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Abstract. We present a three-dimensional shear velocity model of the whole"
mantle developed using S H waveform data. The model is expressed horizontally in
terms of spherical harmonics up to degree 12 , and vertically in terms of Legendre
polynomials up to degrees 5 and 7 in the upper and lower mantle, respectively. What
distinguishes this model from other tomographic models published to date is (1)
the theoretical normal mode-based wave propagation approach, where we include
across branch mode coupling terms in order to model the body wave sensitivity to
structure along the path more accurately; (2) the wave-packet weighting scheme
which allows to balance contributions from high-amplitude and low-amplitude
phases, increasing the resolution in some parts of the mantle. We also relax the
constraints on the Moho depth, which is allowed to vary in the inversion, thus
absorbing some uncertainties in crustal structure.The resulting model is generally
in good agreement with other recent global mantle S velocity models and with some
regional models. The rms profile with depth has more power than other models in
the upper mantle/lower mantle transition region and the zone of increased power
and low degree structure near the base of the mantle is confined to the last 500 km
in depth. This model provides a particularly good fit to the non-hydrostatic geoid
through harmonic degree 12 (79% variance reduction), as well as good fits to
observed splitting functions of S velocity sensitive mantle modes, indicating that

both large-scale and small-scale features are really well constrained.

Introduction

The first global tomographic models of the Earth’s
mantle were derived separately for the upper and the
lower mantle using different data sets, primarily long-
period surface wave phase velocity measurements for
the upper mantle [Nataf et al., 1986; Montagner and
Tanimoto, 1991] and short-period P wave travel times,
as collected by the International Seismological Centre
(ISC), for the lower mantle [Dziewonski et al., 197T;
Dziewonski, 1984; Inoue et al., 1989]. Waveform mod-
eling was first introduced for the purpose of modeling
the upper mantle [Woodhouse and Dziewonski, 1984]
and the corresponding modeling technique was based
on normal mode summation, with the reconstruction of
the phase of surface waves primarily in mind. The first
attempts to apply this technique to the whole mantle
were made by Woodhouse and Dziewonski [1987] and
Tanimoto [1990]. A review of global mantle tomogra-
phy is given by Romanowicz [1991].
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While much interest remains in the study of the up-
per mantle using surface wave techniques [e.g., Zhang
and Tanimoto, 1993; Ekstrom et al., 1995; Trampert
and Woodhouse, 1995], the accumulation of high-quality
digital data from the expanding international global
seismic network [e.g., Integrated Research Institutions
for Seismology (IRIS), Geoscope, Federation of Digi-
tal Seismic Networks (FDSN)], has made it possible to
consolidate the waveform approach in whole mantle to-
mographic inversions and to develop techniques for the
complementary measurement of long-period body waves
le.g., Woodward and Masters, 1991a, b]. Current whole
mantle tomographic models thus make use of a mix of
techniques applied to digital waveform data, trying to
jointly exploit a combination of free oscillation spec-
tral measurements, and the phase informationin surface
waves and body waves, in order to achieve better depth
and spatial resolution in the mantle [e.g., Woodward et
al., 1993; Su et al., 1994; Johnson et al., 1994].

The waveform inversion techniques have built upon
the methodology developed more than a decade ago by
Woodhouse and Dziewonski [1984], who assumed that
a seismogram is only sensitive to the horizontally aver-
aged structure along the great-circle path between the
source and the receiver. The validity of this approx-
imation, which we will refer to as the ”"path average
approximation” (PAVA), has been verified both theo-
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retically and numerically for the case of long period sur-
face waves [Mochizuki, 1986; Park, 1987; Romanowicz,
1987; Li and Romanowicz, 1995]. It has also been ap-
plied to body waves, [ Woodhouse and Dziewonski, 1987,
Tanimoto, 1990], but it is much less valid in this case,
since it fails to represent the preferential sensitivity of
body waves to structure along the ray path. In order
to remedy this shortcoming, long-period absolute and
differential travel time measurements are made and in-
terpreted in the framework of geometrical ray theory
[Woodward and Masters, 1991a,b; Su and Dziewonsks,
1991]. The main disadvantage of this ray approach
is that the usable portion of seismograms is limited
to well isolated phases, which severely limits sampling
of the mantle. More recently, the PAVA and travel
time approach have been used simultaneously in the
hope that they would compensate each other’s draw-
backs [Dziewonski and Woodward, 1992; Woodward et
al., 1993; Su et al., 1994].

Accounting accurately for the effects of lateral het-
erogeneity on body waves is a computationally inten-
sive and rather prohibitive task, although the theoret-
ical tools for this exist at the present time within the
framework of normal mode theory [e.g., Lognonne and
Romanowicz, 1990; Geller and Hara, 1993]. Recently,
Li and Tanimoto [1993] demonstrated that the ray char-
acter of long-period body waves can be brought out
by a normal mode theoretical approach if cross-branch
modal coupling is considered in an asymptotic fashion.
The original version of the theory presented by Li and
Tanimoto [1993] follows the approach developed by Ro-
manowicz [1987] and involves the complete lineariza-
tion of phase perturbation terms, an approximation not
valid beyond very short times after the event. In a re-
cent contribution [Li and Romanowicz, 1995] (hereafter
referred to as paper 1), we have introduced a nonlinear
method to overcome this deficiency. The method is re-
ferred to as the "nonlinear asymptotic coupling theory”
(NACT). We also provided an efficient algorithm for the
calculation of partial derivatives with respect to model
parameters. In paper 1, we focused on the compari-
son of the NACT with the more traditional PAVA. We
found that, in particular, for a given data set, NACT
yields better resolution in the lower mantle. The two
models obtained using PAVA and NACT respectively
differed increasingly at decreasing spatial wavelengths
and model NACT performed better in predicting the
observed geoid.

In the present study we apply the NACT inversion
technique to a larger data set of SH seismograms. Since
the formulation of NACT has been presented in paper 1,
we shall not repeat it here. In what follows, we give de-
tailed descriptions on data selection, weighting scheme,
and some modeling considerations. We also present the
results of formal resolution tests, which are informative
in interpreting the inversion results. We assess the va-
lidity of our model by examining how successful it is
in predicting independent seismic and geophysical ob-
servations. We finally compare this model with other
existing whole mantle models and discuss its geophysi-
cal implications.
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Data Selection and Weighting Scheme

In this study, two kinds of waveform data are consid-
ered, both extracted from transverse component traces,
obtained by appropriately combining the two horizontal
component records for each source-receiver pair. The
first kind consists of 9368 SH accelerograms (which,
in contrast to displacement seismograms, emphasizes
higher frequency components) of body waves, low-pass
filtered with a cutoff frequency of 1/32 Hz and a cor-
ner frequency of 1/37 Hz. The second consists of 7849
SH accelerograms of mantle Love waves of the first
and second orbits (G1 and G3), low-pass filtered with
a cutoff frequency of 1/80 Hz and a corner frequency
of 1/100 Hz. The high-frequency content of the data is
somewhat larger than in some recent global waveform
inversions, which typically low-pass filter with a cutoff
frequency lower than 1/40 Hz for body waves| Tanimoto,
1990; Su et al., 1994]. The advantage of using shorter-
period waveform data is that they have higher resolu-
tion due to their shorter wavelengths and that smaller
earthquakes, which have higher corner frequencies, can
be used. On the other hand, shorter period waveform
data are more difficult to model, as pointed out by
Woodhouse and Dziewonski [1984]. For example, the
data variance reductions are 3% for the body waves and
—12% (variance increased) for the mantle waves when
comparing waveform synthetics obtained using the pre-
liminary reference Earth model (PREM) [Dziewonski
and Anderson, 1981] as the Earth model and Harvard
centroid moment tensor (CMT) solutions [Dziewonski
et al., 1981] for the source parameters to our observed
waveforms. In contrast, Dziewonski et al. [1993] re-
ported that with the same Earth and source models,
the variance reduction for their body wave data set with
a cutoff frequency of 1/45 Hz was 28% and that for
their mantle wave data set with a cutoff frequency of
1/135 Hz was 30%.

Seismograms recorded near the epicenters or their an-
tipodal points (A < 15° or A > 165°) are not selected
since the asymptotic coupling theory breaks down near
A=0or A=180° [Li and Tanimoto, 1993].

The data were recorded at 85 seismographic stations
of of IRIS, Geoscope, Chinese Digital Seismic Network
(CDSN), and RSTN networks. The geographic distri-
bution of these stations is shown in Figure la. The seis-
mograms used in this study are from 716 earthquakes
occurring between 1977 and 1992. The epicenter distri-
bution of these events is shown in Figures 1b and lc.
The scalar moments of the events span 2 orders of mag-
nitudes, from 5 x 1017 to 5 x 10'® N m. We avoid using
very large events to prevent possible complications from
their long source-time durations, which make the point
source assumption invalid.

We manually select windows in the time domain (Fig-
ure 2) in order to use only those portions of data which
are associated with major energy arrivals. Obviously,
this yields a big saving in computation of mode cou-
pling. Another reason for windowing is that it gives
us flexibility on how to weigh different phases in the
inversion. For example, if we consider the whole wave
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Figure 1. (a) Distribution of seismographic stations whose recordings are used in this study.
(b) Distributions of epicenters of shallow events (depth<100 km). (c) Distributions of epicenters

of deep events (depth > 100 km).

train in Figure 2a as a block, the Sy phase will be over-
whelmed by large-amplitude phases (e.g., SS and S,) in
the inversion, considering that waveforms are matched
according to the I3 norm. However, information carried
by the Sy phase is very valuable, because of its strong
sensitivity to the lowermost part of the mantle, which
is sampled by fewer waves. The windowing scheme en-
ables us to assign weights to different phases with more
flexibility.

