite-frequency waveform modeling may be required. A
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major aim of this paper is to investigate the necessity of finite-frequency theory for broadband seismic

data.

The idea of using a ray of non-zero width to bridge the gap between rays and waves dates back

at least to Hagendoorn (1954). He introduced the concept of beam width defined as the region falling

within the first Fresnel zone. Various later attempts have been made to compute Fresnel or influence

zones for bandlimited seismic traveltimes in two and three dimensions (Gelchinsky, 1985; Woodward,

1992; Yomogida, 1992; Cardimora & Garmany, 1993; Stark & Nikolayev, 1993; Vasco & Majer,

1993; Li & Tanimoto, 1993; Marquering et al., 1998; Marquering et al., 1999; Dahlen et al., 2000;

Hung et al., 2000; Zhao et al., 2000; Ritzwoller et al., 2002; Yoshizawa & Kennett, 2002). These

investigations use the single scattering or first-order Born approximation, the Rytov approximation, or

the Kirchhoff approximation to compute Fréchet sensitivity kernels that relate traveltime perturbations

to velocity anomalies.

Because of the computational difficulties that accompany a three-dimensional formulation of sen-

sitivity kernels for P or S waves, little effort has been put so far into using them for seismic tomogra-

phy, at least outside the geophysical exploration community. Castle et al. (2000) and Husen & Kissling

(2001) use what they call fat rays for the shear wave speed anomalies at the base of the mantle, and a

tomographic study of the Antofagasta area (Northern Chile), respectively. However, fat rays account

only qualitatively for wavefront healing effects.

Marquering et al. (1998; 1999) and Zhao et al. (2000) present theoretical expressions for the

Fréchet kernel for delay times, obtained by summing surface waves and normal modes, respectively.

Zhao et al. (2001) uses such expressions in a 3D tomographic study of the Western Pacific region.

The normal-mode kernel provides the most general description of the sensitivity kernel around the

unperturbed ray. However, since mode summation is computationally expensive, the implementation

of the exact kernel in a global inversion of large data sets is not presently feasible. Dahlen et al. (2000)

provide an alternative procedure to economically compute the Fréchet kernel of a finite-frequency

traveltime measured by cross-correlation of a broad-band waveform with a spherical-earth synthetic

seismogram. The Green’s function and the response to a point scatterer in Born theory are represented

as a sum of rays rather than modes. The paraxial approximation renders the computation of such

kernels much more efficient. In this paper we apply the 3D Fréchet kernel formalism of Dahlen et

al. (2000) to a global, finite-frequency traveltime dataset, and compare the result with the 3D model

obtained by inverting the same data using conventional ray theory.
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2 INGREDIENTS OF THE INVERSE PROBLEM

2.1 Data and reference model

We use arrival times of P and PP waves with 20 s dominant period (Bolton & Masters, 2001). We in-

vert 66,238 P traveltimes and 20,167 PP–P differential traveltimes. Systematic and correctable timing

errors were introduced by software bugs in various versions of the Quanterra data logger. Measure-

ments have been appropriately corrected for such timing errors, and data obtained from stations with

periods of erratic timing have been removed from further analysis.

Absolute times are mainly affected by noise and errors due to source mislocation. They are mea-

sured by cross-correlation of an observed pulse with a synthetic which is constructed by convolving

the impulse response of the instrument at Albuquerque (ANMO) with a t∗ attenuation operator (Bolton

& Masters, 2001); the attenuation time t∗ is kept constant at 1 s for P waves.

Differential PP–P times are obtained by cross-correlation of the Hilbert-transformed direct P phase

with the reflected PP phase (Woodward & Masters, 1991). Here a 1 s t∗ operator accounts for the

different attenuation histories of the direct and reflected phase, respectively. Differential traveltimes

have the advantage of eliminating source and receiver bias, and are most sensitive to shallow structure

in the vicinity of the bounce point, thus allowing us to constrain the upper mantle beneath regions of

the world where there are no sources or receivers.

Predicted absolute and differential times are computed using the iasp91 velocity model (Kennett

& Engdahl, 1991). We correct for the signal due to ellipticity and for the effect of the crust (including

topography). Crustal corrections are computed using the 2◦ × 2◦ global crustal model CRUST2.0

(model available through the Reference Earth Model web site: http://mahi.ucsd.edu/Gabi/rem.html).

The remaining residuals show a baseline shift of about –1 s for PP–P and about +4 s for P (Fig. 1a).

Although the origin of these offsets is not very clear, major candidates to explain them are the use of

NEIC source locations and/or imperfections in the 1D reference model. Deviations from our assumed

constant t∗ are not able to explain this time shift. Variations in the delays due to attenuation are of the

same order as the variations in t∗, which are of order of 0.1 s (see Stewart (1984) and eq.(6) in Bolton

& Masters (2001)), and therefore far too small to explain the 4 s shift.

Since differential times such as PP–P are insensitive to source mislocations, the –1 s offset is

best explained by the inadequacy of the 1D reference velocity model used. We eliminated this offset

by making a slight change to the iasp91 velocity model in the upper mantle transition zone (Fig. 2).

This correction is a purely technical remedy and allows us to eliminate the PP–P offset for a range

of distances. After centering the PP–P times to zero, the offset in the P data increases to about +5 s

(Fig. 1b). The origin of this bias is not fully understood and is the subject of current study. In order to
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minimize the effect, we have applied a constant correction to all P traveltimes such that the average

< δTP >= 0. The effect of this baseline shift is to bring the average of the origin time corrections

close to zero; it does not introduce discrepancies that cannot be handled by the inversion.

