
Nature © Macmillan Publishers Ltd 1998

8

letters to nature

564 NATURE | VOL 393 | 11 JUNE 1998

determining the balance between Si and N uptake by the biological
community. M
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The D0 shell at the base of the Earth’s mantle is thought to be a
thermal and compositional boundary layer where vigorous dyna-
mical processes are taking place1–4. An important property of D0 is
its seismic anisotropy, expressed as different velocities for hor-
izontally and vertically polarized shear waves that have been
diffracted or reflected at the core–mantle boundary5,6. The
nature of this anisotropy has been the subject of debate7–11.

Here we present an analysis of various seismic phases, generated
in the Kermadec–Fiji–Tonga zone and recorded at stations in
North America, which reveal a region at the base of the mantle
beneath the southwest Pacific Ocean where horizontally propa-
gating vertically polarized waves are slower (by at least 10 per
cent) than horizontally polarized waves. This observed anisotropy
is an order of magnitude larger than that previously thought to
exist in the lower mantle, and corresponds to lateral variations in
horizontally polarized shear-wave velocity which are also of about
10 per cent. We speculate that this anisotropy may be the result of
the mixing and shearing of strongly heterogeneous material in the
boundary layer.
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Figure 1 Geometry of the data set considered. a, Schematic representation of the

wave paths of SKS, SKKS, Sdiff and SPdKS. The wave paths of Sdiff for two different

positions of the source (stars) differ only at the source side. The lightly shaded

area indicates the region where SH is slow, as discussed in the text. The darker,

hatched area is the region where SH velocity is elevated or normal, but SV is much

slower than SH. b, Surface projections of wave paths superimposed on a

tomographic model of SH velocity in D0 (ref. 15). The light-grey zone of the wave

path indicates approximately the D0 leg of Sdiff for the shortest distances

considered. The white bar corresponds to the kink for SHdiff−SKS residuals,

discussed in the text. Red star is location of earthquake source region; yellow

triangles and 3/4-letter codes indicate station locations and names, respectively.

Inset, close-up look at the source side of the wave-paths. Epicentres of deep Fiji–

Tonga events and of shallow Kermadec–Fiji–Tonga events are shown by filled

and open stars, respectively. The background tomographic model of S-wave

velocity in D0 is from ref. 16. The polygon indicates the zone of ultra-low P-wave

velocity in D0 (ref. 18). The barcode indicates amplitudes of shear velocity

anomalies at the core–mantle boundary (CMB) in the tomographic models15,18.
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The first part of our analysis is based on the residuals of
differential travel times between seismic phases SHdiff and SKS/
SKKS relative to those for the standard Earth model PREM12. (SHdiff

are horizontally polarized S waves that have been diffracted at the
core–mantle boundary: SKS/SKKS are shown in Fig. 1.) Differential
travel times are helpful because they are not sensitive to errors in
focal parameters of seismic events and structural complexities in the
source region. Contrary to earlier studies13,14, we consider (1) not
the absolute values of the residuals, but rather the slopes of the
resulting time-epicentral distance plots; (2) not the average
residuals for many stations, but the individual slope for every
station; and (3) not only the residuals for deep events, but also
for intermediate and shallow events. For the given source–receiver
geometry (Fig. 1) and a fixed station, changes of the wave path occur
practically only at the source side of the wave path.

The residuals as a function of epicentral distance show a remark-
able trend, consistent from station to station, for shallow and deep
events and whether SKS or SKKS is used as reference phase. Figure 2
shows examples for the three best stations. Each panel can be
divided into two parts, with rapidly increasing residuals at shorter
distances, and slowly rising (or decreasing) residuals at larger
distances. To make this trend more visible, we divide each set of
measurements into two subsets corresponding to epicentral dis-
tances smaller than or equal to, and greater than or equal to, a
variable cut-off distance. When the best-fitting position of the cut-
off and linear fits on both sides of it are obtained by regression, the
average variance reduction is twofold with respect to a single
regression line. We note that the epicentral distance of the change
of slope (the ‘kink’) varies (for example, 116–1178 at HRV; 103–
1048 at RSON), depending on the epicentral distance range of the
Kermadec–Fiji–Tonga seismic zone to the given station. Compar-
able results are obtained for the other stations where a similar
analysis was performed: RSCP, LMQ, RSNY and GAC (Fig. 1).

