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INTRODUCTION

Two-thirds of the Earth’s surface is covered by oceans, which 
represents a considerable challenge to investigations of global-
scale dynamic processes in the Earth’s interior and of tec-
tonic processes at ocean-continent boundaries. Long-term 
ocean-floor observations are also necessary to better constrain 
regional tectonics, such as on the western margin of North 
America where tectonics and seismic activity do not stop at 
the continental edge. In northern California, for example, the 
most active seismic zone is near the Mendocino triple junc-
tion and is mostly offshore, as are a number of hazardous faults 
such as the San Gregorio and Hosgri faults and part of the San 
Andreas fault. Much effort has been expended to deploy net-
works of seismic stations in the western United States, most 
recently broadband stations, with the simultaneous goals of 
monitoring the background seismicity, understanding modes 
of strain release, documenting seismic hazards, and providing 
constraints on crustal and upper-mantle structure. However, 
because there are very few offshore islands in central and north-
ern California, practically all stations are located on the conti-
nent. As a consequence, the study of plate-boundary processes, 
as afforded by regional seismological investigations, is heavily 
skewed on the continental side of the San Andreas fault (SAF) 
system. Offshore seismicity is poorly constrained, both in loca-
tion and in mechanisms, as is crustal structure at the edge of 
the continent.

The need for long-term ocean-floor seismic observatories 
has been widely recognized, and several national and interna-
tional efforts have been striving for more than two decades to 
resolve the technological and logistical issues associated with 
such deployments and establish such observatories (e.g., Le 
Pichon et al. 1987; Purdy and Dziewonski 1988; Purdy 1995; 
Forsyth et al. 1995; Montagner and Lancelot 1995; Suyehiro et 
al. 2002, 2006).

In April 2002 we deployed a broadband seismom-
eter station 40 km off the coast of Monterey Bay, at a water 
depth of 1,000 m (Romanowicz et al. 2003, 2006) through 
a collaborative effort between the Monterey Bay Aquarium 
Research Institute (MBARI) and the Berkeley Seismological 
Laboratory (BSL). The Monterey ocean bottom broadband 
station (MOBB) has been operating continuously since then, 
with data loggers and battery packages exchanged approxi-
mately every three months using the MBARI remotely oper-
ated vehicle (ROV) Ventana. At the time this paper went to 
press, preparations were underway to connect MOBB to the 
Monterey Accelerated Research System (MARS) fiber-optic 
cable (http://www.mbari.org/mars), scheduled for the end of 
February 2009.

 The MOBB is located west of the San Gregorio fault, one 
of the major faults of the SAF system, in a region characterized 
by diverse topography. A wide, gently sloping continental shelf 
is found to the north, the 1,500-m deep Monterey Canyon is 
just south of the MOBB, and a narrow shelf is present in the 
Monterey Bay and further to the south (Figure 1). 

The MOBB includes a three-component broadband 
Guralp CMG-1T seismometer that is sensitive to ground veloc-
ity over a wide frequency range, from 50 Hz to 2.8 mHz (360 s). 
The seismometer is mounted in a titanium pressure vessel, 
which is placed inside a 53-cm-diameter by 61-cm-deep cylin-
drical PVC caisson, buried in the ocean floor. Data have been 
collected continuously onsite at a sampling rate of 20 samples/s 
for more than six years. Details of the deployment and the 
onsite data collection system are described in Romanowicz et 
al. (2003, 2006). At the same site, a differential pressure gauge 
(DPG) (Cox et al. 1984) and a current meter measure local 
pressure and ocean-bottom current speed and direction. These 
auxiliary sensors, sampled continuously at a rate of 1 sample/s, 
are an essential part of all long-term broadband ocean-bottom 
seismometer deployments, as they help reduce the considerable 
long-period noise due to infragravity ocean waves and ocean 
currents through post-processing (e.g., Dolenc et al. 2007). 
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 ▲ Figure 1. (A) Location of the MOBB and MOISE stations in Monterey Bay, CA, against seafloor and land topography. The 1997 MOISE 
experiment, in which a similar system was deployed in a similar manner for a period of three months, was a cooperative program spon-
sored by MBARI, U.C. Berkeley, and the INSU, Paris (Stakes et al. 1998; Romanowicz et al. 1998). During the MOISE experiment, valu-
able experience was gained on the technological aspects of such deployments, which contributed to the success of the present MOBB 
installation. The location of the MARS cable is also indicated, with its termination close to the present MOBB site. (B) Location of the 
MOBB (red) and the BDSN seismic stations (blue) shown against the seafloor and land topography. Background seismicity (ANSS 
catalog, 1968–2006, M 3.5+) is shown in black. Locations of the NOAA buoys closest to the MOBB are shown in yellow. Fault lines from 
the California Geological Survey’s database are shown in red.
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INTERFACING MOBB TO THE NEWLY DEPLOYED 
MARS CABLE IN MONTEREY BAY