2.2 Model parameterization

We sample the velocity structure by using an irregular distribution of points to form a Delaunay mesh

(Watson, 1981; Watson, 1992; Sambridge et al., 1995). In 3D, a Delaunay mesh is a uniquely defined

aggregation of space-filling, disjoint, irregular tetrahedra. We build the Delaunay connections by us-

ing qhull, a package distributed by the Geometry Center of Minneapolis (Barber et al., 1996). Node

spacing is adapted to the expected resolving length of our data and ranges from about 200 km in the

upper mantle to about 600 km in the lower mantle. The total number of nodes we use to model the

mantle is M = 19, 279. The velocity c at any point x in the model is defined by linear interpolation

within each tetrahedron spanned by this mesh, formally expressed as:

δc(x) =
∑

k

δckhk(x), (1)

where hk denote the interpolation functions, k being an index over the four nodes of the tetrahedron

that contains x.

2.3 Delay times tomography: rays and waves

To investigate the effects of wavefront healing, we compare ray-theoretical tomography with finite-

frequency wave tomography. In the following two sections we briefly review the analytical description

of both formulations, which in the end both reduce to a discrete system Ax = b of N traveltime shifts

bi measured by cross-correlation and M velocity perturbations xj , which we solve iteratively in a

least-squares sense (Paige & Saunders, 1982; Nolet, 1985). The inversion technique that we use is

described in detail by Nolet (1987) and Spakman & Nolet (1988).

2.3.1 Rays

In the ray approximation, a measured traveltime residual is given by a 1D line integral along the

unperturbed spherical-earth ray:

δT = −
∫

ray
c(r)−2δc(x) dl, (2)

where dl is the differential arclength along the ray, c(r) is the background wavespeed at radius r (in

our case, modified iasp91), and δc(x) is the 3D heterogeneity that one is seeking to image. Fermat’s

Principle allows us to use the raypath computed for the background velocity c(r) (e.g. Nolet, 1987). By



6 R. Montelli et al.

virtue of the linear interpolation on the tetrahedron structure (eq. 1), the expression for the traveltime

shift δT becomes:

δTi =
∑

j

Aij
δcj

cj

, (3)

where cj = c(rj) at node j, and the elements of the matrix A are given by:

Aij = −
∫

ith path
dl c−1(r)hj(x), (4)

with i the datum number, and j the node index. In the case of a differential traveltime PP–P, the delay

time δTPP−P is given by δ(TPP − TP) and the elements of the matrix A are simply the difference

between the matrix elements of the two phases individually.

2.3.2 Finite-frequency waves

In finite-frequency tomography the 1D integral along the geometrical ray is replaced by a 3D volume

integral:

δT =

∫

⊕

K(x)
δc

c
d3x (5)

over the entire mantle ⊕ in which the wave-speed perturbation is non-zero, δc/c 6= 0. The quantity

K(x) is the 3D Fréchet kernel of a finite-frequency traveltime shift δT that has been measured by

cross-correlation of a broadband waveform with a spherical-earth synthetic.

Following Dahlen et al. (2000) the 3D Fréchet kernel K(x) is expressed by a double ray sum

over all scattered body waves. This formula reduces to an easily computable expression by invoking

the paraxial approximation which eliminates the need to conduct repeated two-point ray tracing. By

ignoring all forward scattering rays that are not of the same type as the unperturbed path, the Fréchet

kernel reduces to a compact expression given by (Dahlen et al., 2000):

K(x) = − 1

2πc

√

(|det(M′ + M′′)|

∫

∞

0
ω3 |ṁ(ω)|2 sin Φ dω

∫

∞

0
ω2 |ṁ(ω)|2 dω

, (6)

where

Φ =
1

2
ωqT · (M′ + M′′) · q − [sig(M′ + M′′) − 2]

π

4
. (7)

The matrices M′ and M′′ are the forward and backward 2 × 2 traveltime Hessians along the central

ray, and q is the location vector of a scatterer at x, in ray coordinates (see Fig. 3). The symbols det and

sig denote the determinant and the signature, or the number of positive minus the number of negative

eigenvalues of M′ + M′′, respectively; ω is the angular frequency, and c = c(r) is the background

spherical-earth velocity. The kernel for a single, well-isolated seismic phase depends only upon the

sum M′ + M′′ of forward and backward traveltime Hessians along the central geometrical ray. The
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quantity Φ (eq. 7) represents the phase delay of the wave scattered from x. The quantity |ṁ(ω)|2 is

the power spectrum of the attenuated synthetic (see section 2.1) and specifies the frequency content of

the cross-correlated arrivals. This is a reminder that K(x) is the Fréchet kernel of a finite-frequency

traveltime measurement δT . We have ignored a possible bias in dominant frequency caused by the

correlation operator emphasizing the early part of the waveform rather than a full period.

Written out explicitly, the 3D integral for the traveltime shift δT is given by:

δT = − 1

2π

∫ L

0
dl

∫∫

∞

−∞

dq1dq2(1 + qk∂k ln c)c−2δc

×
√

(|det(M′ + M′′)|

∫

∞

0
ω3 |ṁ(ω)|2 sin Φ dω

∫

∞

0
ω2 |ṁ(ω)|2 dω

. (8)

The limit ±∞ on the transverse integrals over q1, q2 are purely formal; in practice, the kernel K(x) is

negligible except within the first one or two Fresnel zones about the central ray.

Again, by virtue of the linear interpolation on the tetrahedron structure (eq. 1), the expression for

the traveltime shift δT becomes:

δTi =
∑

j

Aij
δcj

cj

, (9)

where the elements of the matrix A are given by:

Aij = − 1

2π

∫

ith path
dl

∫∫

∞

−∞

dq1dq2(1 + qk∂k ln c)c−1hj(x)

×
√

(|det(M′ + M′′)|

∫

∞

0
ω3 |ṁ(ω)|2 sin Φ dω
∫

∞

0
ω2 |ṁ(ω)|2 dω

, (10)

with i = 1, 2, ..., N the datum number, j = 1, 2, ..., M the node index and k = 1, 2 the ray coordinate

index. In the case of differential traveltimes δT PP−P = δ(TPP−TP), which is related to the difference

of the individual Fréchet kernels: KPP−P(x) = KPP(x) − KP(x).