Generally speaking, the data covariance matrix Cy
used in the inversion (see next section) has both diag-
onal and off-diagonal non trivial elements. While the

diagonal elements of the matrix represent the error in
a specific datum, off-diagonal elements quantify the in-
dependence of the error between the two corresponding
data. For example, unmodeled small-scale structure of
the Earth causes highly correlated errors if the data are
associated with waves having similar paths. Although
there are ways to assign values to off-diagonal elements
assuming some error models for the data, the inversion
of the matrix C4 is impractical for a very large data set
(the number of data points involved in this study is of
the order of a million). Here we take a pragmatic ap-
proach. We simply set the off-diagonal elements of the
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Figure 2a. Low-pass filtered (f < 1/32 Hz) SH body wave seismogram of January 19,1988,
Chile earthquake recorded at Geoscope station CAN. In both Figures 2a and 2b the observed
seismogram is plotted on the top trace; and the synthetic seismogram calculated from the spher-
ical reference model PREM [Dziewonsk: and Anderson, 1981] is plotted on the bottom trace for

reference. Only the data within the indicated windows are used in the inversions. The time scales
are in seconds.
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Figure 2b. Low-pass filtered (f < 1/80 Hz) SH mantle-wave seismogram of 04/22/1987 Japan
earthquake recorded at GDSN station GRFO.
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data covariance matrix to zero, but we weigh down data
if their errors are significantly correlated with errors in
the remaining data set.

We introduce a weighting function w for each datum
such that the corresponding diagonal element of the in-
versed data covariance matrix C;l is proportional to
w?. We assume that data belonging to the same “wave
packet”, which consists of data within a time window
such as those shown in Figure 2, have the same weight
w. Three factors are taken into account in constructing

' (1)

where w,. characterizes the error in the data, w, mea-
sures the redundancy of the data points within a wave
packet, and w, quantifies the redundancy of the whole
wave packet with respect to the other wave packets
which sample the same regions of the mantle. Eval-
uation of these factors requires assumptions, which, to
a certain extent, can be ad hoc. We explain how we
assign these factors in Appendix A.

W = WeWn Wy,

Inverse Problem for Earth Structure
and Source Parameters

Although the main goal of this study is to determine
global three-dimensional mantle structure, it is impor-
tant to address the issue of earthquake source parame-
ter estimation. The two problems cannot be completely
separated. Formally, we may write for the seismogram
of the sth earthquake recorded at the rth receiver:

Urg(t) = f(t;XE,X_,;I‘,-), (2)
where t is the time, X g represents 3-D structure of
the Earth, X, describes the source parameters of earth-
quake s, and r, is the (known) location of the receiver.
Functional f represents the theoretical formalism used
to calculate the synthetic seismogram. Generally speak-
ing, both Earth structure X g and source parameters X,
are unknown and need to be determined from the equa-
tion. Although it is possible to simultaneously invert
for both, we choose an iterative scheme, in which we
alternatively solve for either structure parameters Xg
or source parameters X;, keeping the other set of pa-
rameters fixed at the values obtained from the previous
iteration.

Inversion for Earth Structure

In this step, we keep fixed the source parameters X,
of all the earthquakes in our data set. We use the Har-
vard CMT solutions [Dziewonski et al., 1981] as initial
source parameters. Our data set is a collection of dis-
crete time series, d, representing the used portions of
seismograms corresponding to different sources and re-
ceivers. We seek a (finite dimensional) set of model
parameters, x, which represents the 3-D Earth model.
Under the assumption that both d and x have Gaussian
distributions with covariance matrices C4; and C;, re-
spectively, a stochastic solution x [e.g., Jackson , 1979;
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Tarantola and Valetie, 1982] is one which minimizes the
objective function

d(x) = [f(x)-d]TC;'[f(x)—d]
+  (x —x0)TC;* (x — x0) (3)

where X is the a priori value of x and represents our
knowledge on the Earth before the inversion. When the
forward theory f(x) is a nonlinear function, the mini-
mum of &(x) is found by the iterative application of the
recursion

xiy1 = xi + (AT C A +C ) AT CF (d—f(x:))
— C;'(xi —xo)] (4)

where A; is the matrix of partial derivatives

e [,..

(5)

In this study we use the nonlinear asymptotic cou-
pling theory of paper 1 to calculate synthetic seismo-
grams f(x). In paper 1, an algorithm for calculating
the partial derivative matrix was also presented. The
evaluation of the data covariance matrix C4 was given
in the previous section. In the next section we will dis-
cuss the problems associated with the model covariance
matrix C, and the a priori model xg.

Inversion for Earthquake Source Parameters

Under the assumption that earthquake sources can be
represented as points in both time and space, we use the
concept of centroid moment tensor (CMT) [Dziewon-
ski et al., 1981] to model earthquake sources. For
each earthquake, there are 10 parameters describing the
CMT solutions, which are the six independent compo-
nents of the moment tensor [Dziewonski et al., 1981],
the centroid origin time, and the three centroid coordi-
nates of the hypocenter. Assuming a 3-D Earth model,
the inversion problem for the CMT solution can be
solved using a formalism similar to the one presented
in the previous subsection. The essential difference is
that partial derivatives are calculated with respect to
the CMT source parameters rather than with respect
to structure parameters. In Appendix B, we give some
useful expressions for partial derivatives with respect to
the CMT scurce parameters using NACT.

Modeling Considerations

We invert for models which represent 3-D deviations
from a reference model. Since only SH components are
used in this study, we model lateral heterogeneity in
terms of mantle shear velocity perturbation from the
reference model. The contribution of the perturbation
in compressional velocity and density is small and hence
ignored, a common practice in global waveform mod-
eling [e.g, Woodhouse and Dziewonsk: 1984; Tanimoto,
1990]. In order to account for strong lateral heterogene-
ity in the crust, we also introduce undulations of the free
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surface and of the Moho depth. We do not attempt in
the present study to invert for anelastic structure, which
would require taking into account focusing effects and
therefore off great circle plane propagation [e.g., Ro-
manowicz, 1987, 1990, 1995]. The anelastic structure
assumed is that of PREM [Dziewonski and Anderson,
1981] and is kept fixed. We are therefore not taking into
account all the information contained in the wave am-
plitudes and this is a shortcoming common to all elastic
tomographic mantle models up to now.

Ellipticity Corrections

In this study the spherically symmetric Earth model
PREM [Dziewonski and Anderson, 1981] plus the as-
sociated hydrostatic ellipticity model, calculated using
Clairaut’s equation [Jeffreys, 1970], are used as the ref-
erence model. To correctly account for the effect of
the hydrostatic ellipticity is a delicate and important
matter, in particular because of the geodynamical im-
portance of non hydrostatic ellipticity in the Earth’s
mantle, as discussed further in the ”results and discus-
sion” section. First, we have found that for the seismic
data as used in this study (7' ~ 40 s), it is very im-
portant to convert receiver and source latitudes from
geographic (as reported in catalogs) to geocentric (as
required by the theory). The error due to the lack of
such a conversion can be as large as the sum of all other
ellipticity effects. Another important factor is the pre-
cision in calculating the effect on normal modes due to
hydrostatic ellipticity. Standard expressions in the case
of normal modes without coupling were given by Wood-
house and Dahlen [1978]. Woodhouse and Dziewonski
[1984] pointed out that there is rather delicate cancel-
lation, in calculating the splitting effect of the ellip-
ticity in the case of isolated multiplets (no coupling),
between the contribution of internal structure and that
of boundaries, such as the surface. This is also true for
the case when coupling between modes is considered,
as we do here. In Appendix C we extend the technique
of Woodhouse and Dziewonski [1984] for the calculation
of the ellipticity effect on normal modes, to the case of
multiplet coupling.

Crustal Corrections

The importance of the effect of lateral heterogene-
ity in the crust on modeling mantle velocity anomalies
has been pointed out previously [e.g., Woodhouse and
Dziewonski, 1984; Montagner and Tanimoto, 1991]. In
developing their model M84C, Woodhouse and Dziewon-
ski [1984] introduced an a priori crustal model to correct
for the crustal effect. Such an approach has been fol-
lowed by numerous authors [e.g., Zhang and Tanimoto,
1993; Su et al., 1994]. A problem with this approach is
that the uncertainty in the a priori crustal model can
bias the inversion results for velocity anomalies at the
top of mantle and the extent of the bias is unknown.
This could potentially affect the answers to some geo-
physically very important questions.

In this study, we attempt to investigate the problem
by a simultaneous inversion for the Moho undulation
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and S-velocity structure in the mantle. Such an in-
version allows us to perform resolution analyses to see
to what extent we can distinguish the crustal structure
from the mantle velocity perturbation. We start with
an a priori crustal thickness model in which we take
a topography-bathymetry model (ETOPO5, 1992) as
the perturbation to the ocean floor of the PREM model
[Dziewonski and Anderson, 1981). The a priori model
of Moho undulation is constructed the same way as by
Woodhouse and Dziewonski [1984], and represents the
difference in Moho depth between the continental and
oceanic regions. In the inversion, we allow further per-
turbations in the Moho undulation as required by the
data while keeping the surface topography (the ocean
floor of PREM) fixed as in the a priori starting model.

From the point of view of stochastic inverse formal-
ism, the crustal corrections by Woodhouse and Dziewon-
ski [1984], and some more recent studies are equivalent
to assuming that the a priori crustal model has zero
variance (precisely known), while in this study we relax
this assumption.

In order to obtain a realistic Moho model, one needs
data of higher frequency than those used in this study.
Reflection data from the Moho could also be crucial.
The purpose of inverting for Moho here is to reduce
the bias in our mantle model due to the error in the
starting a priori crustal model: the inversion result of
Moho undulations should also incorporate, to a large
extent, the effects of strong lateral velocity variations
within the crust, which we do not consider explicitly.

Model Parameterization

We use spherical harmonics, up to angular degree 12,
as basis functions to represent lateral variations of struc-
ture. This is a natural choice for the NACT approach
(paper 1).

For the radial dependence of the perturbation in S ve-
locity, we choose to use Legendre polynomials [ Dziewon-
ski, 1984; Woodhouse and Dziewonski, 1984]. We pa-
rameterize the upper and lower mantle separately; that
is, we use two independent sets of Legendre polynomials
in the upper and lower mantle. This gives us flexibility
to model the upper and lower mantle with different res-
olutions, which is convenient since we have better con-
straints on the upper mantle than on the lower mantle
structure due to surface wave data and depth phases
of body waves. We truncate the Legendre expansion
at degree 5 in the upper mantle and at degree 7 in the
lower mantle.

