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Inversion of Surface Waves:

A Review

1. Introduction

In what follows, we attempt to review progress made in the last
few decades in the analysis of teleseismic and regional surface
wave data for the retrieval of earthquake source parameters and
global and regional Earth structure. This review is by no means
exhaustive. We will rapidly skip over the early developments of
the 1950s and 1960s that led the foundations of normal mode
and surface wave theory as it is used today. We will not attempt
to provide an exhaustive review of the vast literature on surface
wave measurements and the resulting models, but rather focus
on describing key theoretical developments that are relevant
and have been applied to inversion. Since surface wave theory
is closely related to that of the Earth’s normal modes, we will
discuss the latter when appropriate. However, we make no
attempt to extensively review normal mode theory, as this
subject is addressed in a separate contribution (see Chapter 10
by Lognonné and Clévédé).

2. Background

Most of the long-period energy (periods greater than 20 s)
generated by earthquakes and recorded at teleseismic distances
propagates as surface waves. Most clearly visible on long-
period seismograms are the successive, Earth-circling, dis-
persed wave trains of the fundamental mode. For moderate size
earthquakes recorded at teleseismic distances (M ~ 5.5), only
the surface waves propagating along the direct great circle path
between the epicenter and the station have significant signal-to-
noise ratio, mostly between 20 and 100s period, and the dis-
persive and attenuative properties of these wave trains have
been used extensively, since the 1950s to infer crust and upper
mantle structure in different regions of the Earth. For earth-
quakes of magnitude 7 or larger, successive Earth-circling
surface wave trains can be followed for many hours (Fig. 1),
and are then either analyzed individually or combined to
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FIGURE 1 Example of vertical component record showing many
Earth-circling mantle Rayleigh wave trains over a time window of
14h. This record was recorded at station CMB of the Berkeley
Digital Seismic Network (BDSN) and corresponds to a channel with
a sampling rate of 1 sample/sec. The earthquake is shallow and the
epicentral distance A =109.7°. Because the distance is close to 90°
the wave packets corresponding to even and odd order trains are well
separated from each other. (Courtesy of Joseph Durek and Lind Gee.)

produce a spectrum of the Earth’s free oscillations by Fourier
analysis of long time-series.

Most studied are fundamental mode Rayleigh waves, which
correspond to P—SV energy and have elliptical particle motions
in the vertical plane containing the direction of propagation.
These waves are well recorded on the quieter vertical com-
ponent seismographs (Fig. 2). On the other hand, Love waves,
which carry SH energy, and are polarized horizontally in a
direction perpendicular to the direction of propagation, require
rotating the two horizontal records to extract the transverse
component of motion. Love wave studies have suffered,
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FIGURE 2 Three-component seismograms observed at station
CMB for a shallow earthquake at a distance of A =88.7°. The hor-
izontal components have been rotated to the longitudinal and trans-
verse directions, clearly exhibiting fundamental mode Love and
Rayleigh waves on the transverse and vertical/longitudinal compo-
nents, respectively. (Courtesy of Joseph Durek and Lind Gee.)

especially in the early days of analog recordings, from the
more complex data processing required, and from the higher
levels of background noise on horizontal components at long
periods, due primarily to the influence of atmospheric pres-
sure variations, inducing ground tilts. Fundamental mode
Love and Rayleigh waves are generally well separated from
other phases on the seismograms, and well excited by shallow,
crustal earthquakes, while overtones travel at higher group
velocities, appear as packets of mixed overtones (e.g., X
phases, Jobert et al., 1977), and are better excited by deeper
earthquakes (Fig. 3).

Surface waves recorded at teleseismic distances contain
information about both the characteristics of the earthquake
source and the structure of the Earth along the source station
path. Separating these two effects has been one of the long-
standing challenges faced by seismologists.

Studies of the structure of the crust and upper mantle pro-
gressed rapidly in the 1950s and early 1960s, as the tools to
measure group and phase velocities, and interpret them in
terms of layered mantle and crust models, became readily
available (e.g., Ewing et al., 1957; Brune et al., 1961a,b;
Alsop, 1963). In these studies, source effects were generally
eliminated by considering propagation between two or more
stations aligned along the same great circle path, or, at longer
periods, observation of consecutive Earth-circling wave
trains at the same station. On the other hand, in early studies
of earthquake sources, propagation effects were assumed to be
known, and amplitudes were “equalized” to obtain the
source radiation pattern and infer information about the fault
orientation (e.g., Aki, 1960) and its directivity (Alterman et al.,

FIGURE 3 Example of longitudinal component seismogram
recorded at IRIS/GSN station SUR showing the arrivals of multiply
reflected body wave phases forming a higher-mode Rayleigh wave
train in front of the fundamental mode (R;). The Airy phase, corre-
sponding to the group velocity minimum around 230sec, is well
visible in the R, train. The event occurred on 14 Jan. 1997 in southern
Bolivia, at a depth of 276 km. The epicentral distance is 8419 km. The
seismogram has been bandpass filtered with cut-off frequencies at
35 and 400 sec. (Courtesy of Yuancheng Gung.)