The difference between the ray-theoretical and finite-frequency approach resides in the elements

of the matrix A. In the ray-theoretical formulation, each row of the matrix A represents the geometrical

ray connecting the source s to the receiver r. The elements Aij are interpolation weights integrated

along the arclength of the ray i contained in all tetrahedra having node j as a common vertex. In the

finite-frequency modeling, each row of A represents one Fréchet kernel connecting the source s to the

receiver r. Therefore each element of the matrix Aij can be seen as the integrated effect of the kernel

i contained in all tetrahedra having node j as a common vertex.
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Typical widths of the sensitivity region (i.e., the diameter of the ring around the unperturbed

geometrical ray) at the turning point of a direct P wave range from about 1000 km to about 1300 km

for a 60◦ and 80◦ epicentral distance, respectively. Delay times are relatively insensitive to velocity

perturbations close to the geometrical ray. This region of insensitivity is smaller near the source and

receiver but can extend to about 400 km near the turning point of a P wave at 80◦ epicentral distance,

giving the characteristic cross-sectional doughnut shape to the banana kernel (Fig. 4a). PP waves show

a much more complicated shape of the sensitivity region than direct P (Fig. 4b). The PP wave from a

source to a receiver passes through a source-to-receiver caustic where it experiences a non-geometrical

π/2 shift; the backward wave from receiver to source passes through the corresponding receiver-to-

source caustic. Upon passage through these caustics the shape of the kernel changes drastically and

does not resemble a hollow banana any more. The on-ray PP sensitivity is identically zero between the

source and the source-to-receiver caustic, and between the receiver and the receiver-to-source caustic;

however, it is nonzero between the two caustics (Fig. 4b). The characteristic zero-to-maximal-to-

zero sensitivity variation of the PP waves along the geometrical ray is due to the jumps in the term

sig(M′ + M′′)π/2 of eq.(7) (Dahlen et al., 2000; Hung et al., 2000). Steps of integration in the

computation of elements of the matrix A have been dynamically adapted along the kernel to take into

account changes in the size and shape of the sensitivity region.

It is clear from Fig. 4 that a 1D line integral along a ray is an extremely crude approximation of

the complex sensitivity region of a PP wave. PP waves are particularly useful in global tomography

because they provide upper-mantle constraints in regions where there are no sources or receivers.

Fig. 5a shows the sources and stations distribution of the P waves contained in our data set. Significant

parts of the globe, particularly in the southern hemisphere, are poorly covered by paths. Because of the

bounce points, the introduction of PP waves in the inversion significantly enhances the path coverage

in the upper mantle.

Because of the wide span of the sensitivity regions, finite-frequency waves sample a larger vol-

ume of the model than do the rays. As result, the matrix A for finite-frequency waves is an order of

magnitude less sparse than the one constructed with rays for our parameterization. Nevertheless, the

sensitivity is significant only in a limited region around the geometrical ray and many of the matrix

elements are small. In Fig. 6 we show a comparison between the column density for the two ma-

trices. We define the density for a given node of the grid to be the sum of all the elements of the

matrix in the column correspondent to that node. As expected, the density is larger and broader for the

finite-frequency matrix.
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3 TECHNICAL ASPECTS OF THE INVERSION

We simultaneously invert for perturbations in velocity δc/c and in hypocentral parameters (origin

time, longitude, latitude, depth). Our system of inversion becomes [A H]x = b where H is the matrix

of (ray-theoretical) partial derivatives with respect to the source parameters and where x = [xc, xh]T

now contains both unknown velocity perturbations xc and source corrections xh. The quantity b on the

right side is the vector of the delay times δT . We have 5, 738 sources and the grid consists of 19, 279

points giving a total of 42, 231 unknowns and N = 86, 405 observations (see section 2.1). Changes in

origin time and source location are computed with respect to NEIC values.

We have many more data than unknowns, yet due to the sparseness of the ray distribution, the

problem has a partly underdetermined nature. Also, because of errors, the system of equations is

inconsistent. To regularize the inversion, we apply norm damping to the velocity perturbation xc,

which biases to a lower amplitude solution, and to the source corrections xh, which limits changes in

origin times and hypocentral location coordinates: the strength of this ‖xc‖ → 0 and ‖xh‖ → 0 norm

damping is controlled by two tunable parameter εc and εh. To supplement the norm damping, we also

apply second derivative damping, ‖Sxc‖ → 0, governed by a parameter εs; this biases the solution

toward smooth velocity variations in every direction (latitudinal, longitudinal and radial). Due to the

irregular nature of the grid, our smoothing operator is not truly a canonical second derivative ∇2, since

it averages over the total number of nearest neighbours to a node. In finite-frequency modeling, the

effect of the uneven sampling is reduced by the implementation of kernel volumes.

How are we going to compare two models obtained with two different techniques? The least-

squares problems in seismic tomography can be rephrased in a statistical sense. Given a set of data,

with known standard deviations, we can ask which is the most likely model from which these data

could have arisen. A basic assumption is that data errors are independent and Gaussian distributed, so

that the joint likelihood of obtaining the observed data vector b (the quantity we want to maximize)

is the product of the individual probabilities. Maximizing the probability is equivalent to minimizing

χ2:

∑

i

(

∑

j Aijxj − bi

σi

)2

= χ2, (11)

where σi are the estimated errors in the data.

Each measurement bi is characterized by a grade A, B, and C based on the confidence of the

pick and how well the waveforms match. Each grade corresponds to a different error σi. A priori

estimates of the σi values given in the traveltime measurement procedure (Bolton & Masters, 2001)

were slightly raised on the basis of the misfits obtained in preliminary inversions for P and PP-P
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separately. We assigned an error σ of 0.44, 0.53, 0.79s for P residuals, and 0.75, 0.95, 1.15 for PP–P

residuals to measurements of quality grades A, B, C, respectively.