In recent studies some authors have used different
polynomial sets. For example, Su et al. [1994] used
Chebyshev polynomials. Under the restriction that only
the diagonal elements of the model covariance matrix
(see (3)) are allowed to be non zero (simple damp-
ing of model parameters), the two sets of polynomi-
als could have advantages and disadvantages relative to
each other. However, if we specify our a priori con-
straints using all the necessary elements of the model
covariance matrix, there is no difference in the inversion
results using one or another set of polynomials (see Ap-
pendix D for a proof).
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In summary, we expand the relative perturbation in
S velocity in each shell (either the upper mantle or the
lower mantle) by

qmax 12 s

222

q=0 s=0t=0

(a5, cos e + b3, sintg]p () fy[z(r)],  (6)

where pt(6){cost¢,sintp} are spherical harmonics as
defined in Stacey [1977], vs(r) is the background S ve-
locity evaluated for PREM [Dziewonski and Anderson,
1981}, gmax = 5 for the upper mantle and gmax = 7
for the lower mantle, {af,,b?,} are the coefficients to
be determined in the inversion, and z(r) is reduced,
normalized radius [Dziewonski, 1984; Woodhouse and
Dziewonski, 1984]:

bvs(r,0,9)/vs(r) =

(7)

z = (2r—7670—Tmoh )/(Tmoh —T670)

for the upper mantle and

(8)

for the lower mantle, with 7,05, 7670, and r.mp being
the radii of the Moho, 670-km discontinuity, and core-
mantle boundary, respectively. For the perturbation in
the surface and Moho radii we simply have

z = (2r—"emp —7670)/ (T670—Temb)

12 s

br = Z Z[an costg + by sin to)pt(6),

s=0t=0

(9)

where ér can be either perturbation in surface radius,
6r5yr, or in Moho radius é7,,,. Thus the complete
model parameters are, in the notation used in (3),

x:({ait,bgt}u,{azt,bqt}z,{am st}u{asta bst}m) (10)

where the first set of parameters, {}, is for the upper
mantle, the second, {}i, is for the lower mantle, and the
third, {}s, and the fourth, {},,, are for the surface and
Moho, respectively. Altogether there are 2704 model
parameters, among which 169 parameters are for the
surface undulation and are kept fixed in the inversion.

Model Covariance Matrix

The model covariance matrix C; (Cf. (3)) represents
our a priori knowledge [ Tarantola and Valette, 1982] of
the Earth structure x. Since seismic data for the given
distribution of the sources and receivers do not sam-
ple the mantle perfectly, inverse problems for mantle
structure are typically mix determined. There is often
a range of solutions which can explain the data equally
well. A certain specification of C; helps to single out,
from among them, a particular solution which possesses
certain characteristics. We seek a solution which can ex-
plain the data well and, at the same time, is small and
smooth.

We specify the model covariance matrix C, such that
the value of xT C;x, often referred to as the penalty
function, takes the form
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where m = 6vg/vs is the S velocity model in the
mantle, the radial intergration [dr is from the core-
mantle boundary to the Moho, the surface intergra-
tion [dQ is over the surface of the unit sphere, V;
denotes the surface gradient operator, 74 is the radius
just above the 670-km discontinuity, r_ is the radius
just below the 670-km discontinuity, In equation (11),
71,72, .. .No are empirical damping parameters, which
are adjusted by trial and error to achieve reasonable
size and smoothness of the model rms perturbations
as a function of depth. Substituting (6) and (9) into
the right side of (11), the elements of C;' are readily
obtainable by identifying corresponding terms on both
sides of the equation. The 7; term on the right side of
(11) corresponds to the requirement of smallness. The
72 and 73 terms constrain the solution to be smooth
radially. The n4 term imposes horizontal smoothness.
We introduce the 75, 76, and 77 terms to reduce the dis-
continuity in the perturbation model across the upper-
lower mantle boundary. Lateral heterogeneity is not
necessarily continuous across the boundary. Given the
long wavelengths of the data used in this study, how-
ever, we think any sharp discontinuity could just be an
artifact due to our particular separate parameterization.
In order to study whether or not lateral heterogeneity
has a sharp discontinuity across the boundary, higher
frequency data, signals reflected from the 670-km dis-
continuity in particular, are needed [e.g., Shearer and
Masters, 1992]. Finally, the ng and 79 terms make the
perturbation in Moho depth smaller and smoother.

Formal Resolution Analysis

In the resolution analyses, we attempt to investigate
the effect on the inversion results of the a priori model
covariance matrix, which is introduced to reduce the ef-
fect of errors in the data at the cost of resolution loss.
Since the forward theory used in this study, NACT, is
nonlinear in terms of the relationship between the model
and data, the inverse problem has to be solved itera-
tively. As for formal resolution, however, we choose to
perform conventional linear analysis. In such an analy-
sis we assume that we can write

f(x) (12)

where A is the partial derivative matrix and Ax = x —
Xo. Thus the minimum of the objective function (3) is
given by

= f(XO) + AAx,
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Ax = (ATC;'A + ;1) TATC M d - f(x0)]. (13)

In the resolution analyses, we calculate synthetic data
for a given input model Ax;:

d —f(x0) = AAX;,. (14)

Thus the output model is obtained by inversion,

AXgyt = GAxin,

(15)

where G is the resolution matrix [Aki and Richards,
1980] and is given by
G = (ATC;'A +C; 1) 'ATC A (16)
Note that the resolution matrix becomes the identity
matrix when no a priori constraints are applied (C;! =
0). In addition to the forward theory used to calculate
the partial derivative matrix A, the resolution matrix
depends upon two factors: (1) the data set, determined
by the source-receiver distribution, data selection and
weighting scheme Cg; and (2) the model covariance ma-
trix C;. In all the experiments presented in this section,
we keep these two factors the same as used in the real
inversion.
The purpose of the first resolution experiment is 1) to
see whether the uncertainty in the Moho undulation will
significantly affect the inversion results in the mantle;

Moho \*
{
670
CMB

-1 0 +1

Figure 3. Resolution test on contamination of man-
tle tomographic result due to the uncertainty in Moho
depth. A large Moho undulation (with +15 km peak
value) model is introduced to represent the uncertainty.
The correlation coefficient between lateral heterogene-
ity in the mantle and the lateral variations in the input
Moho model is given as a function of depth. The solid
curve is for the input mantle model, and the dashed
curve is for the output mantle model obtained after in-
version.
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Moho

670
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Figure 4. The rms amplitude of the input (solid curve)
and output (dashed curve) models in the resolution test
described in text.

and 2) to assess how much of a realistic input mantle
model can be recovered in the inversion. In construct-
ing the input model, we let the Svelocity structure in
the mantle be the same as that of model S12/WM13
[Su et al., 1994], reparametrized using Legendre poly-
nomials in depth. We introduce a checkerboard Moho
undulation with a peak amplitude of £15 km to repre-
sent the uncertainty in the a priori Moho model. The
input Moho model consists of a spherical harmonic an-
gular degree 5 and azimuthal order 1 sine term, which
has very weak correlation with the input mantle lat-
eral heterogeneity (see the solid curve in Figure 3). We
correlate the output mantle model with the pattern of
the input Moho model and the correlation coefficient,
as a function of depth, is shown as the dashed curve
in Figure 3. Although a slightly increased correlation
coefficient can be seen in some regions, in particular the
top 300 km of the mantle, the effect of unmodeled Moho
depth variation on the mantle result is small, especially
considering that a large input Moho model is used.

In Figure 4 we show the comparison of the rms lateral
heterogeneity in the input and output models. In gen-
eral, there is a loss of amplitude due to the damping in
the inversion throughout the mantle, with most of the
loss occurring at the bottom of the lower mantle. Note
also that the extent of amplitude loss depends upon the
smoothness of the input model. The smoother the input
model, the smaller the loss. In order to further demon-
strate this, we compare the power spectra of the input
and output models in Figure 5. In the lower mantle,
some higher-degree components lose more power than
lower-degree components. For example, in the depth
range 1700-2300 km, approximately 25% power is lost
for degree 2 and 50% is lost for degree 12.
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Figure 5. Power spectra, as a function of angular degree, of the input (darker-shaded bars)
and output (lighter-shaded bars) models in the resolution test described in Section 5. The input
mantle model is S12/WM13 of [Su et al. , 1994]. Vertically averaged power spectra are given for
the following depth ranges: (a) 0-500 km; (b) 500-1100 km; (c) 1100-1700 km; (d) 1700-2300 km;
and (e) 2300-2900 km. Each panel is normalized by its maximum value.

In Figure 6 we show the result of a “checkerboard
test” for the whole mantle. The input model has a de-
gree 12 and order 6 horizontal pattern (degree 12 is the
highest degree in our spherical harmonic expansion).
Radially, it has one zero crossing in the upper mantle
and four zero crossings in the lower mantle. An equa-
torial vertical cross section of this model is shown in
Figure 6a. The recovered model is shown in Figure 6b.
The pattern of the model is preserved satisfactorily in
the inversion. The amplitude is also recovered well ex-
cept in some regions around 2000 km depth.

In paper 1, we used a smaller data set to demonstrate
that NACT does better than the conventional PAVA
in resolving a degree 8 checkerboard pattern. In Fig-
ure 6c we show the corresponding result, obtained using
PAVA, a degree 12 checkerboard pattern, and the cur-
rent data set. The only difference between Figures 6b

and 6c¢ is that different theories are used in calculat-
ing the partial derivative matrix. Clearly, the NACT
still has better resolution power than the PAVA for the
larger data set used in this study. One may argue that
the shortcoming of a less accurate theory can become
insignificant if enough data are available. Supposing
this is true, we still emphasize the importance of the
theory because a data set which is sufficient for one
problem will become insufficient for more complicated
problems. Finally, we note that the comparison between
Figures 6b and 6c¢ does not give the error due to the use
of the less accurate PAVA, since the resolution matrix
depends on the interaction between the partial deriva-
tive matrix A and the model covariance matrix C, not
directly on the error in the theory used in constructing
A.

