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V. Lekić,1 M. Panning2 and B. Romanowicz1

1Berkeley Seismological Laboratory, 225 McCone Hall, University of California, Berkeley, CA 94720, USA. E-mail: lekic@seismo.berkeley.edu
2Department of Geological Sciences, 241 Williamson Hall, University of Florida, Gainesville, FL 32611, USA

Accepted 2010 March 15. Received 2010 February 19; in original form 2009 July 9

S U M M A R Y
Accurate accounting for the effects of crustal structure on long-period seismic surface waves
and overtones is difficult but indispensable for determining elastic structure in the mantle.
While standard linear crustal corrections (SLC) have been shown to be inadequate on the
global scale, newer non-linear correction (NLC) techniques are computationally expensive
when applied to waveforms containing higher frequencies and/or overtones. We devise, im-
plement, and verify a modified SLC approach that mimics the non-linear effects of the crust
without substantially increasing the computational costs. While theoretically less accurate than
the NLC approach, in practice, the reduced computational costs allow this ‘modified linear cor-
rection’ (MLC) technique to be applied at higher frequencies and using more detailed crustal
regionalizations than is possible with NLC. In order to validate the MLC technique, we use the
spectral element method to carry out a series of synthetic tests. These tests demonstrate that
MLC nearly eliminates the contamination of mantle isotropic structure by unmodelled crustal
effects, which can be substantial in the uppermost 150 km when using SLC. Furthermore,
we show that MLC significantly reduces contamination of anisotropic structure compared to
SLC, the inaccuracies of which are significant in the upper 250 km and can even obliterate
the mantle anisotropic signature at depths shallower than 100 km. Finally, we apply the MLC
technique to a real long period waveform data set and demonstrate the benefit of improved
crustal corrections on the retrieved model.

Key words: Surface waves and free oscillations; Seismic tomography; Computational seis-
mology; Crustal structure.

1 I N T RO D U C T I O N

Recordings of surface waves and overtones provide unparalleled
constraints on the structure of the Earth’s crust (e.g. Meier et al.
2007), upper mantle (e.g. Montagner & Tanimoto 1991), and tran-
sition zone (e.g. Ritsema et al. 2004). This is because they offer
excellent global coverage, and are sensitive to elastic and anelastic
structure in both the crust and the mantle. Yet, in order to deter-
mine the seismic velocities and anisotropy in the mantle, we must
disentangle the effects of the crust from those due to the sought-
after mantle structure. The ability of crustal effects to significantly
affect retrieved models of mantle velocities, even at long periods
and on large scales, was recognized as early as the pioneering work
of Woodhouse & Dziewonski (1984). Accounting for the effects
of crustal structure requires knowing the velocity structure of the
crust as well as accurately calculating the effects of that structure
on surface waves and overtones.

A number of efforts at determining the elastic structure of the
crust have been carried out over the past decade. Global tomo-
graphers have typically relied on models of crustal structure de-
rived from other data sets, such as refraction and reflection seis-

mics, receiver functions and geological data, (e.g. 3SMAC: Nataf &
Ricard 1996; CRUST5.1: Mooney et al. 1998; CRUST2.0: Bassin
& Masters 2000), in order to predict and correct for crustal effects.
More recently, global and regional crustal thickness and velocity
models derived solely from surface wave data have been developed
(e.g. Pasyanos 2005; Meier et al. 2007).

Yet, since accurately modelling the effects of the crust on waves
can be difficult, improved maps of crustal structure do not auto-
matically translate into improved corrections for crustal effects.
Within a normal mode formalism, which is useful for constructing
and analysing long-period waveforms, the effects of heterogeneity
on waveforms can be expressed as shifts to the Earth’s eigenfre-
quencies, as well as the displacement field (eigenfunction) associ-
ated with each vibrational mode. Woodhouse & Dziewonski (1984)
applied linear corrections, in which eigenfrequency shifts due to
crustal structure are calculated in a 1-D model, but the perturba-
tions to the eigenfunctions are neglected, in order to remove the
effect of the ocean–continent crustal dichotomy from long period
waveforms. Due to their minimal computational costs, linear cor-
rections have found widespread use (e.g. Gu et al. 2003; Chevrot
& Zhao 2007). Li & Romanowicz (1996) went one step beyond
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simply performing linear crustal corrections, and allowed pertur-
bations to the Mohorovičić (Moho) depth in the inversion, which
partially accounted for unmodelled crustal effects.

However, variations in crustal thickness are often too large to
be accurately handled by linear corrections. In particular, the large
differences in Moho depth between platforms, shields, orogens,
continental margins, and ocean basins, change the shape of the
eigenfunctions, thereby affecting the eigenfrequencies in a sig-
nificantly non-linear fashion (Montagner & Jobert 1988). Boschi
& Ekström (2002) accounted for these non-linear effects by cal-
culating perturbations to the phase of fundamental-mode surface
waves exactly at each point along the source–receiver ray path.
However, calculating the effects of crustal structure on complete
seismic waveforms requires accounting for coupling between nor-
mal modes, which is computationally expensive even when dealing
with a single set of eigenfunctions. If applied to complete seismic
waveforms, Boschi’s approach would require calculating coupling
among modes in dozens (if not hundreds) of sets of eigenfunc-
tions, and is unfeasible. A workaround to this problem was pro-
posed by Montagner & Jobert (1988), who suggested a two-step
approach in which the eigenfunctions and eigenfrequencies are cal-
culated exactly for a set of representative tectonic settings (instead
of for the exact earth structure beneath every point along the ray
path); perturbations away from these canonical 1-D profiles are han-
dled using linear corrections. Recently, this approach was indepen-
dently implemented in full-waveform analyses by Kustowski et al.
(2007) and Marone & Romanowicz (2007). Two global shear wave
speed and radial anisotropic models (Panning & Romanowicz 2006;
Kustowski et al. 2008) have been developed using these non-linear
crustal corrections (henceforth referred to as NLC).