To the extent that these errors are normally distributed, and for very large tomographic problems

involving a large number N of data, the quantity χ2 is a sum of N squares of normally distributed

quantities, each normalized to unit variance (Press et al., 1992; Parker, 1994). Thus a typical value of

χ2 for a good fit is χ2 = N . More precisely, the χ2 statistic has a mean N and a standard deviation
√

2N . In model space this motivates us to look for solutions which lie on the boundary of the allowable

misfit region, i.e. where χ2 = N . Ray-theorerical and finite-frequency tomography will have different

regions of allowable misfit. We compare models which have exactly the same χ2, with χ2 ≈N .

The least-square system we are minimizing can finally be expressed as:

χ2 + εc‖xc‖2 + εh‖xh‖2 + εS‖sxc‖2 = minimum, (12)

where εs and S are the smoothing factor and smoothing operator, respectively. The three damping

factors (εc for the model norm, εh for the hypocentral parameters, and εs for the smoothing) define

a three-dimensional space. Each point in this space corresponds to a particular solution, and models

with the same χ2 span 2D surfaces. We experimented with changing both the damping εc and the

smoothing εs, while keeping the damping factor εh constant at a value that yields hypocentral correc-

tions of realistic magnitude. In our inversion, the norm damping (εh) applied to the hypocentral part

of the solution is such that 95% of the changes in the origin time lie between ±1.2 sec and 95% of

the hypocentral coordinates between ±14 km. The actual value of the damping factors has no direct

physical meaning, and their effect depends greatly on the eigenvalue distribution of the matrix A. Their

function is only to let us navigate between the model norm, smoothness, and the data fit. Though it is

possible to obtain damped solutions by halting the iterative matrix solver before full convergence has

been obtained, such solutions are less than optimal (in the sense that a lower model norm could be ob-

tained for the same χ2) and we have always made sure that our solutions iterated to full convergence.

Our experience confirms that, because of their differential nature, PP-P data are insensitive to source

parameters. We also found that finite-frequency inversion requires much smaller values for damping

and smoothing parameters to achieve the same χ2.

4 INVERSION RESULTS

We first investigate the sensitivity of the misfit, as measured by chi-square divided by the number

of data (χ2/N ), to the model norm |xc|2 for both inversion formulations, by obtaining a series of

models corresponding to different values of εc and εs. Fig. 7 shows these solutions in a plane of |xc|2

versus χ2/N . Solid lines correspond to the ray-theoretical solutions, dashed lines denote the finite-
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frequency version. It is clear that a very similar trade-off exists for both theories. This graph does not

tell the whole story, though, since the smoothness of two models is different even if they occupy the

same location in this graph. Therefore, we plot the smoothness versus the model norm in Fig. 8 for

a series of solutions obtained at fixed value of χ2/N = 1.18 (the vertical line in Fig. 7). Here the

large difference between ray-theoretical and finite-frequency solutions becomes evident: for the same

smoothness (a proxy for spectral content), the finite-frequency models exhibit a significantly larger

amplitude anomalies.

In the following, we shall further investigate two models out of the family shown in Fig. 8, denoted

by FF (finite frequency) and RT (ray theory), respectively. Fig. 9 shows these two P-wave velocity

perturbations with respect to our background model for ray theory (left) and finite-frequency (right)

at different depths. The two models are constrained to have the same data misfit, χ2/N = 1.18,

and the same spectral content, ‖Sxc‖/‖xc‖ = 0.16. One can, by eye, confirm the aggregate result

of Fig. 8 for individual anomalies. This is further quantified in Fig. 10, where we show the ratio

(δc/c)FF /(δc/c)RT for those anomalies that are significantly different from zero (|δc/c| > 0.2%)

Clearly, the average ratio is larger than 1 with a tail in the distribution extending well beyond 2,

especially as the depth increases. In the deepest layer (2408–2889 km depth) the average ratio is as

large as 1.5, with the larger values belonging to smaller anomalies, as expected. The ratio decreases

toward the surface, where it is of the order of 1.3. This decrease is also expected, since the kernels

become narrower for shorter raypaths that are mostly located at shallower depth.

The effect of finite-frequency theory is less when we do not restrict our attention to the more

significant anomalies. Fig. 11 allows one to inspect how the difference in root-mean-square value of

the anomalies (rms) depends on depth. An average discrepancy of about 20% or less (Fig. 11a) is

present between the average absolute value of the velocity changes in the two models. A slight depth

dependence is visible because the absolute difference between FF and RT remains the same while the

rms decreases to a minimum near 2000 km depth. The correlation coefficient (Fig. 11b) between the

models is above 0.9 at all depths. We conclude from this analysis that the effects of finite-frequency

theory are especially important for significant anomalies of small size.

To confirm that the incorporation of finite-frequency sensitivity kernels makes more of a differ-

ence for the smaller significant anomalies, we increased the power of the small anomalies by reduc-

ing εs and compared models for which χ2 was lower — in this case equal to N exactly. Fig. 12

shows the comparison of the ray-theoretical and finite-frequency tomography as a function of depth

for this χ2/N = 1 case. Again, both solutions have the same roughness or spectral content, in this

case ‖Sxc‖/‖xc‖ = 0.64. Numerous small-scale heterogeneities appear in the model. The inspec-

tion of the two solutions shows even more clearly the significantly larger amplitudes of the finite-



12 R. Montelli et al.

frequency model. Because of the presence of small-scale anomalies at all depths, finite-frequency

velocity changes are now on average about 1.7 times larger than the corresponding ray-theoretical

ones at the base of the mantle (2408–2889 km depth). As in the case of the χ2/N = 1.18 model, the

ratio decreases only mildly toward the surface becoming as high as 1.6 (Fig. 13). A large difference is

also visible in the rms (Fig. 14). In this case, the finite-frequency analysis enhances the rms velocity

anomalies by about 25% or more near the base of the mantle (Fig. 14a). The two χ2/N = 1 models

are less well correlated, especially near the base of the mantle where the correlation coefficient reduces

to 0.6.