The features in Fig. 2 cannot be explained by mantle complexity
immediately beneath the seismic foci, because the change of slope is

present in the data for both deep and shallow events. Therefore, our
preferred explanation for the kink is a first-order change in the
properties of the lowermost mantle at the source side of the wave-
path. Moreover, SKS and SKKS ray-paths are separated in D0 by a
distance exceeding 108, and a similar trend in the residuals in Fig. 2
with respect to SKS and SKKS implies that the effect is mainly in the
travel times of SHdiff. If the position of the kink for every station is
inverted for the position of the corresponding border in the D0 layer,
assuming that SH enters D0 at a height of 300 km above the core–
mantle boundary, the estimates for different stations are mutually
consistent and correspond to the white bar in Fig. 1b. In experi-
ments with synthetic seismograms, the anomaly of slowness of 1.1 s
per degree corresponds to S-wave velocity in D0 reduced by ,10%
with respect to PREM. The region of anomalously low SH-wave
velocity is located to the northeast of the bar (Fig. 1b), whereas SH
velocity to the southwest of the bar is either slightly elevated or
normal. Qualitatively, this division is confirmed by two recent
tomographic models15,16 (Fig. 1b), but the magnitude of the low-
velocity anomaly in both models is ,3 times smaller than in our
data. Robustness of our technique is confirmed by other data17.

The residuals of SKKS−SKS differential travel times relative to
PREM, derived from our data (Fig. 3) are positive, with an average
value of around 2–3 s. As argued in ref. 18, these positive residuals
can only be explained by anomalously low S-wave velocity in the
lowermost mantle on the source side, due to the longer paths of
SKKS relative to SKS. Our data, however, indicate that, on the
source side, SKS and SKKS propagate in a region of D0 with normal
SH velocity (Fig. 1b). As SKS and SKKS are SV polarized, to explain
the discrepancy at least partly, we suggest that although SH velocity
is normal, SV velocity in the lowermost mantle on the source side is
anomalously low. (SV indicates vertically polarized S waves.)

To obtain quantitative estimates of this anisotropy, we assume
that the lowermost mantle is intrinsically isotropic, finely layered
and horizontally stratified. For long waves, it behaves like a homo-
geneous transversely isotropic medium with a vertical axis of
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symmetry19–21. In this medium, SHdiff and SVdiff propagate inde-
pendently, with the former faster than the latter, which is consistent
with the seismic observations5. To explain residuals of ,2 s, SKS and
SKKS velocities in a layer 300 km thick should be ,10% lower than
standard velocity. For the angles of incidence characteristic of SKS
and SKKS, the SV velocities are larger than for horizontal propaga-
tion. Then the difference between SH and SV velocities for hor-
izontal propagation can be even higher than 10%. This prediction
can be tested by observing propagation of SHdiff and SVdiff.

The seismic phase SVdiff is usually weak, and can be easily
distorted by effects of azimuthal anisotropy in the mantle outside
D0 and side refraction of SHdiff. To eliminate these effects and to pick
arrivals of SVdiff accurately, we have devised a special technique22,
illustrated in ref. 22 for the records of HRV/WFM and RSON. For
the present study, a search for SVdiff has been conducted in the
records of the deep Fiji–Tonga events at seismograph stations
shown in Fig. 1b. The best data set has been obtained at HRV/
WFM, RSON and CCM. Remarkable features of the detected SVdiff

signals are their distance-dependent delays relative to SHdiff (Fig. 4).
At shorter distances, the slopes of the plots are close to 0 s per degree,
whereas at larger distances they are in the range 1.0–1.6 s per degree.
Then anisotropy is weak (not more than a few per cent) in the region
of very low SH velocity (northeast of the white bar in Fig. 1b), and
,15% in the region of normal SH velocity, southwest of the bar.
Anisotropy of ,15% is stronger by about an order of magnitude
than reported elsewhere.