It is important to note that these approaches, while capturing
some of the non-linearity associated with wave propagation through
a heterogeneous crust, fail to explicitly take into account 3-D finite-
frequency effects calculated for the relevant 3-D crustal model.
Furthermore, the NLC approach treats deviations from a small set of
reference regions in a linear fashion; because increasing the number
(Nr) of these reference regions results in substantial computational
cost increases, the method is applicable only when the non-linear
effects are not too strong. Finally, even when the linear corrections
away from these reference regions are sufficiently accurate, NLC
requires Nr times more calculations and memory than SLC. Since
the number of modes increases as the square of maximum frequency,
the significant computational costs of NLC make it ill-suited for use
at high frequencies.

These drawbacks of NLC motivated us to develop an alternative
method for performing crustal corrections, which could approx-
imate the non-linear effects, but without substantially increasing
computational costs. Like the aforementioned methods, we calcu-
late exactly the eigenfunctions and eigenfrequencies for a set of tec-
tonic settings, but instead of using these directly, we solve for scaling
coefficients, which, when applied to standard linear crustal correc-
tions, mimic the non-linear effects. We call this approach ‘modified
linear corrections’ (MLC). It is based on empirically modifying
the topography of crustal discontinuities so that the predictions of
linear theory better approximate the crustal corrections obtained
by accounting for non-linear effects. In the MLC approach, only a
single set of eigenfunctions is required for performing crustal cor-
rections, albeit at a cost of introducing some inaccuracy compared to
NLC. This inaccuracy is, to an extent, offset by the fact that a larger
number of reference regions can be implemented. Thus, the main
advantage of the MLC approach is that, once the correction factors
have been calculated, it requires no additional computational costs

aside from those associated with linear corrections. This allows it to
be applied to higher frequencies and at much finer regionalizations
than possible with NLC.

We then proceed to validate our approach using a synthetic
data set generated using the Coupled Spectral Element Method
(Capdeville et al. 2003). First, we quantify the contamination of
mantle models developed using full-waveform inversion that can
result from the use of SLC; then, we demonstrate that our MLC
method effectively suppresses this contamination. Our approach for
quantifying mantle contamination arising from crustal corrections
is similar to that of Bozdağ & Trampert (2008) who undertook a
thorough analysis of crustal effects on phase velocities of surface
waves. Unlike that study, however, we model the complete seismic
waveform in order to not discard amplitude information. Also, our
use of finite-frequency kernels in the vertical plane allows us to
investigate crustal effects on overtones, which were not analysed by
Bozdağ & Trampert (2008).

2 T H E O R E T I C A L B A C KG RO U N D

In this study, waveform modelling is accomplished within a normal
mode formalism, which lends itself to constructing and analysing
long period waveforms. Within this formalism, an acceleration time-
series is represented as a summation of the contributions of a set
of discrete, orthonormal modes of oscillation, each vibrating at a
frequency ωk ,

u(t) =
∑

k

Ak exp(iωk t). (1)

The modes’ displacement field is represented radially by a set
functions identified by index n, and laterally by spherical harmon-
ics of degree l and order m. For convenience, we will use the index
k to identify a mode defined by indices (n, l, m). The eigenfre-
quencies and eigenfunctions for a given 1-D earth model can be
calculated using computationally efficient codes such as MINEOS
(Woodhouse 1998). The 2l + 1 modes with the same l and n are
collectively referred to as a multiplet, and in a spherically symmet-
ric model, they all have the same frequency. Source excitation and
receiver orientation are represented by Ak , and the expressions for
its constituent parts can be found in Woodhouse & Girnius (1982).

First order perturbation theory can be used to account for ef-
fects of non-spherically symmetric structure (e.g. Woodhouse &
Dahlen 1978). In this approach, 3-D structure perturbs the fre-
quencies of modes within a multiplet (called splitting), and couples
energy within and between multiplets of similar frequency. Cal-
culating the coupling between all possible pairs of modes can be
computationally very expensive, so additional approximations have
been used in order to make the problem computationally tractable.

Romanowicz (1987) showed that considering coupling along a
single mode branch (all l and m for a given n) is, for large l, equiva-
lent to accounting for average radial structure (1-D) along the great
circle path from source to receiver. This coupling can be represented
by introducing a correction factor δω̃k to ωk in eq. (1), which quan-
tity can be obtained by integrating along the great circle joining
source and receiver the local frequency shifts δωk resulting from
coupling within an individual multiple induced by 3-D structure,

δω̃k = 1

�

∫ �

0
δωk(s)ds, (2)

where � is the epicentral distance.
This approach, first implemented by Woodhouse & Dziewonski

(1984), is appropriately called the path average approximation
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(henceforth, PAVA). Expressing the frequency shifts in the exponen-
tial has the benefit of somewhat relaxing the short-time limitation of
standard first order perturbation theory by accounting for multiple
forward scattering.

For the case relevant to this study, in which only the radii of
discontinuities rd in the Earth are perturbed by δrd , local frequency
shifts due to coupling within a multiplet can be calculated in a linear
fashion through the use of sensitivity kernels H d

k , the expressions
for which can be found on pages 350–351 of Woodhouse & Dahlen
(1978). Note that these kernels are calculated for the spherically
symmetric reference model. Thus, the frequency shifts resulting
from discontinuity topography (e.g. the Moho or the surface, or
discontinuities within the crust) are given by,

δω2
k ≡ 2ωkδωk =

∑
d

r 2
d δrd H d

k . (3)

While the path average approximation is highly successful
at modelling fundamental mode surface waves, it fails to cap-
ture the depth dependent sensitivity of overtone branches (Li &
Romanowicz 1995). That is why, when calculating the effects of
Earth structure on overtones, we must consider coupling between
multiplets k and k′ across branches (different n’s) (Li & Tanimoto
1993). Doing this accounts for finite frequency effects of wave sen-
sitivity within the plane defined by the great circle joining source
with receiver. In this study, we rely on Non-linear Asymptotic
Coupling Theory (NACT; Li & Romanowicz 1995), which is an
implementation of across-branch coupling that relies upon asymp-
totic expressions for spherical harmonics. In it, a linear correction
term δu that captures the effects of cross-branch coupling is added
to eq. (1)