The reader might wonder why we did not choose the model with χ2/N = 1 in the first place. A

look at Fig. 7 shows that there is a significant increase in model norm between the two values of the

model misfit. This implies that many of the extra details (and the reduced correlation between FF and

RT) hinges on our choice of a priori errors in the data, which admittedly are not cast in stone. William

of Occam’s dictum that the simplest hypothesis is the preferred one, leads us to prefer the much simpler

images in Fig. 9, which would be equivalent to χ2 = 1 if we underestimated the standard errors in the

data by only 9%. From Fig. 7 it is however clear that a further reduction in ‖xc‖ can only be obtained

at the expense of a much larger χ2/N .

We performed one final test to investigate the influence of the model parameterization on the

inversion. To verify that our previous observations are independent of the chosen grid, we performed

an inversion with a much finer parameterization of 39,048 points (i.e., approximately twice as many).

The distribution of the nodes is, as before, roughly proportional to the expected resolving length of our

data. The distance among the more closely spaced nodes ranges from about 100 km at the surface to

about 600 km near the core-mantle boundary. None of the conclusions reached earlier were affected by

this test. We do see small differences in the velocity anomalies, mainly at shallow depths. The original

parameterization with 19, 279 nodes was evidently fine enough to capture the smaller structure that is

affected by finite-frequency effects.

We personally do not believe that “variance reduction” is a particularly useful parameter to eval-

uate a tomographic inversion. It is as much a measure of the adequacy of the starting model as it is a

measure of goodness of fit of the final solution. However, since other global tomographic models are

often specified in terms of their variance reduction, we give our values here. Both inversions with the

19, 279-point grid have a variance reduction of about 84% for χ2/N = 1.18, and of about 87% for

χ2/N = 1. In both cases, roughly half of the variance reduction is due to the velocity anomalies and

half is due to the hypocenter corrections.
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5 DISCUSSION

Even though this tomographic study is primarily meant to study the difference between ray-theoretical

and finite-frequency inversions, the results obtained are of enough interest that we also offer a few

speculations. A more extensive discussion of the velocity structure, including a rigorous resolution

analysis, is given in an already published tomographic study, in which we combined the long-period

data with short-period data from the ISC (Montelli et al., 2004).

There is a remarkable agreement between the low-velocity anomalies in the finite-frequency model

(FF) and the locations of well known hotspots visible both in the maps (Fig. 9) and in the cross sections

(Fig. 15). A list of major hotspots with their location is given in Table 1. We distinctly see Easter

Island, Tahiti, Hawaii, Bouvet, Kerguelen, Azores, Canary Island, Cape Verde, Tibesti, Kilimanjaro,

Galapagos and Ascension.

Fast velocity anomalies with amplitudes above 1% are observed beneath Tonga-Kermadec, Tas-

mania, Java and below Asia, the latter presumably identifiable as the Tethys slab (Van der Hilst et al.,

1997; Grand et al., 1997; Grand, 1994; Bijwaard et al., 1998; Van der Voo et al., 1999; Gu et al., 2001).

Also clear is the familiar signature of the Farallon plate migrating eastward with depth (Grand, 1994;

Grand et al., 1997; Van der Hilst et al., 1997; Mégnin & Romanowicz, 2000). At 1800 km depth the

high-velocity anomalies below North and South America begin to disappear while becoming more

pronounced below Central America in the lowermost mantle.

In the lowermost mantle the pattern of heterogeneity is dominated by two large-scale slow velocity

anomalies, one in the eastern Atlantic Ocean and one under the South Pacific (Dziewonski et al., 1991;

Dziewonski et al., 1993; Grand, 1994; Su et al., 1994; Liu & Dziewonski, 1998; Masters et al., 1996;

Ritsema et al., 1999; Mégnin & Romanowicz, 2000; Romanowicz & Gung, 2002), as well as by fast

velocity under the circum-Pacific common to many other tomographic models (Grand et al., 1997).

Both slow regions are loci of major hotspots. The South Pacific “superswell”, which is considered to be

an exhausted remnant of the Mid-Cretaceous upwelling beneath the Pacific Basin (Larson, 1991; Mc-

Nutt, 1998), underlies Easter Island, Tahiti and Samoa (Fig. 15b). The Atlantic “superswell” contains

Kerguelen, the African superplume, the African hotspots, Cape Verde, Canary Island, and extends all

the way to the North Sea; with a clear signature of the shallow Jan Mayen seamount connected with a

deeper anomaly below Greenland (Figs. 9 and 15a,c,d).

Crough & Jurdy (1980) removed subduction-related geoid highs from the observed geoid and

found a residual field which has a simple form of two large, elliptical highs surrounded by lows.

Broad residual geoid highs are in the central Pacific and the Africa/eastern Atlantic region, in perfect

correlation with the regions of highest hotspot concentration. Because hotspots are regions of mantle

upwelling, they can contribute significantly to geoid anomalies. The two low-velocity anomalies in
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the finite-frequency velocity map (FF)are very well correlated with the geoid highs of Crough & Jurdy

(1980).

Many features are visible both in the ray-theoretical (RT) and finite-frequency (FF) inversions.

However, the continuity of anomalies is generally greater for the finite-frequency images. Also, the

finite-frequency tomographic images provide compelling evidence that many hotspots are fed from

the lower mantle (Fig. 15). The Pacific superplume seems to feed the spreading of the South Pacific,

whereas the Atlantic megaplume feeds the spreading not only of the North and South Atlantic but also

of the Indian Ocean, through a clearly visible conduit “leaning” toward Kerguelen (Fig. 15d). The

interaction of the African superplume with both the Mid-Atlantic Ridge and the Mid-Indian Ridge

is present in the shear-velocity models obtained previously by Ritsema et al. (1999), Mégnin & Ro-

manowicz (2000) and Romanowicz & Gung (2002).