We note, in particular, that the resolution we obtain
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Figure 6. Vertical cross sections showing the results
of a checkerboard test for the whole mantle. (a) Input
model; (b) output model after inversion using NACT;
(c) output model after inversion using PAVA.
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in the lowermost mantle using the PAVA approxima-
tion (Figure 6¢c) appears better than that shown by Su
et al. [1994, Figure 13], although they have a larger
waveform data set and, in addition, travel time data.
We attribute the difference mainly to the fact that we
window individual body wave packets, which allows us
to give appropriate weight to weaker phases in the seis-
mograms, such as Sg;¢, improving resolution in the low-
ermost mantle (see Figure 2a).

Results and Discussion

The final model, SAW12D (S velocity, asymptotic
theory, waveform data, degree 12 model of version D), is
tabulated in Table A1'. As mentioned earlier, the sur-
face topographic correction is taken from the ETOPO5
data set and is fixed in the inversion. The Moho un-
dulation and mantle S velocity perturbations are the
result of the inversion.

Of the order of 3-4 iterations are required for the
model to converge, when starting from a spherically
symmetric model such as PREM, and one iteration is
sufficient to invert for perturbations in source param-
eters. We note that of the order of 35% of the total
variance reduction is achieved by allowing adjustments
in source parameters, indicating that this step is sig-
nificant. In this paper we will not examine the pertur-
bations in source locations and mechanisms obtained,
postponing this until a later contribution, in which we
will show results of inverting both SV and SH sensitive
waves, to constrain all elements of the seismic moment.

The final variance reductions obtained with model
SAW12D are 40% for the body waves and 52% for the
surface wave data. The variance reductions using a re-
cently published 3-D S velocity model S12/WM13 [Su
et al., 1994] are —6% and 46% for body waves and sur-
face waves, respectively. The poor fit to the body waves
using S12/WM13 comes mainly from the discrepancy
in small-scale features between the two models. Unlike
the path average approximation, which desensitizes the
data to higher-degree structure, NACT predicts very lo-
calized sensitivity kernels [Li and Tanimoto, 1993; pa-
per 1]. In Figure 7 we compare the sensitivity kernels of
an SS phase predicted using PAVA and NACT. In order
to compute a synthetic seismogram that matches the
data, NACT requires an accurate local velocity model
along the ray path, whereas PAVA needs only the hori-
zontally averaged velocity structure, between the source
and receiver, to be correct. Indeed, if we use PAVA
the variance reduction to the body wave data from
S12/WM13 is increased to 17%. Of the order of 3-4 it-
erations are required at most for the model to converge,
when starting from a spherically symmetric model such

! Supporting data table is available on diskette or via ANony-
mous FTP from kosmos.agu.org directory APEND (Username =
anonymous, Password = guest). Diskette may be ordered from
AMerican Geophysical Union, 2000 Florida Avenue, N.W., Wash-
ington, DC 20009 or by phone at 800-966-2481; $15.00. Payment
must accompany order.
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Figure 7. Sensitivity kernels for an SS phase, using
two different theoretical approaches: (a) PAVA and
(b) NACT. Black and white shades indicate positive
and negative values of kernels, respectively. The back-
ground gray shade indicates zero sensitivity. The star
and triangle indicate the locations of the source and re-
ceiver, respectively. The thin curve represents the ray
predicted using the geometrical ray theory.

as PREM, and that one iteration is sufficient to invert
for perturbations in source parameters. We note that
of the order of 35% of the total variance reduction is
achieved by allowing for adjustments in source param-
eters, indicating that this step is important. In this
paper we will not examine the perturbations in source
locations and mechanisms obtained, postponing this un-
til a later contribution, in which we will show results of
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inverting both SV and SH sensitive waves, and which
will allow us to constrain all elements of the seismic
moment.

Prediction of Independent Seismological
Measurements

A powerful test to assess the quality of a model is to
determine how well it can predict independent seismic
data. Using model SAW12D and the geometrical ray
theory, we have calculated synthetic differential travel
times for the S-SS and S-ScS data set of Woodward
and Masters [1991a, b]. The variance reduction is 27%
for the S-SS data and 25% for the S-ScS data. These
numbers are rather low, compared with the variance
reductions given by model S12/WM13 (62% and 66%,
respectively), which was developed using the travel time
measurements. The question now is whether the travel
time data, as interpreted by the geometrical ray theory,
require a significantly different model. In order to an-
swer this question, we performed a simultaneous inver-
sion of both data sets. The resulting model, SAWT12D,
reduces the data variance by 66% and 62% for the S-
S5 and S-ScS data sets, respectively. In order to assess
the change in the model caused by addition of trav-
eltime data, we plot the correlation coefficients, as a
function of depth, between SAWT12D and SAW12D
and between SAWT12D and S12/WM13 in Figure 8a.
SAWT12D is perfectly correlated with SAW12D in the
upper mantle, and the correlation in the lower mantle is
still good, compared to the correlation with S12/WM13.
In Figure 8b we compare the profiles with depth of rms
lateral heterogeneity of these three models. The change
introduced by the addition of the travel time data is
relatively small and confined to the lower mantle, par-
ticularly between 1500 and 2500 km depth.

Another kind of independent seismological measure-
ments comes from free-oscillation data. For well-isolated
multiplets, we may retrieve splitting function coeffi-
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Figure 8. (a) Correlation coefficients as a function of depth between models SAW12D and
SAWT12D (solid curve) and between models SAW12D and S12/WM13 (dashed curve); b) com-
parison of rms velocity variations as a function of depth for models SAWT12D (solid curve),
SAW12D (dashed curve), and S12/WM13 (dotted curve).
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Figure 9. Comparison of splitting functions as (left) observed and (right) predicted using
SAW12D. The splitting functions are truncated at spherical harmonic degree 4.

cients from long-period seismograms [Woodhouse and
Giardini, 1985; Ritzwoller et al., 1986]. Splitting func-
tions impose constraints on large-scale structure of even
spherical-harmonic degrees. In Figure 9 we show a com-
parison between splitting functions retrieved from the
observation and those predicted using SAW12D. These
splitting functions belong to modes which are primar-
ily sensitive to S velocity structure in the mantle. The
observed splitting functions are retrieved from seismic
spectra of June 9, 1994 Bolivia and October 4, 1994,
Kuril Islands events. Although no modal data have
been used in the inversion, SAW12D can predict these

splitting functions well.

Spatial Distribution of Structural
Heterogeneities

The rms fluctuations as a function of depth of model
SAW12D is shown as the thick solid curve in Figure 10,
compared with other models. SAW12D agrees very well
with recently published S12/WM13 of Su et al. [1994]
(the dashed curve in Figure 10) in the top 400 km
of the mantle. The level of lateral heterogeneity of
the former is somewhat higher around the 670 km-
discontinuity. The largest difference between these two
models is in the D" region, where SAW12D has signif-
icantly stronger lateral heterogeneity, in better agree-
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Figure 10. The rms velocity variations as a function of
depth for models: SAW12D (solid curve), S12/WM13
(dashed curve), M12B12 (dotted curve), and SKS12
(dashed-dotted curve).

ment with some recent mantle models [Johnson et al.,
1994; Liu et al., 1994] (the dotted and dashed-dotted
curves in Figure 10). The spherically symmetric part of
model SAW12D differs from PREM by less than 0.2%
in most of the mantle, except at the top of the upper
mantle, where it is faster by 0.7%.

In Figure 11 we show the starting and final Moho
undulation models. The starting model is the same as
used by Woodhouse and Dziewonski [1984] and repre-
sents the difference between oceanic and continental re-
gions. The final model, which is damped toward the
starting model in the inversion, has a smaller ampli-
tude in general. Some tectonic features are seen in the
final model. For example, shields have deep roots, and
younger ocean floor near mid-ocean ridges is generally
thinner than older oceanic crust. Some small-scale fea-
tures are suspicious and will need to be corrected in
the future, for example, by adding shorter-period sur-
face wave data. As discussed in subsection on modeling
considerations/crustal corrections”, the goal of invert-
ing for Moho depth is primarily to minimize contami-
nation of the mantle part of the model by potentially
erroneous crustal structure.

In Plate 1, we present maps of model SAW12D at
various depths. The S velocity anomaly at a depth of
150 km follows the major tectonic features as in pre-
vious tomographic upper mantle models. Mid-ocean
ridges are associated with slow anomalies. The slow-
est anomalies are located under Baja California, the
triple junction of Pacific-Nazca-Antarctic plates, and
the East African Rift. Back-arc regions of some ma-
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jor subduction trenches are also slow. The most strik-
ing fast anomaly is underneath the Canadian Shield.
The other tectonically stable areas, such as West Aus-
tralia, Antarctic, Siberia, Russian Platform, Brasil,
West Africa Craton, and central west Africa (Zaire) are
fast. Older ocean floor near subduction zones is faster
than young ocean floor near mid-ocean ridges.

At a depth of 250 km, the pattern of lateral hetero-
geneity remains similar to that at 150 km depth, while
the amplitude decays. The dominance of high velocities
beneath shields is still clear, supporting the hypothe-
sis of the continental tectosphere [Jordan, 1975, 1978],
whereas the strongest slow features are associated with
the East Pacific and Antarctica rises. This is in agree-
ment with other upper mantle studies [Montagner and
Tanimoto, 1991; Su et al., 1994; Trampert and Wood-
house, 1995].

Between 250 km and 350 km, the distribution has
started to change. The shield signature has disap-
peared in North America, and an elongated zone of
slow anomalies is emerging in the central Pacific, go-
ing through Hawaii. At a depth of 450 km the shield
signature has disappeared practically everywhere, ex-
cept in west Africa, which is still fast, indicating that

a Moho depth: input

Hom

Figure 11. (a) The a priori starting model and (b) the
final model of perturbations in Moho radius. The darker
shades indicate shallower depth.
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Plate 1. Relative S velocity perturbations of model SAW12D shown at various depths. The
average shift with respect to the PREM model (Cog coefficient) at each depth has been removed
before plotting.

the maximum depth of continental roots [Jordan 1975,
1978] is shallower than 450 km. A striking feature is
the fast anomalies associated with western Pacific sub-
duction. There is some indication of faster than average
anomalies in western South America, likely associated
with the subduction there. Faster than average veloci-
ties are also seen under Tibet, in agreement with other
global models [Su et al., 1994]. The slowest regions
have now definitely moved away from the ridge, and in
the Pacific, they now appear to follow a north-south
trend parallel to the East Pacific Rise, but centered on
Hawaii and the Pacific-Antarctic-Australian triple junc-

tion. This gradual offset of slow anomalies to the west
becomes apparent at around 300 km depth and is well
established at 450 km depth. At 600 km depth, higher
than average velocities have replaced low ones under the
East Pacific Rise. The shift to the west of the center
of low velocities in the Pacific, between the uppermost
mantle (0-250 km) and the transition zone (400-650 km)
has been reported previously and detected in the low-
est harmonic degrees of upper mantle structure [e.g.,
Montagner and Romanowicz, 1993].