δu(t) =
∑

k

⎡
⎣−it Akδω̃k +

∑
k′⊂�k

Dkk′ Akk′

⎤
⎦ , (4)

with

Dkk′ = exp(iω̃k t) − exp(iω̃k′ t)

(ωk + ωk′ )(ω̃k − ω̃k′ )
, (5)

Akk′ are the asymptotic forms of scattering integrals, and are given
by

Akk′ = 1

2π

∫ 2π

0
δω2

kk′
[

Q(1)
kk′ cos( jφ) + Q(2)

kk′ sin( jφ)
]

dφ, (6)

where j ≡ l − l ′ and the expressions for Q(1)
kk′ and Q(2)

kk′ can be found
in appendix A of Li & Romanowicz (1995).

Now, the local frequency shifts δω2
kk′ represent the frequency shift

of mode k due to discontinuity-topography-induced coupling with
multiplet k′,

δω2
kk′ ≡ 2ωkk′δωkk′ ≡ (ωk + ωk′ )δωkk′ =

∑
d

r 2
d δrd H d

kk′ (7)

and the kernels, H d
kk′ still refer to the spherically symmetric refer-

ence model, and can be found in appendix C of Li & Romanowicz
(1996). For more details, see Romanowicz et al. (2008).

3 S TA N DA R D L I N E A R A N D
N O N - L I N E A R C O R R E C T I O N S

In the previous section, we explained how discontinuity topography
can be related via sensitivity kernels H d

k and H d
kk′ to normal mode

frequency shifts that arise from coupling within (δωk) and across

(δωkk′ ) multiplets. Regardless of which coupling terms are consid-
ered, the frequency shifts resulting from discontinuity topography
can be calculated in either a linear way, or a non-linear one, depend-
ing on how the sensitivity kernels H d

k and H d
kk′ are calculated. By

linear, we mean that only a single set of eigenfunctions and sensi-
tivity kernels H d

k and H d
kk′ —those of a single reference spherically

symmetric model—is used in eqs (3) and (7) to calculate δωk and
δωkk′ . Henceforth, we shall denote frequency shifts calculated in
this linear fashion with ‘SL’. Calculating the non-linear effect of
the actual structure beneath each point along the ray path between
source and receiver would entail using many sets of eigenfunctions
(and therefore also many sets of sensitivity kernels H d

k and H d
kk′ ),

one for each point along every source-station path considered. This
is not feasible at the present time even for long period (>60 s)
waveforms, and a workaround is needed. The approximate solution
implemented by Marone & Romanowicz (2007) and Kustowski
et al. (2007) builds upon the work of Montagner & Jobert (1988)
who suggested a two-step approach for calculating δωk and δωkk′ .
First, the eigenfrequencies (ω(i)

k ) are calculated for a set of canonical
models (indexed by i) that are representative of the variability of
crustal structure in the region of study. The difference between these
eigenfrequencies and those for the reference spherically symmetric
model defines the non-linear frequency shift

δωN L
k = ω

(i)
k − ωPREM

k , (8)

Deviations of structure away from the most similar canonical profile
are handled in a linear fashion, using eqs (3) and (7) alongside sen-
sitivity kernels calculated for the relevant canonical radial profile,
that is, (i) H d

k and (i) H d
kk . The discontinuity radius perturbations δrd

are taken with respect to the most similar canonical model, as well.
See Marone & Romanowicz (2007) for a more detailed explanation
of this approach. Note that even this two-step non-linear approach
for performing crustal corrections (hereafter NLC), requires mode
coupling to be calculated between modes in all of the canonical
profiles when applied to making NACT synthetics; it is, therefore,
much more computationally expensive than SLC.

We now proceed to quantify the accuracy of the SLC and NLC
approaches. We begin by subdividing the Earth’s surface into seven
regions with similar crustal thicknesses and ocean depths. We base
this regionalization on Moho depth, since it is the dominant pa-
rameter governing the seismic response of the crust at long periods.
Starting with CRUST2 (Bassin & Masters 2000), we identify six re-
gions characterized by Moho depth range of 10–25, 25–40, 40–50,
50–60, and >60 km. In order to capture the strong effect of a shallow
(<2 km) ocean layer that characterizes the continental shelves, we
introduce a seventh region. Fig. 1 maps out the geographical extents
of the seven regions. For each region, we calculate an average radial
profile of density (ρ) and shear (VS) and compressional (VP) wave
velocity. The parameters characterizing these profiles are shown in
Table 1. Armed with a set of radial models that define seven canon-
ical crustal types, we proceed to calculate the eigenfrequencies ω

(i)
k

and eigenfunctions of the fundamental and first five overtone mode
branches.

For each canonical crustal model i, we can calculate the ker-
nels (i) H d

k that, through eq. (3), relate perturbations in the radii of
discontinuities with the resulting frequency shifts δωk of mode k.
Note that these kernels only capture the effects of coupling within
a multiplet, and though we can also calculate the sensitivity kernels
for cross-branch coupling (i) H d

kk′ , these are not easily visualized,
and are therefore not shown. Fig. 2 shows how sensitivity of fun-
damental modes to Moho depth and surface topography varies as
a function of mode frequency. Similarly, Fig. 3 shows the average
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Figure 1. Map showing geographical distribution of the seven crustal types used in this study.

Table 1. Physical parameters characterizing the regions shown in Fig. 1.