Major hotspots which do not seem connected to a lower mantle plume include Afar, Ascension,

Etna, Galapagos, Iceland, Kilimanjaro, Madeira, Reunion, Tristan. These all seem to originate in the

mid mantle. Indications that Iceland is not a deep-seated anomaly were already presented by Ritsema

et al. (1999), and a shallow origin was argued from indirect evidence by Foulger & Pearson (2001),

Foulger et al. (2001) and Foulger (2003). The result of our inversion confirms these observations

and clearly contradict the finding of Bijwaard & Spakman (1999), who proposed an Iceland plume

extending all the way to the core-mantle boundary.

6 RESOLUTION

To determine the reliability of our tomographic images and to compare the resolving power of finite-

frequency and ray-theoretical inversions for relatively small-scale structures, we have performed a

limited number of resolution tests using synthetic plumes. We introduce velocity anomalies having

the form of vertical cylinders at location of known hotspots: Iceland, Ascension, Kerguelen, Hawaii,

Tahiti and Easter Island. The input velocity perturbation is a circularly symmetric Gaussian centered

on the cylindrical axis of the hotspot. The highest velocity perturbation in the center of the cylinder

is defined by following the pattern for temperature derivatives of P-wave velocities in the mantle as

a function of depth given by Karato (1993). Assuming a temperature T = 300◦ K at the center of

the plume, the maximum input velocity perturbation is −2.4% above 600 km depth, −1.2% between

600 and 1000 km depth, and −1% below 1000 km depth. The corresponding velocity perturbation is

assigned to each point of the grid lying within the cylinder. Because of the tetrahedral nature of our

parameterization, the input velocity model deviates slightly from a smooth cylinder, depending on the

distribution of model nodes within and near the synthetic plume.

The radius of the input cylinders is roughly the same as the quasi-cylindrical anomalies in the
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smoother tomographic model (Fig. 9), i.e., the standard width of the Gaussian is about 500 km. To

verify the vertical resolution we performed two kinds of tests. In the first test, the synthetic hotspots

reach the core-mantle boundary (Fig. 16a); in a second test, they are confined to depths above 660

km, to simulate plumes originating in the upper-mantle (Fig. 16b). These tests allow us to examine

whether the absence of a plume tail at great depth is due to a lack of resolution, and whether a deep

feature is due to the leakage of a shallow anomaly to larger depth in the mantle. Synthetic delay times

are computed using finite-frequency theory, and inverted using both ray theory and finite-frequency

kernels (Fig. 16 “exact data”). The same tests are then repeated adding normally distributed random

noises to the synthetic residuals (Fig. 16 “noise added”).

Overall we have adequate resolution at almost all synthetic hotspot locations to recover the shape

and depth extent of the anomalies, no matter if they are shallow or deep. A comparison by eye of

the results shows that finite-frequency analysis tends to more faithfully recover the amplitude of the

anomalies. This is further quantified in Fig. 17, where we show the finite-frequency and ray-theoretical

maximum values of the reconstructed velocity anomalies δc/c for each synthetic hotspot as a function

of depth for plumes of 500 km radius (Fig. 17a) and 300 km (Fig. 17b), respectively. In general, the

amplitudes recovered using finite-frequency theory are greater than those recovered using ray theory,

as we observed in the tomographic models. In absolute terms, the difference is larger in the upper

mantle. In relative terms, the effect of finite-frequency is still larger in the lower mantle, provided

the damping does not prevail, as it does for many synthetic plumes in the southern hemisphere. For

Iceland, the best resolved synthetic plume, the finite-frequency perturbations are a factor of 1.2 times

larger than the ray-theoretical ones in the upper mantle, and 1.3 in the lower mantle. The lack of resolu-

tion in the lower mantle is more evident with smaller scale plumes, such as those of 300 km radius used

in Fig. 17b. Deep anomalies beneath Kerguelen, Tahiti and Ascension seem to be particularly poorly

resolved; the same is true for a shallow anomaly beneath Kerguelen (Fig. 16b). We attribute this poor

resolution to a lack of ray path coverage in these particular regions, visible also from Figs. 5 and 6.

Montelli et al. (2004) have further improved the resolution with the introduction of the high-frequency

data (ISC delays).

7 CONCLUSION

We have introduced 3D finite-frequency Fréchet sensitivity kernels into global P-wave tomography,

and compared the results with the corresponding tomographic images obtained using conventional

seismic ray theory. We inverted P and PP-P cross-correlation traveltimes of 20 s dominant period. The

results demonstrate that finite-frequency analysis of such long-period waves significantly affects the

final images. The amplitudes of the velocity perturbations in our finite-frequency model are 30%–50%
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higher than those obtained with ray theory, depending upon the depth and size of the heterogeneity.

This demonstrates that the neglect of wavefront healing effects is a major shortcoming of ray theory.

Finally, the results in this paper show that it is possible, even with Fresnel zones seismic waves with

wavelengths of the order of one thousand km, to image structures as narrow as mantle plumes. While

some plumes are still visible in the ray-theoretical inversion, properly accounting for finite-frequency

wavefront healing effects leads to an increase in anomaly amplitudes, which raises the signal-to-noise

ratio to significant levels. It is likely that other improvements also contributed to our success in imag-

ing plumes. The correction for timing errors may have repaired the data somewhat, but we do not

suspect these errors to have been disastrous. Also, the use of the unstructured grid, adapted to the

decreased resolution at depth, plays an additional important role in delineating anomalies at the limit

of resolution.
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Figure 1. Top: Histograms of PP–P residuals of data used in this study. Bottom: P residuals computed with (left)

the iasp91 velocity model and (right) a modified version of the iasp91 velocity model shown in Fig. 2. <δT >

indicates the average delay time. The offset of ∼ +5 sec is discussed in the text.

Figure 2. Comparison of the iasp91 velocity model (solid line) with a model obtained by applying a slight

perturbation (0.7%) to the velocity of the iasp91 velocity model (dotted line) between 400 and 660 km. The

modified iasp91 model removes the bias in the PP-P data.