Additional data on the properties of D0 beneath the southwest
Pacific are provided by the observations of SPdKS (Fig. 1a). This
phase propagates as Pdiff in D0 and as SKS elsewhere23. Pdiff beneath
the southwest Pacific is anomalously slow18,24, with a remarkable
correlation between the anomalous delays of SPdKS relative to SKS
and positive SKKS−SKS residuals, similar to those shown in Fig. 3.
An explanation for this phenomenon is partial melting25. The
anomalously slow Pdiff, however, propagates on the source side in
a medium with normal SH velocity (Fig. 1b), which is hard to
reconcile with a strong reduction of S velocity, expected in the case
of partial melting. Because, as we have demonstrated, the SKKS−
SKS residuals can be related to anisotropy, the correlation between
them and SPdKS delays suggests that the delays are affected by
anisotropy as well. Moreover, east of the white bar in Fig. 1b, where
(according to our data) anisotropy is weak, the layer of low P-wave
velocity, if present, is very thin26. Assuming that the SPdKS delays
are related to anisotropy, we note that the low horizontal P-wave
velocity in a fine-layered horizontally stratified medium is possible
if the variations of S-wave velocity between the layers are much
stronger than those of P-wave velocity20. Another possibility to be
considered is lattice preferred orientation27.

For normal distribution of random variations of S-wave velocity
in the stack of thin horizontal layers with mean m and standard

deviation j, the SH/SV velocity ratio for horizontal propagation is
expressed20 as SH=SV <

�����������������������

1 þ 4ðj=mÞ2
p

. For S-wave anisotropy of
15%, j thus evaluated is 28% of m. It is not possible to explain the
variations exceeding a few per cent solely by temperature
variations28. S-wave velocity can be significantly lowered by partial
melting or/and by accumulation of crystalline iron-alloy products
of chemical reactions between iron of the outer core and mantle
perovskite29. Among these possibilities, relatively weak variations of
P-wave velocity favour partial melting. The layered structure in D0
could be generated by convective mixing and shearing. Then, strong
anisotropy in D0 should be accompanied by strong wave scattering.
The anomalous region of D0, if projected on the surface of the Earth,
is close to Polynesia, a region of unusual thermal agitation, where a
large-scale thermochemical plume may be present at the top of the
lower mantle30. The anisotropic region in D0 could somehow be
related to the same plume.

Comparable magnitudes of lateral heterogeneity and anisotropy
suggest that lateral variations of anisotropy can be mistaken for
lateral velocity variations, when the models are derived under the
assumption of isotropy. Whatever its origin, the observations of
strong and laterally variable anisotropy add a new dimension to the
question of properties and processes in the D0 layer. M
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Fossil assemblages that preserve soft-bodied organisms are essen-
tial for our understanding of the composition and diversity of past
life. The worldwide terminal Proterozoic Ediacara-type fossils
(from ,600–544 Myr BP) are unique in consisting of soft-bodied
animals, which are typically preserved as impressions in coarse-
grained sediments1–4. These Lagerstätten are also special because
they pre-date the major burst of skeletonization, which occurred
near the start of the Cambrian period3. Most Ediacara-type fossils
are interpreted to be cnidarians, but higher metazoans such as
annelids and molluscs may also be represented1–4. However, the
unique style of preservation and difficulties in finding convincing

morphological homologies with definite animals have led some
specialists to prefer non-metazoan interpretations, such as
Vendobionta5. In addition, the rarity of Ediacara-type fossils in
younger sediments has led to suggestions of a terminal Proterozoic
mass extinction6. Here we report typical Ediarcara-type frond-
shaped fossils that occur together with an assemblage of Cam-
brian-type trace fossils in unequivocally Cambrian-aged sedi-
ments of the Uratanna Formation, South Australia. This
occurrence bridges the apparent divide between the terminal
Proterozoic and Cambrian fossil assemblages, and also suggests
that closure of a taphonomic window (an interval of time with
unique preservational conditions) was as important as extinction
in the disappearance of Ediacara-type organisms.

One of the great controversies in animal evolution concerns the
significance of the worldwide terminal Proterozoic soft-bodied
Ediacaran fauna1–5. The traditional interpretation of these fauna
as including early representatives of Phanerozoic phyla such as

Figure 1 Location (marked by an asterisk, top right) and stratigraphic context of

Ediacara-type fronds from the Uratanna Formation, in the Angepena syncline,

northern Flinders Ranges. The simplified lithological log (bottom left and right)

shows the occurrence of fronds and Kullingia and the distribution of selected

trace fossils. The stratigraphical context of the UratannaFormation and a range of

selected faunal elements is shown schematically (top left). g, grained; vf, very

fine; f, fine; m, medium; c, coarse.