Elevation Moho depth Density VP VS

Region (km) (km) (g cc−1) (km s−1) (km s−1)

1 −3.00 9.67 2.86 5.95 3.14
2 −4.22 12.22 2.83 5.66 2.98
3 0.87 34.64 2.82 6.18 3.46
4 0.54 42.60 2.87 6.27 3.52
5 2.82 54.73 2.86 6.35 3.60
6 4.08 64.57 2.88 6.42 3.66
7 −0.80 25.76 2.82 5.71 3.11

Note: Negative elevations are filled with ocean of density 1.02 g cc−1 and
VP 1.45 km s−1.

sensitivities of modes in the first five overtone branches. Note that
the basic assumption that underlies standard linear corrections is
that discontinuity kernels for different crustal types do not appre-
ciably differ from those of the reference model.

Even a cursory examination of the curves shown in Fig. 2 shows
that non-linear effects of surface and Moho topography on funda-
mental modes dominate at frequencies above 15 mHz. A comparison
of the magnitude of the kernels for spheroidal and toroidal modes
confirms the well-known fact (Dahlen & Tromp 1998) that toroidal
modes are significantly more sensitive to crustal structure than are
spheroidal modes. A number of differences between the sensitivity
curves indicate that the non-linearity of crustal effects can be non-
intuitive. For spheroidal modes, oceanic models with thin crusts are
associated with greatest sensitivities to Moho depth. At frequencies
higher than 25 mHz, however, a continental-type model takes the
lead. For toroidal modes, the story is entirely different, with models
with intermediate crustal thicknesses being associated with larger
sensitivities to Moho depth than either thin-crust oceanic models or
thick crust continental ones. Other examples abound. For instance,
note the change in concavity of H S

topo between crustal types 4 and
5, whose crustal thicknesses differ by 12 km. Finally, we point out
that for toroidal modes, both surface and Moho kernels are more

similar between models 1 and 6, than they are between 6 and 4,
even though differences in crustal structure are far larger between 1
and 6. In short, the condition that discontinuity kernels for different
crustal types do not appreciably change is violated even at long
periods.

Though the first five overtone branches are significantly less sen-
sitive to topography and Moho depth, Fig. 3 shows that non-linear
effects of crustal structure become significant at frequencies higher
than ∼15 mHz. As is the case with the fundamental mode branch,
overtones show a number of interesting non-linear effects. For in-
stance, even though toroidal modes are far more sensitive to Moho
depth in oceanic models, they are less sensitive to it in PREM than
in continental models. This is likely due to the fact that the crust
in PREM has two layers, while those of our canonical models have
only one. The behavior of spheroidal modes’ sensitivities can also be
counter-intuitive. First, unlike toroidal modes, spheroidal modes are
more sensitive to topography and Moho depth in continental models
than in oceanic ones. In fact, spheroidal mode frequencies are sev-
eral times more sensitive to discontinuity topography in continental,
thick-crust models than they are in thin-crust, oceanic models. In-
terestingly, in models with thick continental crust, the sensitivity of
spheroidal modes to discontinuity topography starts to decrease at
frequencies above ∼28 mHz. Thus, even for overtones, non-linear
effects of crustal structure cannot be neglected.

We can use discontinuity kernels H d
k calculated for the refer-

ence spherically symmetric model, in this case PREM, to predict
the frequency shifts δω

(SL)
k arising from the difference between

canonical crustal structures and a spherically symmetric reference
model. To do this, we use eq. (3), defining δrd to be the difference
in the radii of the discontinuities between each canonical crustal
model and PREM, and neglecting the differences in crustal ve-
locities and density. This is an often used approximation of the
true linear crustal effect, and is appropriate because crustal ve-
locities have been shown to have minimal effect on long period
waves (e.g. Stutzmann & Montagner 1994). Since the discontinuity
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Figure 2. Discontinuity kernels Hd
k for surface topography (top row) and Moho depth (bottom row) as a function of frequency. Spheroidal fundamental modes

are in the left-hand column, while toroidal fundamental modes appear on the right-hand column.

perturbations characterizing each canonical model are spherically
symmetric (degree zero spherical harmonic), they cannot give rise
to coupling of energy between multiplets within a dispersion branch
(Dahlen & Tromp 1998, p. 652). As a result, considering coupling
within a multiplet is sufficient to accurately model fundamental
mode surface waves, and is likely to adequately model overtones
as well, since coupling across branches is small, being restricted to
only modes with the same l. Therefore, in this test we only con-
sider coupling within a multiplet and use eq. (3) instead of eq. (7)
for calculating the frequency shifts. We label the frequency shifts
calculated in the standard linear approach δωSL

k . The dotted lines in
Figs 4 and 5 show the δωSL

k for fundamental modes and overtones
and each of the canonical crustal structures. A comparison of these
approximate terms with the δωNL

k calculated before (and displayed
as solid lines) confirms that linear crustal corrections are inadequate
for both fundamental modes and overtones, even at long periods.

4 M O D I F I E D L I N E A R C O R R E C T I O N S

As illustrated in Figs 2–5, SLC corrections are not successful at
accounting for the effects of variations in crustal and ocean thick-
ness on surface waves and overtones, even at periods as long

as 100 s. NLC are far more accurate, yet also have substantially
greater computation and memory requirements. Therefore, we are
interested in ways of correcting the δωSL

k so that they better track
δωNL

k , but also maintain the computational efficiency of SLC. In
order to accomplish this task, we are confronted with a crucial
choice.