In Plate 1, we also plot the S velocity anomalies above
(600 km depth) and below (750 km depth) the 670-km
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SAWI2D depth = 1000 km

Plate 1. (continued)

discontinuity. At a depth of 600 km, the strongest pos-
itive anomalies are the fast features associated with the
western Pacific subductions. Fast anomalies associated
with the South American subduction zone can also be
seen, though not as strongly. We see slab related fast
velocity anomalies on both sides of the discontinuity,
especially beneath Fiji, Tonga, Indonesia, and South
America. However, the fast anomalies in the west Pa-
cific fade out at 1000 km depth. Although the limited
vertical resolution of the model does not allow us to
provide definitive evidence either for or against the slab
penetration across the 670-km discontinuity, the areas
where the fast anomalies subsist at 750 km (Fiji-Tonga
and Indonesia) are in good agreement with results of re-

gional studies [ VanDerHilst, 1993, 1995]. In Figure 12,
we compare the vertical stack of model SAW12D be-
tween 580 and 725 km depths to the slab model of Ri-
card et al. [1993]. Note that the latter model is based
simply upon Cenozoic and Mesozoic plate motion and
thus does not take into account lateral heterogeneity
caused by any other sources, in particular potential hot
rising currents. This comparison is, however, useful in
that it provides a framework for, on the one hand, inter-
preting the fast anomalies in our modeling and, on the
other hand, validating some features of the slab model.
Except for the strong fast feature near the East Pa-
cific Rise, the fastest anomalies correlate well with the
slab model in their general trend. We note that this
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Figure 12. Comparison of (a) SAW12D S velocity
structure, stacked between 580 and 725 km depths, and
(b) the slab model of Ricard et al. [1993] in the same
depth range.

intriguing fast feature near the East Pacific Rise is also
present, in this depth range, in the more regional model
of Grand [1994]. We also note that the comparison with
the slab model reveals that the region of slow anomalies
in the central Pacific cannot be explained simply by a
truncation of the slab model at low harmonics. This
is also the case for slow anomalies under Eurasia and
Africa. The slow velocity “corridor” in the central Pa-
cific starts breaking apart at 750 km depth (Plate 1),
indicating that it may originate near the base of the up-
per mantle. At a depth of 850 km, the distribution of
heterogeneity is similar to that at 750 km, with weaker
amplitudes.

At a depth of 1000 km, the large-scale high- and
low-velocity patterns have been replaced by small-scale
anomalies that are responsible for the “white” charac-
ter of the heterogeneity spectrum throughout the mid
mantle. We note remaining blobs of high velocities un-
der Fiji-Tonga and South America, the latter in agree-
ment with Grand’s [1994] observation of the lost Faral-
lon plate. At a depth of 1500 km, the pattern of lateral
heterogeneity is characterized by the lack of dominant
large-scale structure, in agreement with the results of
Su et al. [1994]. The maximum velocity anomaly is the
slow feature underneath central west Africa, which is
still striking at 2000 km depth. Starting at 2500 km
depth, we see a fast Pacific rim with slow central Pa-
cific and south Africa, a pattern in the lowermost man-
tle which has been reported in practically every global
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mantle model published so far. Unlike S12/WM13 and
some other models which have a dominant spherical
harmonic degree 2 component, however, SAW12D is
still rich in higher degrees at this depth.

In the D" region, represented here at a depth of
2800 km, as in other models [Su et al., 1994; Johnson
et al., 1994], long wavelength features become dominant
again: fast Pacific rim, slow central Pacific and South
Africa. The details of the pattern in D" needs to be
validated through comparison with other, more specific
studies of this part of the mantle. The fast. velocity
anomaly under the Caribbean, not as apparent in other
global models, is in agreement with Grand’s [1994] re-
gional model. Also, the fine structure in the central
Pacific, with a minimum of velocity located around 30°
south seems to correlate well with preliminary results
on the geographical thickness pattern of a thin very low
velocity zone at the base of D" (E. Garnero, personal
communication, 1995). Although we use ScS phases, we
cannot resolve here any possible trade-off between lat-
eral variations in D” and undulations of the core-mantle
boundary. For these, both reflected and transmitted
waves are needed, as well as shorter-period measure-
ments.

Wavelengths of Lateral Heterogeneity

The spectral character of mantle heterogeneity pro-
vides important constraints for geodynamicists. Nu-
merical simulations of mantle convection [e.g., Tackley
et al., 1993; Bunge et al., 1995] do not give realistic geo-
graphic locations of lateral heterogeneity. Instead, they
attempt to predict realistic spectral characteristics of
lateral heterogeneity. The scale of lateral heterogeneity
in global tomographic models is also the subject of cur-
rent debate [e.g., Snieder et al., 1991; Su and Dziewon-
ski, 1991, 1992; Zhang and Tanimoto, 1991].

In Figure 13 we show vertically averaged power spec-
tra of SAW12D in each of 10 layers throughout the man-
tle. In Figure 13a, each panel is normalized to its own
maximum value. In Flgure 13b, normalization is the
same for all panels and clearly shows the much larger
power of lateral heterogeneity at the top and the bot-
tom of the mantle.

In the top 300 km of the mantle, lateral heterogeneity
is dominated by spherical harmonic degrees 2,4,5,6. Be-
yond degree 6, the power decays with increasing degree.
The strong degree 1 component present in S12/WM13
at this depth range [see Figure 6a Su et al., 1994] is
absent here.

Between 300 and 500 km depths, the spectrum is
dominated by degree 1. Although the radially in-
tegrated degree 1 component through the mantle is
smaller for SAW12D than that for S12/WM13 due to
much decreased total power in this depth range, it is still
particularly interesting to know where this anomaly is
compensated in the Earth so that the total contribution
to the geoid is zero, as required by the choice of the ge-
ographic coordinate system. In Figure 14 we show the
degree 1 component of S velocity anomaly at 400 km
depth. It presents roughly an ocean-continent distri-
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Figure 13. Power spectra of model SAW12D as a function of spherical harmonic degree. The
spectra are vertically averaged over each layer, for each degree. (a) Spectra in eachlayer are
normalized to their maximum value. (b) The normalization is the same for all layers.

bution. This suggests that the degree 1 component of
density anomaly is not completely compensated within
the crust and needs to be compensated by deeper struc-
ture in the upper mantle.

In the upper-lower mantle transition zone (500-800 km
depth), lateral heterogeneity is dominated by degree 2.
Among all the degree 2 components, the largest term is
of order 0 (Cy0). This Cz¢ component in the transition
zone, which is stronger than in some previous global
models [e.g., Dziewonski et al., 1993; Su et al., 1994],
accounts for, to a very large extent, the observed ex-
cess ellipticity of the non hydrostatic geoid, as will be
explained in subsection on ”excess ellipticity of geoid
interpreted in a dynamic Earth”.

In the lower mantle, below 1000 km, the spectrum
is rather white until we reach the D" region. In model
S12/WM13 of Su et al. [1994], in contrast, the spectrum

of lateral heterogeneity is white only down to about
2000 km depth, with the bottom 1000 km of the man-
tle characterized by a dominant degree 2 pattern. In
SAW12D, the degree 2 pattern emerges strongly only
at the very bottom of the mantle (see the bottom panel
of Figure 13b). This reddening of the spectrum in the
D" region supports the hypothesis that the D" region
is, at least partly, a thermal boundary layer [Jarvis and
Peltier, 1986]. The dominance of degree 2 in the depth
range 500-800 km, although not as strong, may also sug-
gest a thermal boundary layer component in this depth
range.

It is interesting to point out that some of these spec-
tral characteristics are in good agreement with the re-
sult from a recent study of numerical simulations of
mantle convection [Tackley et al., 1993], in which the
upper mantle has a peak at degree 6 in the spectrum
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Figure 14. The distribution of degree 1 S velocity anomaly of SAW12D at 400 km depth.

of lateral heterogeneity, whereas the bottom 400 km of
the mantle is dominated by degrees 2 and 3.

Mantle Lateral Heterogeneity and Geoid

Any seismic tomographic model has finite resolution
and is subject to uncertainties. Generally speaking, we
can resolve larger-scale (lower-degree) features better
than smaller-scale (higher-degree) ones. In this study
we attempt to resolve lateral heterogeneity up to spher-
ical harmonic degree 12. It is important to assess
whether high-degree components of the model are rep-
resentative of the real Earth. One of the independent
tests is to see how well we can predict the non hydro-
static geoid on the Earth’s surface.

The relationship between seismic mantle lateral het-
erogeneity and the non-hydrostatic geoid has been stud-
ied by many authors [e.g., Hager et al., 1985; Forte et
al. 1993; Corrieu et al., 1994]. The basic ideas involved
in these studies are [Richards and Hager, 1984]: (1) the
velocity anomalies from global tomographic models rep-
resent density anomalies in the mantle; and (2) the den-
sity anomalies in the mantle drive viscous flow and,
in particular, introduce dynamic topography at the
boundaries, which together with the internal density
anomalies determines the geoid on the surface. Thus the
prediction of the geoid depends not only on the seismic
tomographic result but also on the viscosity structure
in the mantle and the conversion factor between density
and seismic anomalies.

As an approximation, the mantle viscosity n and the
conversion factor ¢ are assumed to be laterally homoge-
neous in the mantle. Namely,

n = n(r) (17)
and

8p(r, 0, ¢)/p(r) = c(r)évs(r, 6, ¢)/vs(r), (18)

where p(r) and vs(r) are the value of density and S

velocity of the reference spherical model (PREM of
Dziewonski and Anderson [1981]), respectively. Al-
though numerous researchers [e.g., Hager and Richards,
1989; Ricard and Vigny, 1989; Mitrovica and Peltier,
1992; Forte et al., 1993; Corrieu et al., 1994] have in-
ferred the profiles of n(r) and ¢(r) using various data
and techniques, the uncertainty in these parameters is
still very large.