Figure 3. Perpendicular projection of a scatterer x onto the paraxial point ξ, situated on the central geometrical

ray from the source s to the receiver r. The off-path difference vector is expressed in terms of two orthogonal

unit vectors: q = q1q̂1 + q2q̂2. The ray centered coordinates of the scatterer are x = (q1, q2, l) where l is the

arclength along the central ray (Dahlen et al., 2000).

Figure 4. Ray-perpendicular cross sections of the Fréchet kernel (a) for a P wave between the source and the

turning point and (b) for a PP wave between the source and the bounce point. The shape of the PP kernel changes

drastically upon passage of a caustic.

Figure 5. (a) Distribution of sources (stars) and receivers (triangle) for P data. (b) Distribution of sources (stars),

stations (triangles) and bounce points (dots) for PP data.

Figure 6. Sections at different depth of the density of the matrix A for ray theory (left) and finite-frequency

waves (right), expressed as the sum of the absolute values of the elements of each column of the matrix A. Note

that the maps have been “wrapped around” to aid in the visualization of patterns in the vicinity of the Greenwich

meridian.

Figure 7. Model norm versus χ2/N for a combination of values of norm damping εc and smoothing εS . So-

lutions for ray-theory (solid line) and finite-frequency (dotted line) tomographies are compared. Symbols –

listed in the legend – correspond to different norm damping parameters. Smoothing increases from upper right

to lower left along the curves. The two white dots indicate the FF and RT solutions, respectively, which are

discussed in the text and in Figs. 9– 11.

Figure 8. Model norm versus roughness of the solution for finite-frequency (stars) and ray-theoretical (dots)

tomography with χ2/N = 1.18. The two white dots indicate locations of finite-frequency and ray theory models

compared in Figs. 9– 11.
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Figure 9. Comparison between velocity maps of the smooth, χ2/N = 1.18 model for ray theory (left) and

finite-frequency theory (right) at different depths. The quantity c is the velocity in the reference model shown in

Fig. 2. Maps have been “wrapped around” to aid in visualization of patterns both in the Atlantic and the Pacific

Oceans.

Figure 10. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at dif-

ferent depths, for the model with χ2/N = 1.18. Only changes with absolute value larger than 0.2% are binned.

Depth in the histograms is representative of the depth at the bottom of the shell considered (zbott). There are

six shells from the surface of the Earth down to the core-mantle boundary. The number in the corner represents

the bottom depth of the shell in kilometers. For each layer the total number of points of the grid present in that

layer (#pts) and their average spacing (davg) are indicated.

Figure 11. (Left) Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF –

dashed line) and ray-theoretical tomography (RT – solid line). (Right) Correlation coefficient between the finite-

frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is χ2/N = 1.18.

Figure 12. Comparison between velocity maps of the rough, χ2/N = 1 model for ray theory (left) and finite-

frequency (right) at different depths. Maps have been ”wrapped around“ to aid visualization of patterns both in

the Atlantic and the Pacific Oceans.

Figure 13. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at dif-

ferent depths, for the models with χ2/N = 1. Only changes with absolute value larger than 0.2% are binned.

There are six shells from the surface of the Earth down to the core-mantle boundary. The number in the corner

represents the bottom depth of the shell in kilometers.

Figure 14. (Left) Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF–dashed

line) and ray theoretical tomography (RT – solid line). (Right) Correlation coefficient between the finite-

frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is χ2/N = 1.

Figure 15. Cross sections of the finite-frequency model with χ2/N = 1.18. The top figure shows the four great

circle paths. Letters (a)–(d) on the paths match plots below. (a) cross section across Greenland and Iceland (pole

location 94.82◦W, 11.57◦N), (b) cross section through the Pacific superwell (pole location 96.50◦E, 62.44◦N),

(c) cross section across La Reunion and the African hotspots (pole location 125.39◦W, 45.09◦N), (d) cross sec-

tion across the Atlantic superwell and Hawaii (pole location 90.94◦W, 41.16◦N). Two-letter hotspot identifiers

are listed in Table 1.
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Figure 16. Resolution tests for six of the major hotspots observed in the tomographic images. (Left) Recov-

ered velocity model (Actual) for χ2/N = 1.18; (Right) Resolution tests: from left to right we present the

input model (Input), the recovered model obtained by inverting the synthetic delay times δT using the ray-

theoretical inverse (RT out) and the finite-frequency inverse (FF out), respectively. The rightmost two columns

show the corresponding recovered models in the case we invert the synthetic residuals after the addition of nor-

mally distributed random noise. Panel (a) shows the results with the synthetic hotspots reaching the core-mantle

boundary; panel (b) shows the results with the hotspots originating in the upper mantle (around 660 km depth).

Two-letter hotspot identifiers are listed in Table 1.

Figure 17. Difference between the finite-frequency and ray theory maximum velocity perturbation δc/c as a

function of depth for the 5 plumes showed in Fig. 16. Synthetic times are obtained by using finite-frequency

modeling. No random errors were added in this case. Two-letter hotspot identifiers are listed in Table 1. Panel (a)

shows the results of the test done with synthetic plumes with 500 km radius, (b) shows the results with plumes

of 300 km radius
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Table 1. List of major hotspots clearly seen in our tomographic images (locations are from W. Jason Morgan,

personal communication 2003)