We must decide which term or terms in eq. (3) to refine. Cal-
culating (i) H d

k for each crustal type i, as done in NLC, is a natural
choice, since the problem itself is inaccuracy of the linear correc-
tions, rather than the topography of discontinuities. However, since
H d

k needs to be calculated for each mode, and H d
kk′ for each pair of

modes, introducing multiple sets of eigenfunctions is computation-
ally expensive. This is why the computational costs of NLC are so
high. Correcting δrd , on the other hand, does not increase computa-
tional costs, since reading one value of δrd is just as computationally
expensive as reading a modified value. The problem with correct-
ing only δrd , of course, is that it is but a single parameter for a
given discontinuity, crustal type, and mode type. Nevertheless, the
fact that deviations between δωNL

k and δωSL
k change gradually with

frequency (see Fig. 4) gives us hope that modifying δrd might sig-
nificantly improve the accuracy of δωSL

k .
We start by rewriting eq. (3) to incorporate a topography cor-

rection c(i)
d that depends on mode type, discontinuity d, and local
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Figure 3. Average discontinuity kernels Hd
k of the first five overtone branches for surface topography (top row) and Moho depth (bottom row) as a function

of frequency. Spheroidal modes are in the left-hand column, while toroidal modes appear on the right-hand column.

crustal type i,

δωM L
k = 1

2ωk

∑
d

r 2
d (δrd + c(i)

d )H d
k , (9)

or in compact matrix notation as

wM L = H0(δr(i)
0 + c(i)). (10)

Note that H d
k is calculated for the 1-D reference Earth model, and δrd

is with respect to this single reference model. For each canonical
crustal type i, we want this modified linear correction (δωML

k ) to
be equal to the frequency shift (δωNL

k ) calculated in a fully non-
linear fashion using eq. (8). The problem, then, reduces to finding
the vector of correction terms c(i) which minimizes the difference
between δωML

k and δωNL
k ; in the least-squares sense, the c(i) are given

by

c(i)
d = (H′

0H0)−1H′
0(w(i)

N L − H0δr(i)
0 ), (11)

where the apostrophe indicates the transpose.
We could have introduced a multiplicative correction term, in-

stead of the additive one described above. However, solving for
such a term becomes unstable when the δrd’s are small. Given that
discontinuity topography is likely to vary both above and below its

depth in the reference model, the accompanying zero-crossings of
δrd will have adverse effects.

Because the non-linearity of crustal effects depends strongly
on both crustal and mode type, we perform the minimization in
eq. (11) separately for spheroidal and toroidal modes, for funda-
mental modes and overtones, and for each crustal type. Once the
set of factors cm,t appropriate for a given mode type are obtained,
we modify the surface and Moho topography of CRUST2.0 at each
point on the surface by the correction factor appropriate for the rel-
evant crustal type (obtained from Fig. 1). Therefore, the crustal type
and correction factor information is fused into a single quantity that
specifies a modified discontinuity topography for each mode type.

The dashed lines in Figs 4 and 5 show the frequency shifts pre-
dicted by our modified discontinuity radii for fundamental modes
and overtones, respectively. Henceforth, we label them δωML

k . For
the fundamental modes, the improvement in fit to δωNL

k is signifi-
cant over a large frequency range. The fit for the overtones is less
good, though still significantly better than that provided by standard
linear corrections (δωSL

k ). When only long-period waves (T > 60 s)
are considered, excellent agreement between δωML

k and δωNL
k can

even be achieved when only correcting the Moho topography. In
the section that follows, we use uncorrected surface topography,
modifying only the Moho radii.
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Figure 4. Frequency shifts of the fundamental toroidal (red) and spheroidal (black) due to differences in crustal structure between each of the canonical crustal
types shown in Figs 1 and 3. Solid lines denote non-linear corrections (δωNL

k ), dotted lines indicate linear corrections (δωSL
k ), and the dashed lines indicate

linear corrections improved using the method outlined in this paper (δωML
k ). Only Moho corrections are applied in the upper row, while corrections for both

surface and Moho topography are required by the broader frequency range of the bottom row.

5 M E T H O D VA L I DAT I O N

Having devised the MLC method for improving standard linear
crustal corrections, we attempt to validate it by comparing its ability
to predict crustal effects on waveforms against that of standard linear
crustal corrections.

5.1 Application to a synthetic data set

The advent of fully numerical global wave propagation codes,
such as the coupled Spectral Element Method (cSEM Capdeville
et al. 2003), now allows accurate modelling of wave propagation
through highly heterogeneous media such as the Earth’s crust (e.g.
Komatitsch & Tromp 2002). This advance offers us the opportunity
to quantify how well standard approximate techniques for treat-
ing crustal effects perform when applied to tomographic inversions
based on waveform modelling.

To this end, we generate a synthetic data set of long-period three-
component waveforms for a set of 67 earthquakes selected from the
global CMT catalogue. We ensure a realistic station distribution by
only using stations at which the waveforms observed from the actual
earthquake are sufficiently well recorded that they would be used in
our global tomographic inversions. For a more detailed description
of the data-selection criteria, see Mégnin & Romanowicz (2000).
Fig. 6 shows the event and station distribution as well as ray path
density of the synthetic data set.

Our velocity model has a spherically symmetric velocity profile
which is identical to PREM (Dziewonski & Anderson 1981) be-
low the 400 km discontinuity. At depths shallower than 400 km, the
model is inverted to fit long-period waveforms starting from one
of the physical reference models (Cammarano et al. 2005), which
are calculated from a fixed composition (dry pyrolite) and a ther-
mal profile using the elastic and anelastic properties of principal
mantle minerals. The mantle model is radially anisotropic above
220 km, by the same amount as PREM. The crustal model has av-
erage crustal velocities and thicknesses from CRUST2.0 (Bassin
& Masters 2000) filtered by a 5.6◦ Gaussian filter to avoid spatial
aliasing by the SEM mesh. Topography from ETOPO1 (Amante &
Eakins 2008) is similarly filtered. Effects of the ocean, ellipticity,
gravity, rotation and anelasticity are all accounted for. The syn-
thetic seismograms have energy at periods between 60 and 400 s,
while earthquake source parameters are taken from the global CMT
catalogue.