In our experiment, we adopt a very simple model of
n(r) and c(r). We use a three-layered viscosity model:
constant viscosity 7;; in a 100-km-thick lithosphere, con-
stant viscosity 7y, in the remaining upper mantle, and
constant viscosity 7;, in the lower mantle. Since the
synthetic geoid is independent of the absolute viscosity,
we take 7,, = 1. The lithosphere and the lower mantle
are assumed to have higher viscosity: m; = m, = 30.
The conversion factor is assumed to increase from 0.3
in the whole upper mantle to 0.4 in the lower mantle.
This profile of viscosity and conversion factor, also pre-
sented as dashed lines in Figure 15a, is within the range
of those reported in the literature. With such a simple
model of (r) and ¢(r) and seismic model SAW12D, the
synthetic geoid does not correlate very well with the
observed one in the lowest degrees, implying that the
overall model of viscosity and conversion factor needs
to be adjusted (see the next subsection). For the higher
degrees (6-12), for which the synthetic depends mainly
upon the upper mantle structure, the synthetic geoid
correlates with the observed one very well. In Figure 16,
the darker shaded bars represent the significance level of
the correlation coefficients, for each degree from 6 to 12,
between synthetic and observed geoid. The high corre-
lation indicates that the small-scale features of model
SAW12D represent the real Earth structure in the upper
mantle well. In Figure 16, we also show (lighter shaded
bars) the correlation between the observed geoid and
the a priori surface undulation model used in the inver-
sion. The predicted geoid correlates with the observed
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Figure 15. (top) Viscosity and (bottom) density conversion coefficient c(r) profiles as a function
of depth. Dashed lines represent starting models, and solid lines are the results after optimizing
the fit to the observed geoid, using SAW12D. Two different starting models for ¢(r) are tested:
(a) similar to predictions from mineral physics experiments, and (b) similar to Karato’s [1993]
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Figure 16. Correlation between the observed and pre-
dicted geoid for spherical harmonic degrees 6—12 (darker
shaded bars). The prediction is done using the viscosity
and density model as indicated by dotted lines in Fig-
ure 15a. The lighter shaded bars indicate correlation be-
tween the observed geoid and topography model. Cor-
relation bars with a significance level lower than 60%
are not shown.

one systematically better than does the surface undu-
lation, and this is also true for the Moho model. This
indicates that the geoid-related signal in SAW12D does
not come merely from the crustal corrections.

Excess Ellipticity of Geoid Interpreted
in a Dynamic Earth

As mentioned above, many authors have attempted
to infer viscosity and velocity-density conversion factor
in the mantle by optimizing the fit of the synthetic geoid
to the observation. In particular, they found [e.g, Forte,
1989; Ricard and Vigny, 1989; Forte et al., 1993] that
it was difficult to simultaneously fit the degree 2 or-
der 0 non hydrostatic geoid (excess geoid) and its other
components, using previous seismic tomographic mod-
els. The source of the excess ellipticity is, in particular,
of geodynamic interest: if the attempts to account for
the excess ellipticity in terms of mantle heterogeneity
should fail, other sources must be sought to explain it.

Here we attempt to predict the surface geoid from
SAW12D by optimizing radial viscosity structure n(r)
and velocity—density conversion factor ¢(r). Among
others, Corrieu et al. [1994] have developed a procedure
to directly invert for n(r) and c¢(r). We use this tech-
nique and a starting model of n(r) and c(r) as shown by
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Figure 17. Correlation between the predicted and ob-
served geoid. The darker shaded bars are for SAW12D
and the lighter shaded bars are for S12/WM13. Corre-
lation bars with a significance level lower than 60% are
not shown.

the dotted lines in Figure 15a. After inversion for #(r)
and c(r), the variance reduction for the observed geoid
(degree 2 to degree 12) reaches 79%. Figure 17 gives
degree-by-degree correlation between the predicted and
observed geoid. In order to see how well we can predict
the nonhydrostatic ellipticity of the geoid, Figure 18
shows the residual geoid for each azimuthal order of de-
grees 2 and 3, which are the dominant degrees in the
geoid and account for 86% of the total power between
degree 2 and 12. As a comparison, we repeat this ex-
periment with the same starting model of viscosity and
velocity-density conversion factor, replacing SAW12D
with model S12/WM13 [Su et al., 1994]. Here, the fi-

60%

0%

Ch0Ca1 831 Gz S22 C39C3p S35 C35 835 C33 833

Figure 18. Residual geoid of degrees 2 and 3 after
fit by predictions using SAW12D (darker shaded bars)
and S12/WM13 (lighter shaded bars), respectively, us-
ing the starting viscosity and density conversion model
shown by dotted lines in Figure 15a . The residuals are
normalized by the observed Cjo term.
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Figure 19. Depth profile of degree 2 and order 0 S ve-
locity anomalies. The solid curve is for SAW12D, and
the dashed curve is for S12/WM13.

nal variance reduction for the geoid after the optimizing
n(r) and ¢(r) is 66% (the same experiment with model
M12B12 [Johnson et al., 1994] yields a variance reduc-
tion of 67%). The degree-by-degree correlation between
observed and predicted geoid using S12/WM13 is shown
as the lighter shaded bars in Figure 17. The residual
geoid of degrees 2 and 3 for S12/WM13 is also shown in
Figure 18. It is clear from Figure 18 that the degree 2
and order 0 term of the geoid (Cyo), which is not well
explained by S12/WM13 and other previous models,
can be explained reasonably well using SAW12D. Fig-
ure 19 shows the Cao S velocity profile, as a function of
depth, for model SAW12D, as compared to S12/WM13.
Because the geoid Green’s function at degree 2 is pri-
marily sensitive to structure in the transition zone, we
infer that the better fit to the geoid degree 2 structure is
explained by the difference in relative values of the de-
gree 2 coeflicients and, in particular, Cyg, in the depth
range 500-900 km. Figure 20 shows a comparison of the
stacked degree 2 velocity structure, in this depth range,
for models SAW12D and S12/WM13. The white polar
caps indicate that SAW12D has relatively more ampli-
tude in Cy than S12/WM13, and this is largely what
contributes to the geoid fit.

We note that the inverse problem for viscosity and
velocity-density conversion factor, using seismic tomo-
graphic models as constraints, is very non unique. The
primary goal of the experiment described here is sim-
ply to demonstrate that the excess ellipticity and other
terms of the surface geoid can be explained in terms
of mantle lateral heterogeneity if appropriate 7(r) and
¢(r) are used. The resulting radial profiles of viscosity
and density conversion factor ¢(r) can therefore only be
discussed with caution. Having said that, we note nev-
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Figure 20. Degree 2 S velocity anomalies stacked be-
tween 500 and 900 km depths for models (a) SAW12D
and (b) S12/WM13.

ertheless that the inverted viscosity profile (Figure 15a)
exhibits a low-viscosity zone at the base of the upper
mantle, in agreement with some recent geodynamical
studies [e.g., Forte et al., 1993; Mitrovica, 1995]. Also,
the inverted density conversion factor remains high in
the lower half of the lower mantle, contrary to the pro-
file proposed by Karato [1993], which has a maximum
around a depth of 1400 km. We have verified that this
is not simply an artifact imposed by our starting solu-
tion: when using a model similar to Karato’s as a start-
ing model, the inversion produces a ¢(r) profile which
tends to flatten out the mid mantle maximum (see Fig-
ure 15b). Again, because of damping issues in the to-
mographic inversion, this observation is only tentative
at this point.

Another set of observables for which SAW12D pro-
vides encouraging fits are plate velocities: 88% vari-
ance reduction for the poloidal part, compared to 66%
for S12/WM13 (C. Lithgow-Bertelloni, personal com-
munication,1995).

Conclusions

We have presented a new 3-D S velocity model of
the Earth’s whole mantle, which has been derived us-
ing SH waveforms. This model is generally in good
agreement with other recent global mantle models, and
there are indications, from comparison with more re-
gional studies and independent geophysical observables,
that its small-scale structure is somewhat better con-
strained. Fits to the geoid and to plate motions at the
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80% level are particularly encouraging. Other whole
mantle models are being derived using a combination
of data, in particular travel time measurements. The
reason why we can get away with only waveform data
is due to the combination of two components of our ap-
proach which differ from that used in previous studies:
(1) windowing of body wave energy packets, which al-
lows us to weight down the highest-amplitude phases
with respect to lower-amplitude ones that contribute to
sampling of structure in an important way (e.g., Sgifs in
the lower mantle); and (2) the inclusion of cross-branch
coupling terms in the theoretical formalism, which pro-
vides a more realistic description of the sensitivity of
body waves to structure along the path.

While the computation time involved in our approach
is somewhat larger than for the classical PAVA approx-
imation, it is still within reasonable limits on current
generation fast computer workstations. One of the ad-
vantages of this approach is that it avoids mixing of
heterogeneous data sets, while maintaining good reso-
lution power. The next step is to extend this approach
to the P-SV case, which should increase the resolution
further, and is the subject of our current investigation.
It is also straightforward to extend this waveform mod-
eling approach to include focusing and attenuation in-
formation contained in the amplitudes and obtain bet-
ter constraints on the mantle anelastic structure [e.g.,
Durek et al., 1993; Romanowicz, 1995].

Appendix A: Scheme to Evaluate
Weighting Factors

In the following, we describe how we evaluate in prac-
tice each of the three factors w., wy,, and w, in con-
structing the weighting w, defined for each wave packet
as w = w,w,w, (see section on “data selection and
weighting scheme” in main text).

First, w, is introduced to characterize the error in
the data. Since the absolute values of many systematic
errors in waveform data are, to first order, scaled to
the amplitude of the wave packet, we simply put w, =
1/d, where d is the rms amplitude of the wave packet.
Errors falling into this category include those due to the
uncertainty in the source parameters, unmodeled effects
of off-great-circle focusing and defocusing, attenuation,
and high-degree structure, etc. If an estimate of random
observational noise were available, a more sophisticated
formula could be employed. However, this may not be
very crucial for this study since the data set has been
carefully examined and wave packets with high noise
level are excluded.