Hotspot Latitude Longitude Label

Amsterdam 38.7◦S 77.5◦E AM

Ascension 7.9◦S 14.3◦W AS

Azores 37.9◦N 26◦W AZ

Bouvet 54.4◦S 3.4◦E BV

Canary 28.2◦N 18◦W CA

Cape Verde 14.9◦N 24.3◦W CV

Easter 26.8◦S 107.6◦W ES

Kerguelen 49.6◦S 69◦E KG

Hawaii 19.1◦N 155.1◦W HW

Guadalupe 26.8◦N 112.4◦W BC

Iceland 64.4◦N 17.3◦W IC

Kilimanjaro 3◦S 37.5◦E KL

Madeira 32.7◦N 17◦W MA

Reunion 21.2◦S 55.7◦E RE

Tahiti 18.1◦S 148.3◦W TH

Tasmania 40.8◦S 146◦E TA

Tibesti 20.8◦N 17.5◦E TI

Yellowstone 44.5◦N 110.4◦W YW
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Figure 1. Top: Histograms of PP–P residuals of data used in this study. Bottom: P residuals computed with (left)

the iasp91 velocity model and (right) a modified version of the iasp91 velocity model shown in Fig. 2. <δT >

indicates the average delay time. The offset of ∼ +5 sec is discussed in the text.
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Figure 2. Comparison of the iasp91 velocity model (solid line) with a model obtained by applying a slight

perturbation (0.7%) to the velocity of the iasp91 velocity model (dotted line) between 400 and 660 km. The

modified iasp91 model removes the bias in the PP-P data.
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Figure 3. Perpendicular projection of a scatterer x onto the paraxial point ξ, situated on the central geometrical

ray from the source s to the receiver r. The off-path difference vector is expressed in terms of two orthogonal

unit vectors: q = q1q̂1 + q2q̂2. The ray centered coordinates of the scatterer are x = (q1, q2, l) where l is the

arclength along the central ray (Dahlen et al., 2000).
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Figure 4. Ray-perpendicular cross sections of the Fréchet kernel (a) for a P wave between the source and the

turning point and (b) for a PP wave between the source and the bounce point. The shape of the PP kernel changes

drastically upon passage of a caustic.
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(b) PP-P data

(a) P data

Figure 5. (a) Distribution of sources (stars) and receivers (triangle) for P data. (b) Distribution of sources (stars),

stations (triangles) and bounce points (dots) for PP data.
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Figure 6. Sections at different depth of the density of the matrix A for ray theory (left) and finite-frequency

waves (right), expressed as the sum of the absolute values of the elements of each column of the matrix A. Note

that the maps have been “wrapped around” to aid in the visualization of patterns in the vicinity of the Greenwich

meridian.
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Figure 7. Model norm versus χ2/N for a combination of values of norm damping εc and smoothing εS . So-

lutions for ray-theory (solid line) and finite-frequency (dotted line) tomographies are compared. Symbols –

listed in the legend – correspond to different norm damping parameters. Smoothing increases from upper right

to lower left along the curves. The two white dots indicate the FF and RT solutions, respectively, which are

discussed in the text and in Figs. 9– 11.
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tomography with χ2/N = 1.18. The two white dots indicate locations of finite-frequency and ray theory models
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Figure 9. Comparison between velocity maps of the smooth, χ2/N = 1.18 model for ray theory (left) and

finite-frequency theory (right) at different depths. The quantity c is the velocity in the reference model shown in

Fig. 2. Maps have been “wrapped around” to aid in visualization of patterns both in the Atlantic and the Pacific

Oceans.
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Figure 10. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at dif-

ferent depths, for the model with χ2/N = 1.18. Only changes with absolute value larger than 0.2% are binned.

Depth in the histograms is representative of the depth at the bottom of the shell considered (zbott). There are

six shells from the surface of the Earth down to the core-mantle boundary. The number in the corner represents

the bottom depth of the shell in kilometers. For each layer the total number of points of the grid present in that

layer (#pts) and their average spacing (davg) are indicated.
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Figure 11. (Left) Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF –

dashed line) and ray-theoretical tomography (RT – solid line). (Right) Correlation coefficient between the finite-

frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is χ2/N = 1.18.
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Figure 12. Comparison between velocity maps of the rough, χ2/N = 1 model for ray theory (left) and finite-

frequency (right) at different depths. Maps have been ”wrapped around“ to aid visualization of patterns both in

the Atlantic and the Pacific Oceans.
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Figure 13. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at dif-

ferent depths, for the models with χ2/N = 1. Only changes with absolute value larger than 0.2% are binned.

There are six shells from the surface of the Earth down to the core-mantle boundary. The number in the corner

represents the bottom depth of the shell in kilometers.
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Figure 14. (Left) Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF–dashed

line) and ray theoretical tomography (RT – solid line). (Right) Correlation coefficient between the finite-

frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is χ2/N = 1.
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Figure 15. Cross sections of the finite-frequency model with χ2/N = 1.18. The top figure shows the four great

circle paths. Letters (a)–(d) on the paths match plots below. (a) cross section across Greenland and Iceland (pole

location 94.82◦W, 11.57◦N), (b) cross section through the Pacific superwell (pole location 96.50◦E, 62.44◦N),

(c) cross section across La Reunion and the African hotspots (pole location 125.39◦W, 45.09◦N), (d) cross sec-

tion across the Atlantic superwell and Hawaii (pole location 90.94◦W, 41.16◦N). Two-letter hotspot identifiers

are listed in Table 1.
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Figure 16. Resolution tests for six of the major hotspots observed in the tomographic images. (Left) Recov-

ered velocity model (Actual) for χ2/N = 1.18; (Right) Resolution tests: from left to right we present the

input model (Input), the recovered model obtained by inverting the synthetic delay times δT using the ray-

theoretical inverse (RT out) and the finite-frequency inverse (FF out), respectively. The rightmost two columns

show the corresponding recovered models in the case we invert the synthetic residuals after the addition of nor-

mally distributed random noise. Panel (a) shows the results with the synthetic hotspots reaching the core-mantle

boundary; panel (b) shows the results with the hotspots originating in the upper mantle (around 660 km depth).

Two-letter hotspot identifiers are listed in Table 1.
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Figure 17. Difference between the finite-frequency and ray theory maximum velocity perturbation δc/c as a

function of depth for the 5 plumes showed in Fig. 16. Synthetic times are obtained by using finite-frequency

modeling. No random errors were added in this case. Two-letter hotspot identifiers are listed in Table 1. Panel (a)

shows the results of the test done with synthetic plumes with 500 km radius, (b) shows the results with plumes

of 300 km radius