5.2 Mantle contamination due to crustal structure

We start by expressing the Moho topography of CRUST2.0 and
topography of ETOPO1 using a spherical spline expansion char-
acterized by 642 knots and an average interknot spacing of 7.9◦

(see Wang & Dahlen 1995). This is done for two reasons: (1) it
imposes smoothness on the resulting model, as has to be done in
actual global tomographic inversions; (2) it reduces the number of
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Figure 5. Average frequency shifts of the first five overtone toroidal (red) and spheroidal (black) branches due to differences in crustal structure between each
of the canonical crustal types shown in Figs 1 and 3. Solid lines denote non-linear corrections (δωNL

k ), dotted lines indicate linear corrections (δωSL
k ), and the

dashed lines indicate linear corrections improved using the method outlined in this paper (δωML
k ). Only Moho corrections are applied in the upper row, while

corrections for both surface and Moho topography are required by the broader frequency range of the bottom row.

coupling calculations that need to be considered in eq. (7). We then
use both SLC and MLC approaches to predict the effects of the
crust on the waveforms that make up our synthetic data set.

Fig. 7 shows a comparison of transverse-component accelero-
grams calculated using SEM and NACT with standard and modified
linear corrections for the earthquake C032401C recorded at eight
stations. When standard linear corrections are used, large phase-
shifts are apparent for long continental paths, and are especially
large on the transverse component, since Love waves are more sen-
sitive to crustal structure than are Rayleigh waves. For Rayleigh
waves, phase-shifts and amplitude discrepancies are apparent, but
are much smaller, since linear corrections are more accurate (see
Fig. 4). Waveforms predicted by our modified crustal corrections
fit the SEM far better, and the improvement on continental paths is
dramatic. Typically, the use of modified corrections for fundamen-
tal mode surface waves decreases the variance between SEM and
NACT synthetics by ∼65 per cent on the transverse and ∼35–40 per
cent on the radial and vertical components. When only overtone
wavepackets are considered, modified linear crustal corrections re-
duce the variance by ∼30–40 per cent for all the components.

The NACT synthetics are used to correct the SEM synthetic wave-
forms for the crustal effects. Two sets of residuals are produced, one
resulting from applying standard linear corrections, and the other
from our modified method. These residuals, which would ideally
be very small, are then inverted for mantle structure. The data are
weighted by a diagonal covariance matrix which serves to equalize
lateral sensitivity, as proposed by Li & Romanowicz (1996). The

upper mantle is parametrized laterally with 642 spherical splines,
and in depth by five cubic splines centred at depths of 24, 121, 221,
321 and 471 km (see Mégnin & Romanowicz 2000). At each point,
we solve for two parameters—isotropic shear wave speed V 2

S =
(2V 2

SV + V 2
SH )/3 and anisotropic parameter ξ = V 2

SH/V 2
SV —and

use scaling relations to obtain VPV , VPH and η, as in Panning &
Romanowicz (2004). The inversion procedure is iterative and is sta-
bilized by the introduction of an a priori model covariance matrix, as
described in Tarantola & Valette (1982). Any retrieved mantle struc-
ture is interpreted as an artefact of unmodelled crustal structure, and
will henceforth be referred to as contamination. Therefore, if the
residuals efficiently map into mantle structure, then the inadequa-
cies of crustal corrections can be expected to strongly contaminate
existing mantle models. If, on the other hand, the residuals cannot
be effectively modelled by mantle structure, then they are less likely
to contaminate the mantle model.

Fig. 8 shows variations of isotropic shear wave speed obtained
from the inversion of the residuals calculated using SLC as well
as our MLC approach. Both fundamental mode and overtone
wavepackets are used. The final model obtained with SLC explains
a larger fraction of the starting variance in the residual seismo-
grams than does the model obtained using modified corrections.
This means that the inaccuracies of SLC can be more easily mod-
elled by mantle structure than the inaccuracies of the MLC tech-
nique we propose; therefore, the use of SLC will contaminate mantle
structure much more strongly than the use of MLC. For fundamen-
tal modes, the model obtained using SLC explains 64 per cent of
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Figure 6. Map showing earthquake and station distribution of our synthetic data set. Earthquakes (squares) are colour-coded by depth, while the stations are
denoted by yellow triangles. The shading is proportional to the log of the number of ray paths at that location.

the residuals on the longitudinal, 76 per cent on the transverse, and
80 per cent on the vertical component, whereas the model obtained
using MLC reduced the starting misfit by 44 per cent for the lon-
gitudinal, 32 per cent for the transverse and 70 per cent for the
vertical component. For overtones, the obtained model explains 47
per cent of the misfit on the longitudinal, 42 per cent on the trans-
verse, and 57 per cent on the vertical component. Interestingly, the
model obtained from MLC residuals only marginally improved the
fit to the overtones (ranging from no improvement on the transverse
component to 14 per cent on the vertical). This indicates that the
correction factors succeeded in eliminating nearly all of the mantle
contamination arising from the use of SLC.

Anisotropic structure was held fixed during the first two iterations,
and was allowed to vary in the final 2 iterations. At each step of the
inversion process, a range of a priori model parameter variances
was explored; small values muted, while large values increased the
amplitude of the retrieved structure. Misfits were calculated for all
of the resulting models, and we chose a preferred a priori variance
to be a compromise between achieving large variance reductions
and keeping model size small. All parameters have a correlation
length scale of 1000 km in the horizontal direction and 100 km in
the vertical, which is similar to that imposed by the parametrization
itself. Regardless of a priori variances, the retrieved pattern of
mantle contamination remained the same.

Note the strong tectonic character of the mantle contamination,
which is seismically slow beneath continents, where SLC under-
predicts the effects of crustal structure. In particular, anomalously
slow regions underlying mountain ranges (e.g. North American
Cordillera) appear down to 100 km depth. At greater depths, most
of the contamination is under the oceans, following the mid-ocean
ridge systems, where the contamination is seismically fast. When
MLC is used, we can see a significant reduction of contamina-
tion, especially at shallowest depths. Mantle beneath the North

American Cordillera, for instance, is nearly free of contamination
even at 40 km depth. Contamination beneath the oceans is effec-
tively suppressed. In fact, the tectonic character of the contami-
nation becomes less prominent, and less well organized. It bears
reminding that some of the remaining contamination might well
result from the imperfect distribution of crossing paths afforded by
our modest synthetic data set.