Factor w, measures the redundancy among the data
within a wave packet. Two extreme cases are that for
case a, each datum provides completely independent
information; and for case b, all the data can be repre-
sented by one of them and the rest of them are totally
redundant. Denoting the number of data points of the
wave packet by n, it is appropriate to set w, = 1 for
case a and w, = n~! for case b. We here simply take
the mid way of the two extremes and put w, = n~ /2.



22,266

Finally, we use w, to quantify the redundancy of the
whole wave packet with respect to wave packets sam-
pling similar ray paths. We introduce a “correlation fac-
tor” ¢;; for any given wave packet pair ¢ and j. When
two wave packets sample the same ray path, we set
cij = 1 (thus ¢;; = 1). When two wave packets have
“very different” ray paths, we let ¢;; = 0. We give
a recipe below to assign the correlation factor c;;. A
measurement of redundancy of wave packet i is Zj Cij

where the summation is over all the wave packets (in-
cluding 7). However, Y. c;; may be an overestimate
of the redundancy, since two wave packets with very
similar paths but for different earthquakes may have
independent errors. Thus we choose w, = (}; cij) "2
(note that 3. c;; > 1). In evaluating c;;, we take two
factors into account: ¢;; = pijgij. pij is either 1 or
0: if the two packets, ¢ and j, correspond to the same
seismic phase (say, both are S phases), p;; = 1; oth-
erwise, pi; = 0 (e.g. one is Sz and the other is SS
phase). Factor g;; (0 < g;; < 1) measures the geo-
metrical relationship between the corresponding source-
receiver pairs (i.e., it is defined for each path pair).
Again g;; = 1 and g;; = 0 unless the two paths have
some redundancy:

gij = B(h(si’sj))B(h(ri’rj))B(v(siysj))

ho ho Vo
v(rs, 7j) h(si, ;) h(rs, s;)
B2y p M) M o)
» B(v(s:;rj))B(v(r:;sj))’ (A1)

where hg and vg are desired resolution lengths in hori-
zontal and vertical directions, respectively (we set hg ~

Case 1: h(si, §)=0, h(rj, rj)>ho

&8;;=0

Case 3: h(si.5)<hy h(ri,r)=0

;>0

!
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2000 km and vy ~ 150 km in this study); h(p;, p;) is the
horizontal distance between point p; and point p;, with
p being either a source s or receiver r (e.g., h(s;, ;) is
the horizontal distance between the source of ith seis-
mogram and the receiver of the j seismogram); vertical
distances v(p;, p;) are defined similarly (v(r;,7;) = 0,
since all the receivers are on the surface); and the “co-
sine bell” function B is defined as
_Jo Jif e > 1
B(z) = { cos(Fz) ,if |z| < 1. (A2)
In Figure A1, we give a 2-D illustration (for the case of
v(p;i, p;) = 0) on how the redundancy index g;; works.
The first term on the right side of (A1) is nonzero for
case 3 in Figure 21; and the second term is nonzero for
case 4. Usually, at least one of the two terms is zero.
It is interesting to point out that g;; is also very use-
ful in selecting data. For a candidate seismogram %, the
value of ; Cijs where the summation is over all exist-
ing seismograms j, gives an indication on how valuable
this candidate seismogram is in terms of providing in-
dependent information.

Appendix B: Partial Derivatives With
Respect to Earthquake Location

Preliminaries

Let us start with equation (1) of paper 1, which gives
an expression of an acceleration seismogram u(t) based
upon first-order perturbation theory of normal modes,

u(t) = Rexp(:02t)S, (B1)

Case 2: h(si,sj)>h0 h(r;, ry<hg
&;=0

Case 4: h(s;,r;)<hy h(sj.r)<ho

8i>0

Figure Al. Two-dimensional schematic illustration on how redundancy index g;; works. In
each case, the small circles represent the sources of the events, and triangles are the receivers.
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where the real part of the right side of the equation
is understood, R and S are the receiver and source
vectors, respectively, and 2 represent the effect of the
Earth structure.
The elements R} of R represent receiver function of
the (k, m)th singlet and are given by
Y =v-uy, (B2)
where v is the “instrument vector” [Woodhouse and

Girnius, 1982) and u}* are the eigenfunctions of singlet
(k,m) , which take the form ’

U(r)Y,"™ (8, dr)er + V(1) V1Y™(6,, 6r)
— W(r.)e, x V1¥"(6:, ¢.). (B3)

up =

In (B3) U, V, W are known functions for a given refer-
ence spherically symmetric Earth model, (7., 6., ¢,) are
spherical polar coordinates of the receiver, (e,,eq,ey)
denote unit vectors in the coordinate directions, V; =
€50y + cosecleydy is the surface gradient operator.
YIN ™ are fully normalized generalized spherical har-
monics and related to those, Y;™, defined by Phinney

and Burridge [1973] through YV™ = /(21 + 1)/4xY,N™.

Using the complex basis {e_, ep, e} of Phinney and
Burridge [1973],

1
e_ = —(ey —ie B4
7350 ~ %) (B4)
€o — €, (B5)

1
ey = —(—eg —te B6
+= 5(meo —iey) (B6)

we may rewrite (B3)
uf' = UY"Meo + Q4(V — W)Y 1me_

+ AV + W), (B7)

where QY = [3(1 4+ N)(I — N + 1)]*/2. Then we ob-
tain equation (8) of Woodhouse and Girnius [1982] from
(82)
1 A
Ry = ) RuY™™,
N=-1

(B8)

where Riy are given in Table 1 of Woodhouse and
Girnius [1982].

Now we look at the elements, S;*, of the source vector
S in (B1). According to Woodhouse and Girnius [1982]
we can write

STt =EP*: M, (B9)

where M is the moment tensor of the earthquake and
ET is the strain tensor in the (k,m)th singlet. Note
that (B9) has a sign difference from equation (3) of
Woodhouse and Girnius [1982], because we use acceler-
ation instead of displacement, which also requires the
eigenvector u}* subject to the normalization

/ pou;c"* . ui’?'dv = 6k Omm! (BlO)
4
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rather than equation (5) of Woodhouse and Girnius
[1982].
In order to evaluate the strain tensor EJ* = %[Vuz‘

(Vup)T], we apply gradient operator V on both sides
of (BT)

Vup = !

T

1 . . N
+ [-(U-V4iW)e_eo + (V—iW)ege_]Q0Y;" 1™

QL 0NV — W)Y, me_e_

+ {Ueoeo + -}[—U + 04, Q4(V — iW)]e e
[T 4 ROV + W )e_e, TP

+ [%(U——V—iW)e+ eo + (V4iW )ege JQL Y H™
+ %Q’_ OV + i)Y Frme ey, (B11)

where an overdot denotes differentiation with respect to
7.

1 N
E = -4V +iW)e_e Y™
T

1 , o
+ EQS(X+1,Z)*(e0e_ +e_eo)¥; ™

. F N
+ [Ueoeo — S(ere- +e_ey )V

1 N
+ EQS(X —1iZ)"(ecey +eye0)Y'™
1 N
+ ;Qé,n;(v —iW)*e e, VP™, (B12)
where
X = V+ %(U -V)
o1
= W--w
T
1
F = ;[2U =11+ 1)V]. (B13)

We may also write the (symmetric) moment tensor

M = M. e.e. + Mgeseg + Mygege,
+ M,s(e e +ege,) + M, 4(e ey + ege,)
+ M9¢(ege¢, + e¢e9) (B14)

in terms of complex basis {e_, eg, e },

1 E
M = E(Mgg — M¢¢ + 21,Mg¢)e_e_
1 .
+ _\/E(Mra + 1.M,-¢)(eoe_ + e_eo)

1
+ M,,epeq — E(MM + M¢¢)(e+e_ +e_e+)

+ —M,s +iM,4)(eoet + e ep)

1
ﬁ(

1 .
+ E(Mag —_ M¢¢ - 21,M9¢)e+e+. (B15)

Substituting (B12) and (B15) into (B9), we obtain
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equation (9) of Woodhouse and Girnius [1982]:

2

sp= )" Sew¥™,
N=-2

(B16)

where Spy are given in Table 1 of Woodhouse and

Girnius [1982] with a sign difference as mentioned above.

Derivatives With Respect to Earthquake
Location

Since the calculation of derivatives of seismograms
with respect to 7, is relatively trivial, we shall only give
expressions of Vju, where the surface gradient operator
V; acts on the source coordinates. Applying V; on both
sides of (B1), we have

Viu = Rexp(iQt)V,S. (B17)
The element of VS is given, using (B9),
V,SP = (V41E)* : (B18)
Using
rV1E = }-Qf)n;n’_ 2V +iW)e_e_e ¥,7°™
T
1 1
+ Qéﬂ;[i(x +iZ) = ~(V +iW)]"
xe_(e_eg + epe_ )I?'l”zm
1 .
+ Qg[—n’ QL (VW) X+iZ)]" ere_e Y, 1™
+ QLU — (X +12Z)]"e_epeoY; '™
- —Qé[F—l—(X—i-qu)]*e_(e_e+ +epe )Y Im
+ [QOQ’I(XMZHF—zU] e, (e_eotege_ )Vo™
+ [QOQ (X—zZ)—I—F——2U e_(ereoteoey )Y
- EQS[F*'(X—Z'Z)]*%(P'—% RO A
QLU — (X — iZ)]*eyeoecy; '™
+ Q‘[ QLOL(V—iW)(X—Z)]*e_e e YV Him
+ 909‘2[-2-()( —iZ) — ;(V —iW)]* x
ey (eseo + eoey )V
1 .
+ QL0 ,(V — iW) e epe, YT, (B19)
T
we obtain
3
ViSp = ) Den¥N™, (B20)
N=-3
where
k . )
Diis = —;%(V FiW) (Moo — Myg F 2iMog)
x(teg — ie¢,) (B21)
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k on 2 . .
Diiz = —:—[(X:FZZ)———T—(V:FzW)](:tM,.g—zMw)
x(tep — iey) (B22)
ky Ly

(X Fi2)]
X(Mgo — M¢¢ F 2‘&M9¢)(:Feg - ie¢)
':j {[U (X2 M, "+ [FHXTiZ)]x

(Moo + Myy)} (Lee — "e«»)

Di+1 = —;[—(V FiW) —

(B23)

%[LO(X“ZHF"zﬂ](—JWra—iMTri»)

x(eg—iey) +3 ko [LO(X—zZ)-i—F 20
X(Mrg—zM,¢)(—eo—ze¢) (B24)
with Ly = (1+2)(I—1)/2, Lo = I(I+1)/2 and ky, being
defined by Woodhouse and Girnius [1982]:

kn =

1 [2!+1(l+n)!]1/2 (B25)

om | 4r (I—mn)!