MOBB is fortunate to be located only 3 km away from the 
MARS science node, and is one of the first instruments sched-
uled to be connected to the cable, eliminating the need for 
periodic exchange of the battery and data package using ROV 
and ship, as well as allowing us to acquire seismic data from the 
seafloor in real time.

The MARS observatory (http://www.mbari.org/mars/)
consists of a 52-km electro-optical cable that extends from 
a shore facility in Moss Landing out to a seafloor node in 
Monterey Bay (Figure 1). The node installation was completed 
in November 2008, and it now can provide power and data to 
as many as eight science experiments through underwater elec-
trical connectors. MOBB is located ~ 3 km from the node and 
will be connected to it in February 2009 through an extension 
cable installed by the ROV Ventana, with the help of a cable-
laying toolsled. The data interface at the MARS node is 10/100 
Mbit/s ethernet, which can directly support cables of no more 
than 100 m in length. To send data over the required 3-km dis-
tance, the signals pass through a science instrument interface 
module (SIIM) at each end of the extension cable (Figure 2). 
The SIIMs convert the MARS ethernet signals to digital sub-

scriber line (DSL) signals, which are converted back to ethernet 
signals close to the MOBB system. Power from the MARS node 
is sent over the extension cable at 375 VDC and then converted 
to 28 VDC in the distal SIIM for use by the MOBB system.

The electronics module in the MOBB system has been 
refurbished to support the connection to the MARS observa-
tory. The low-power autonomous data logger has been replaced 
with a PC/104 computer stack running embedded Linux. 
This new computer runs an object ring buffer (ORB), whose 
function is to collect data from the various MOBB sensors 
and forward it to another ORB running on a computer at 
the MARS shore station. There, the data can be archived and 
then forwarded to a third ORB running at the U.C. Berkeley 
Seismological Laboratory. The Linux system will acquire data 
(via RS232) from the Guralp digitizer included in the seis-
mometer package, data (via ethernet) from a Q330 Quanterra 
24-bit A/D converter that digitizes data from the DPG, and 
will poll and receive data (via RS232) from the current meter. 
A copy of all data will be stored on a flash disk as a backup to 
prevent loss of data during any telemetry outage. The data will 
be transmitted continuously and in real time over the MARS 
cable to the Berkeley Seismological Laboratory, where they will 
be integrated in the northern California earthquake moni-
toring system operated jointly by the Berkeley Seismological 
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 ▲ Figure 2. Components of the cabled observatory: the MOBB system integrated into the MARS network. MARS-provided compo-
nents and components of the current MOBB installation are shown in blue. Components shown in red are those installed or replaced 
as part of our current NSF-funded upgrade. When the data arrive at UC Berkeley, they will be incorporated in the joint UCB/USGS real-
time earthquake notification system and made publicly accessible online at the NCEDC. 
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Laboratory and the U.S. Geological Survey at Menlo Park. The 
data from all northern California broadband and short-period 
seismic stations are available from the Northern California 
Earthquake Data Center (NCEDC; http://www.ncedc.org/
ncedc).