The sensitivity kernels shown in Fig. 2 show that the Love waves
are significantly more sensitive to shallow layer structure than are
Rayleigh waves. This fact, combined with other differences in the
way that oceanic and continental crust affect Rayleigh and Love
waves (see Bozdağ & Trampert 2008), suggests that inadequacies
in crustal modelling can map efficiently into mantle anisotropic
structure. Indeed, our maps of lateral variations in ξ confirm this
suspicion. Fig. 9 shows the contamination of ξ that results from the
use of standard and modified linear corrections. The maps shown
are for the same model as in Fig. 8.

When SLC is applied, we retrieve enhanced VSV to VSH ratios, in-
dicated by warm colours in Fig. 9, below both continents and oceans.
Nevertheless, contamination is stronger beneath continents, and is
particularly prominent beneath cratons. Beneath Tibet, as well as
the Canadian and Brazilian cratons, this contamination extends to
225 km depth. Structure beneath the oceans also shows anoma-
lously high ξ that tracks along the mid-ocean ridge system; this
signature peters out around 150 km depth. MLC successfully sup-
presses contamination in all tectonic settings. In fact, signatures of
all of the cratons except a small portion of the Brazilian craton are
completely removed. Anomalous structure beneath Tibet becomes
very weak as shallow as 100 km depth. Beneath oceans, no coherent
contamination extends below 100 km depth.

Figs 8 and 9 attest to the ability of our modified linear correc-
tions to minimize contamination of mantle isotropic and radially
anisotropic structure that could result from the use of standard
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274 V. Lekić, M. Panning and B. Romanowicz

Figure 7. Comparison of Love waves predicted by SEM (black), standard linear corrections using NACT (blue), and our modified linear corrections using
NACT (red). The earthquake is C032401C. The path to station TAU is largely oceanic, so both linear and modified corrections are capable of capturing the
true crustal effect. This is not the case for continental paths, for which the use of standard linear corrections results in very large phase shifts. The modified
crustal corrections do much better.

linear corrections. The success of our modifications is summarized
in Fig. 10, which plots as a function of depth the contamination re-
duction (the percentage reduction in the size of the spurious model
recovery) for both the Vs and ξ models resulting from the use of
modified instead of modified linear corrections. We define the con-
tamination reduction at radius r as

CR(r ) =
∫

θ

∫
φ

m2
slc(r, θ, φ) − m2

mlc(r, θ, φ)

m2
slc(r, θ, φ)

dθdφ, (12)

where m(r , θ , φ) denotes the value of the model at location (r, θ , φ).
At depths greater than 150 km, our modifications reduce the con-
tamination of ξ mantle structure by more than half, and reduce by
more than a third the contamination of isotropic structure at all
depths.

5.3 Application to long period waveform data

Having demonstrated the potential of the proposed technique for
reducing the contamination of mantle structure from unmodelled
crustal effects, we proceed to apply the method to an actual wave-
form data set used in the creation of the SAW642AN model of
Panning & Romanowicz (2006, henceforth PR06). The data set

consists of three-component long period surface (T > 60 s) and
body wave (T > 30 s) packets from 1191 events, and is detailed in
table 1 of PR06.

We employ identical data weighting and parametrization as that
used in construction of SAW642AN. The primary difference is the
removal of crustal effects via our modified linear corrections as op-
posed to the approximate, regionalized non-linear corrections used
in PR06. We derive the final model after four iterations starting from
SAW642AN. While we do not derive a specific set of modified lin-
ear corrections for body waves (and indeed, it is not obvious whether
this approach, which does not take coupling between modes into
account, would be appropriate for body wave data), we choose to
correct the body wave data with the corrections derived for over-
tones, as it produces a better fit to the data than standard linear
corrections. Regularization is chosen such that the final model size
(as measured by the root-mean-squared amplitude of structure as
a function of depth) closely matches that of SAW642AN for the
isotropic portion of the model, and is matched or reduced in the
anisotropic portion of the model.

The following two findings summarize the effects of the use of our
modified linear crustal corrections on the retrieved mantle model:
(1) The overall misfit to the data is reduced for all wavepacket
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Figure 8. Expected contamination of mantle isotropic S-wave speed due to the use of standard (left-hand column) and our modified (right-hand col-
umn) linear crustal corrections on fundamental mode and overtone wavepackets. Warm (cool) colours indicate that using linear crustal corrections would
artificially decrease (increase) retrieved mantle Vs. Note the significant amplitudes of contamination associated with standard linear corrections even at
150 km.

types (fundamental modes, overtones, and body waves); and (2)
the anticorrelation of upper and mid-mantle isotropic Vs structure
present in SAW642AN is diminished (see Fig. 11), bringing the
model to closer agreement with other models of mantle shear wave
speed (e.g. Kustowski et al. 2008). While the improvement in fit is
not extremely large (variance reduction of the final model with the
modified linear corrections is 54.5 per cent across all data types ver-
sus 52.1 per cent for SAW642AN using the regionalized non-linear
corrections), it is important to note that the better fit is obtained
with a model that is smaller in size, particularly in anisotropic
structure, than the starting model. The detailed effects on the re-
trieved isotropic and anisotropic structure are more complicated
and are discussed in a companion paper (Panning et al. 2010),
which also explores the effects of damping and quantifies model
uncertainties.

6 C O N C LU S I O N A N D D I S C U S S I O N

We propose and validate a new method (modified linear correc-
tions: MLC) for performing crustal corrections. The method is built
around additive correction factors, which modify the topographies
of crustal discontinuities; these modified topographies can then be
used alongside SLC to mimic the non-linear effects of the true
discontinuity topographies. The correction factors depend on the
local crustal type, on the discontinuity considered, on the reference
model used for calculating the sensitivity kernels, as well as mode
type (spheroidal versus toroidal and fundamental versus overtone).
The MLC method, while theoretically less accurate than the two-step
NLC corrections that have been recently applied to global tomog-
raphy, has far smaller computational costs, and can thus be applied
to higher frequencies. In fact, once the correction factors have been
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Figure 9. Expected contamination of mantle radial anisotropy due to the use of standard (left-hand column) and our modified (right-hand column) linear
crustal corrections on fundamental mode and overtone wavepackets. Warm (cool) colours indicate that linear crustal corrections can cause artificially low
(high) ξ (VSV > VSH versus VSH > VSV ). Note the large amplitudes of spurious anisotropic structure resulting from the use of standard linear corrections.
Modified linear corrections result in significant reduction in contamination of anisotropic structure at all depths.

calculated, MLC requires no additional computations beyond those
of SLC. Its computational efficiency allows for a greater number
of reference velocity profiles to be used than is typical in the NLC
approach.