The formal similarity between (B16) and (B20) sug-
gests a simple way to obtaining the NACT expressions
of Viu. Namely, V u takes the same form of equa-
tion (10) of paper 1 with the following substitutions.
On the left side of equation v — V;u; and on the
right side of equation: Ay — Ay, T,EB T£k) and
T,Ei? — Tg‘;),, where T,E,B and Tg) are defined in equa-
tions (A3) and (A4) of paper 1 and

Ar =) BRpV.Sy (B26)
(1) N~ N M N+M
Tkk,zz Zz ™M RenDins cos( 1r) (B27)
N=-1M=-3
1 3
TSczk)':Z ZiN+MRkNDkIM Sin(N+M‘If> . (B28)

N=—1M=3

It is important to notice that (B27) and (B28) are valid
in the great circle coordinates [Li and Tanimoto, 1993].
Finally, we note that although Ay = V14 is true, the
equations T;clk), = VlTISiz and Tg?, = VITISQ do not
hold in general.

Appendix C: Correction for Hydrostatic
Ellipticity

In principle, the lateral heterogeneity due to hydro-
static ellipticity can be treated as general lateral het-
erogeneity of angular degree 2 and azimuthal order 0,
and its contribution to a seismogram can be calculated
in the same way as nonhydrostatic lateral heterogene-
ity. For the particular reference spherical Earth model
used in this study (PREM of Dziewonski and Ander-
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son [1981]), however, special treatments are needed for
the ellipticity effect. Woodhouse [1980] gave a recipe
for calculating the coupling effect due to the pertur-
bations in Voigt bulk modulus, shear modulus, and
density. PREM, however, is an anisotropic (trans-
versely isotropic) model with five independent elastic
parameters A,C, L, N, F [Love, 1927]. Consequently,
the hydrostatic ellipticity causes lateral heterogeneity
in these parameters. Thus we need expressions for cal-
culating coupling effects due to the perturbations in
A,C,L,N, F, as well as in density.

Generalizing formulae of Woodhouse [1980] to the
transversely isotropic case and using his notation, we

can write for me,,

Tanimoto [1993],

as used in equation (20) of Li and

ZH, = [0+ 1)(2F +1)(2s +1)/(4m)]?
st
m' r s 1
X (1) ( —-m' 'm.)
X {/ [6zst] 7 dr—-z:r‘,,h,"t [zs]" } (C1)
0
where
6zst = 6Astfia+6cstc_'a
+ 6Lstjls+6Nath+6Fath+6pstR£2) (02)
and

zs = AA,+CC,+LL,+ NN,
+ FF,+ poR{M (C3)
where the effect of the Earth rotation (terms asso-
ciated with the rotation rate Q in equation (A17) of
Woodhouse [1980]) is omitted for simplicity and can be

added back in as needed, kernels Rgl) and R(, ) are de-
fined in Woodhouse [1980], 8§ A4,:,6C;:,6L,4,6N,y, 6 Fyy
are the coefficients in the spherical harmonic expansion
of heterogeneity in the material parameters of trans-
verse isotropy, 4,C, L, N, F are the associated kernels
A,,C,,L,,N,, F,; and A,,C,,L,,NMF are given by

A, =ff' B (C4)
¢, = vu B (C5)
= (XX'+22")BYT +(Z2x' - x2)iB{) (Cé)
1
N, = —ffBOF+ + (VY ww') B
b v vwiBE (1)
= [Uf + U f1BYY (C8)
A, = ffBOY (C9)
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é, = -UuBOF+ [VU’B(1)++V’UB(1)+]

+ ;[UW’ - U'W]iB,(,?,‘ (C10)

i,=[XX'+22'-VX'-V'X-W2'-V" Z)B{}

+ [ZXXZ4V 7V Z+XW'-WX'iBY) (C11)

N 1
N, = —ff B + (v + ww)BOY
1 . (2)—
+ SV - vw")iB{, (C12)
P, o= %(Vf'B,(,})“‘JrV’ B{)T)
1 7 n:p(l)—
+ (W' - WYiB) (C13)
with 1
= (20 -1+ 1)V] (C14)
= %[ZU' = +1)v'] (C15)
and
I+ NI+ N2
BM* = [lﬂ: 1)+t [(
sl ( ) ( )'(l N).

x (-1)”( _l;v 0 Iif) (C16)

For the asymptotic case | >> s and I’ >> s, which is

assumed in NACT [Li and Tanimoto, 1993], we have

BME _ 0,

sl if N = 1,2 (C17)

and we may rewrite (C1) in the form of
28 = [ 80t (0, 0¥ (6,8)%7 6, 9)an. (C18)

where

g

st

[625¢]r2dr — Zrﬁh;t[z,]i’} . (C19)
d

The effect of the hydrostatic ellipticity is given by
[Dahlen, 1968]

4 2 .

§As = 642bi0t| — - Zred (C20)
53
a2

86C1 = 612610y — - ZreC (C21)
5 3
ar 2 .

6L,t = 6326t0 ?’ﬂ' ‘3—7‘6L (022)
4 2 .

5Ny = 6426101) — - =reN (C23)

5 3
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§Fy: = B42610 %’i rel (C24)
8pst = 652650 4% . grep'o (C25)
R = —6,26t0\/g- gre (C26)
Sss = 5,2@0\/? : g[rego - %n%ﬂ]. (C27)

where € = ¢(r) is the hydrostatic ellipticity, the solution
of Clairaut’s equation [Jeffreys, 1970].

Appendix D: Equivalence of Legendre
and Chebyshev Polynomials
for Inverse Problems

For a given non negative integer N, we define Py|[-
1,1] to be the function space spanned by the polyno-
mial set {r% r!,...,7¥;» € [-1,1]}. Both Chebyshev
polynomial set {b,(r);r € [-1,1],n = 0,1,2,...,N}
and Legendre polynomial set {b,(r);r € [-1,1],n =
0,1,2,...,N} [e.g., Abramowitz and Stegun, 1965] are
complete sets of Py[-1,1]. Thus there exists an N x N
invertible mapping matrix M such that

b'(r) = Mb(r) (D1)

and
b(r) = M‘lb’(r), (D2)

where the nth (0 < n < N) element of function vector
b(r) is bn(r) and the nth element of function vector
b'(r) is b, (r).

For any p(r) € Pn[-1, 1], we may expand it in terms
of both {b,(r)} and {b/,(r)}:

p(r)

N
Z pnbn("’) = pr(r)

N
> pb,(r) = p " b(r), (D3)
=0

where p and p’ denote the coefficient vector (of dimen-
sion N) of Chebyshev expansion and Legendre expan-
“sion, respectively and the superscript 7' denotes matrix
transpose. By virtue of (D1) and (D2), we have

p=MTp’ (D4)

and

p'=(M")7p. (D)
Let us expand h(r) € Py[-1,1] in terms of {b,(r)}
with the coefficients h and g(r) € Py[-1,1] in terms
of {b],(r)} with the coefficients g’. If h and g’ satisfy

h=MTg’ (D6)

or
g = (M),

it is easy to prove that h(z) = g(z).

(D7)

LI AND ROMANOWICZ: GLOBAL MANTLE MODEL

Now suppose that we have two solutions to the in-
verse problem, y(r) € Pnl[-1,1] and 2(r) € Pn[-1,1],
obtained by iterative application of the recursion (4),
where y(r) is represented by its Chebyshev expansion
coefficients y and z(r) is represented by its Legendre
expansion coefficients z’. We want to demonstrate that
y(r) = 2(r) if we have the same a priori constraint.

The a priori constraint is given by the specification
of the a priori expected model and its probability dis-
tribution [Tarantola and Valette, 1982]. Suppose the a
priori expected model yo(r) = zo(r) has a coefficient
vector yo for Chebyshev expansion, then its coefficient
vector for Legendre expansion is

zo = (M™")yo. (D8)
The probability distribution of the a priori model is
given by the covariance matrix, which is defined, using
Chebyshev expansion, as

Cy =< byobys >, (D9)

where the angle brackets denote the expectation value
of the enclosed quantity. When Legendre expansion is
used, we have

< 62b62)" >
(M™NT < yobyT > M1
M~—HTe,Mm™1.

c =

(D10)

We demonstrate below, by induction, that z(r) =

y(r) (ie., 2oy = (M~ 1)Ty,, where the subscripts in-

dicate the iteration number). Since we already have
zy = (M~ 1)Tyo, we need only prove that zi,, =
(M~YTy;.y for zi = (M~1)Ty; given. From (4), we
have

., = 7+ (AT CrAL+ T
x (AT CM(d—f(z))—CL (2l ~2p)], (D11)

where A is the matrix of partial derivatives

oz’ z,:z: Ay = dz:
with "
A= [—(X)] . (D13)
ay y=Yy.

Thus, after some algebra, using (D8) and (D10), (D11)
becomes:

Ziyg = M {y: + (ATC;*A; + Czyl)_l
x [ATciMd —f(y:) — C; ' (yi — yo)I}
= (M YNy (D14)

In summary, the solution to the inverse problem is
independent of whether we choose Chebyshev polyno-
mials and Legendre polynomials as basis functions, if we
have the same a priori constraint on the solution. By
“the same a priori constraint,” we mean that it is the
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same function vector in Py[-1, 1] with the same proba-
bility distribution. However, the explicit coefficient ex-
pression of the same function in terms of different basis
functions is different and subject to transforms, such
as (D8). The coefficient expression of the same proba-
bility distribution, the covariance matrix, is subject to
transformations such as (D10).
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