The new system uses off-the-shelf hardware and open-
source software and will serve as a versatile prototype for data 
acquisition in real time from future instruments, both analog 
and digital, connected to seafloor cabled observatories.

NOISE AND DATA FROM THE MOBB 
OBSERVATORY

As is also the case on land, but exacerbated by the dynamic 
ocean environment, two main sources of noise affect data from 
broadband seismometers installed on the ocean floor: environ-
mental noise and signal-generated noise due to local site effects. 

Figure 3 shows a comparison of noise spectra on the vertical and 
east-west components at MOBB and several land stations of the 
Berkeley Digital Seismic Network (BDSN; Romanowicz et al. 
1994), on a quiet summer day and on a stormy winter day. Noise 
levels in the microseismic band (1–15 s) and infragravity band 
(25–200 s at MOBB) change considerably with the weather. 
In particular, the infragravity peak, visible primarily on the 
vertical component, becomes stronger and wider in frequency 
during stormy days (e.g., Dolenc et al. 2005). MOBB provides 
valuable data to help understand the generation of infragrav-
ity waves and their relation to the Earth’s low-frequency “hum” 
(e.g.. Rhie and Romanowicz 2006; Webb 2008). Burial of the 
seismometers under the ocean floor is essential to minimize this 
noise source. On the other hand, signal-generated noise can be 
particularly severe for shallow buried broadband seismometers, 
as illustrated in Figure 4, which shows noise due to reverbera-
tions in the sediments under the station, following the P and 

1 10 100 1000
−200
−180
−160
−140
−120
−100

−80

Quiet (2004.236)

Z

1 10 100 1000
−200
−180
−160
−140
−120
−100

−80

Stormy (2005.027)

Z

1 10 100 1000
−200
−180
−160
−140
−120
−100

−80

Period (sec)

PS
D

 (1
0*

lo
g(

m
/s

2 )2 /H
z) E−W

1 10 100 1000
−200
−180
−160
−140
−120
−100

−80

Period (sec)

PS
D

 (1
0*

lo
g(

m
/s

2 )2 /H
z) E−W

MOBB
FARB
SAO
YBH

 ▲ Figure 3. Comparison of vertical component (top) and E/W component (bottom) noise recorded at MOBB and three other stations 
of the BDSN network on two days in 2004 and 2005 when no significant earthquake signals were recorded: a “quiet day” (left), and a 
“stormy” day (right), as assessed by the mean wave-height recordings at a nearby NOAA buoy in Monterey Bay (Figure 1B). Spectra 
were calculated using four hours of data. The USGS high- and low-noise models for land stations are shown in black (Peterson 1993). 
Increased noise levels for periods 20 to 300 sec are observed at MOBB on both quiet and stormy days, as well as at the island station 
FARB (Farallon Islands) on the stormy day. The noise level at MOBB, between 10 and 20 sec, is comparable to the land station YBH, one 
of the quietest stations of the BDSN. Note how the height and also the width of the infragravity noise band increases on the vertical 
component on stormy days.



Seismological Research Letters Volume 80, Number 2 March/April 2009 201

pP waves. This noise is unavoidable short of installing the seis-
mometer in a deep borehole (e.g.. Collins et al. 2001; Suyehiro 
et al. 2002), but much of it can be removed by post-processing, 
using several possible approaches (Figure 4).

The data acquired in real time will help constrain 
moment tensors of earthquakes occurring on near-shore and 
offshore faults and for which onshore stations provide poor 
azimuthal coverage. Single-station reliable moment tensors 
can be obtained using MOBB data for nearby M > 3.5 events 
(e.g., Romanowicz et al. 2006). Importantly, the real-time data 
acquisition demonstrated here can be ported to other settings, 
such as the cabled observatory in the Pacific Northwest (e.g., 
http://www.ooi.washington.edu) or other cabled observatories 
that may be deployed offshore California or in other parts of 
the world. 
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