We validate the MLC approach against a synthetic data set, and
quantify its performance against that of SLC. The synthetic data
set is calculated at long periods (>60 s) for a 3-D crustal model
and a 1-D mantle using the Spectral Element Method. The syn-
thetic waveforms are corrected for the effects of the known crustal
structure using both MLC and SLC approaches, and the resulting
residuals are inverted for a mantle model. Thus, we obtain images of
upper mantle contamination that may result from inadequate crustal
corrections. These tests show that the substantial contamination of
isotropic mantle structure down to depths of 150 km resulting from
the use of SLC is reduced by >30 per cent by MLC. Specifically, at
depths shallower than 100 km, SLC will artificially reduce mantle

Vs beneath continents; at greater depths, SLC will make oceanic
ridges appear artificially fast. Due to differences in crustal sensi-
tivity of Rayleigh and Love waves, the deleterious effects of SLC
on anisotropic structure are far more severe, and can potentially
obliterate the mantle anisotropic signal in the upper 200 km. When
the MLC approach is used, much of the mantle contamination is
removed; indeed, the contamination of anisotropic parameter ξ is
reduced by more than half at depths below 125 km. Thus, MLC’s
separate treatment of toroidal and spheroidal modes and fundamen-
tal modes and overtones proved to be highly successful in suppress-
ing the contamination of radial anisotropy in the mantle.

Our tests with the synthetic SEM data set shows that the MLC
method improves the accuracy of linear corrections equally well for
fundamental modes as for overtones, though the total crustal sig-
nal is, unsurprisingly, far larger for the fundamental mode surface
waves. Since the additive correction factors were calculated only
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Figure 10. Relative variance reduction in percent resulting from the use
of modified linear corrections for the Vs (solid line) and ξ (dashed line)
structure as a function of depth.

accounting for coupling within multiplets, their success at mod-
elling the true effects of crustal structure on overtones indicates that
the non-linear crustal effects on multiplet–multiplet coupling are
similar to those on coupling within a multiplet. This justifies our
choice to neglect multiplet–multiplet coupling when calculating the
additive correction factors.

In addition to the synthetic tests, we apply our new method for
improving crustal corrections to the waveform data set used to
construct SAW642AN (Panning & Romanowicz 2006). We find
that the better treatment of crustal structure improves the fit to
the data for all wavepacket types (body waves, surface waves and
overtones alike). Furthermore, it eliminates anticorrelation between
upper and mid mantle structure which distinguished SAW642AN
from other global models of mantle shear wave speed structure.

Though the primary focus of our paper was the development of
a computationally inexpensive technique to account for the non-
linear effects of the crust on surface wave and overtone waveforms,
the SEM-based validation data set also allowed us, for the first time
in global waveform tomography, to quantify the contamination of
mantle structure that may arise from the use of inadequately ac-
curate crustal corrections. We have shown that crustal corrections
can contaminate isotropic, but especially anisotropic structure, to
great depths. Our results confirm earlier findings of Bozdağ &
Trampert (2008), who also investigated the accuracy of fully non-
linear approaches akin to NLC, but did not analyse full waveforms
or overtones. Our results have great bearing on recent efforts at
validating existing tomographic models developed with approxi-
mate wave propagation techniques using more accurate numerical
approaches, such as SEM (e.g. Qin et al. 2009). This is because
tomographic models of mantle structure were developed by pre-
dicting and correcting for the effects of crustal structure, and are
likely to correctly predict seismic waveforms only when used along-
side their associated crustal corrections. Our work implies that im-
plementing these crustal models in SEM is likely to result in very
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Figure 11. Radial correlation functions for the SAW642AN model (top)
and a model derived from identical data but in which the crustal corrections
were performed using modified linear corrections proposed here (bottom).
Note that the use of modified linear corrections nearly eliminates the anticor-
relation between upper and mid mantle structure apparent in SAW642AN.
This anticorrelation is not seen in most other global models of shear wave
speed.

different crustal effects than those used to develop the mantle model.
Since the effects of the crust are much larger for horizontally po-
larized shear waves, a straightforward crustal implementation in
SEM is likely to find that models developed using horizontally
polarized shear waves are less able to explain the observed wave-
forms than Vs models. Indeed, this is consistent with the findings of
Qin et al.

The remaining inadequacies of our modified crustal corrections
are likely due to off-path effects, source effects, limitations imposed
by parametrization, as well as the approximate nature of our method.
Our approach can easily be combined with methods that take into ac-
count lateral sensitivity of surface waves. Accuracy of the method
can be improved by considering a larger set of crustal types that
would better capture the true variability in Earth’s crustal struc-
ture, as well as topographies of intracrustal discontinuities (such as
the Conrad). We note that while increasing the number of crustal
types and discontinuities would make the calculation of the cor-
rection factors more computationally costly, it would not increase
computational costs associated with using the modified disconti-
nuity topographies. The modified linear crustal corrections that we
have outlined in this paper also present an advantage over numerical
techniques such as the finite element or spectral element codes since
they are capable of, albeit approximately, accounting for the effects
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of near-surface, thin sedimentary layers; incorporating sedimentary
basins in finite or spectral element codes vastly increases their al-
ready large computational costs. Thus, we believe that the method
presented here is particularly well-suited for taking advantage of
ever-improving knowledge of crustal structure.
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