1959; Ben-Menahem, 1961; Kanamori, 1970). At that time,
the theoretical formulation for the excitation of surface
waves and normal modes of the Earth was developed (Sato
et al., 1962; Harkrider, 1964; Haskell, 1964), much stimulated
by the occurrence of the great Chilean earthquake of 22 May
1960, and more quantitative studies of the effects of the
earthquake source on spectra of surface waves followed.
The association of a normal mode formalism (e.g., Gilbert,
1971) to compute dispersion and excitation of surface waves
(and complete seismograms) with a moment tensor formal-
ism to describe the earthquake source (e.g., Backus and
Mulcahy, 1976; Mendiguren, 1977) has led to the present-
day commonly used expressions and to a rapid develop-
ment of source studies based on surface waves in the 1980s.
A computational method (Takeuchi and Saito, 1972), follow-
ing the theoretical approach of Saito (1967) based on Runge—
Kutta matrix integration, has long been the main reference
for the practical calculation of excitation for surface waves
and normal modes in laterally homogeneous, elastic, flat or
spherical Earth models. Later, different schemes, using
different mathematical approaches (variational method) were
developed (Wiggins, 1976; Buland and Gilbert, 1984).
Today, another widely used code for spherical geometry and
efficient to relatively short periods (10s) is based on a pro-
pagator matrix approach, in which minors of sets of solutions
are used (Gilbert and Backus, 1966; Woodhouse, 1980a,
1988).
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These theoretical advances were first applied to the analog
data of the World Wide Standard Seismic Network (WWSSN)
accumulated in the 1960s and 1970s. The IDA (International
Deployment of Accelerometers) network, established in the
mid-1970s (Agnew et al., 1976), provided the first long-period
digital data, along with several stations installed and operated
by the French (Jobert and Roult, 1976). The digital recording
greatly facilitated the simultaneous analysis of many records,
paving the way for large-scale tomographic studies of global
structure and systematic teleseismic source studies. A major
drawback, however, was the limited dynamic range of the
IDA instruments, so that first-arriving low-frequency R; and
G, wave trains would saturate for large earthquakes. This
problem disappeared in the 1980s with the deployment by
France of the high dynamic range, digital broadband GEO-
SCOPE network (Romanowicz et al., 1984, 1991) and by
the United States of the IRIS Global Seismic Network (e.g.,
Smith, 1986), gradually complemented by many broadband
stations contributed by other countries through the Federation
of Digital Seismic Networks (FDSN), which, starting in
1986, established high-level standards for broadband
seismic sensors, recording systems, and data formats (e.g.,
Romanowicz and Dziewonski, 1986). The accumulation of
high-quality data from numerous broadband stations has
greatly contributed to the successes of global tomography
and source moment tensor studies of the last 15 years.

3. Source Studies Using
Surface Waves

To obtain the frequency spectrum of a single mode surface
wave train from the expression of a seismogram obtained by
summation of normal modes on a spherically symmetric Earth,
one uses Poisson’s formula (e.g., Gilbert, 1976; Aki and
Richards, 1980), which decomposes the modes into infinite
trains of propagating surface waves traveling in opposite
directions around the Earth. In this process, a high-frequency
approximation is used, in which the phase velocity of a surface
wave is related to the corresponding normal mode frequency
by Jeans’s formula:

awj
=5

where [ is the angular order of the mode and wj its eigen-
frequency, and a is the radius of the Earth. In this high-
frequency approximation, the surface waves propagate along
the great circle path between the epicenter and the station
and are sensitive to structure only along this great circle.

The most widely used theoretical framework for the inter-
pretation of surface wave data was thus established in the 1970s.
It is derived from a normal mode formalism using a high-
frequency zeroth-order approximation, and leads to a simple
expression for the spectrum of a single mode propagating
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surface wave at distance A, azimuth 6, and angular frequency
w. Following Kanamori and Stewart (1976), and Nakanishi
and Kanamori (1982):

U(A, 0, w) = Uy(6, w)S(A)U(A, 0, w)F(w, 6)D(w)(w) (2)

where U is the source spectrum, U, contains propagation
effects, I is the instrument response, S(A) the geometrical
spreading term, and F and D express the source process as
clarified below.

The propagation term U, can be expressed as (e.g.,
Romanowicz and Monfret, 1986)

1 . .
Uy(A, 0, w) = Wexp(mM) exp(imm/2)

x exp[—iwA/C(w, 0)]exp[—n(w, )A] (3)

where m denotes the number of polar passages and C(w, 6),
n(w,B) are, respectively, the average phase velocity and
attenuation coefficient along the source—station path.

The source spectrum U; is a linear combination of the
moment tensor elements M;; of the source. In the notation of
Kanamori and Stewart (1976), we have for Rayleigh waves:

UX(0, w) =1 (Sg + Np)M-. + L (2Ng — Sg) (M + M,y)

+ 3Pr(Myy — M) c0s 20 — PrM.,, sin 20

+ iQr(M,; cos 6 + M,, sin ) (4)
where Ng, Sg, Pr, Or are the excitation functions, which are

nonlinear functions of w and of the depth 4 of the source.
Likewise, for Love waves:

UL, w) =P [A (M — M,,

+iQ1(—M,, sin@ + M,, cos ) (5)

) sin 26 — M, cos 26

with depth-dependent excitation functions P;,Q;. D(w)
expresses the delay 7p of the main faulting from the initial
break (e.g., Nakanishi and Kanamori, 1982):

D(w) = exp(—iwTp) (6)

and F(w, 0y) expresses the directivity term arising for the pro-
pagation of rupture. Ben Menahem (1961) derived an approx-
imate expression for F in the case of unilateral faulting, which
has been shown to be exact if an equatorial coordinate system
is used (Dziewonski and Romanowicz, 1977):

F(w, 00) = 22X exp(—ix) (7)
where
wL WL
=57 "¢ cos(f — 6y) (8)

and L is the length of fault, C is the average phase velocity at
frequency w, V is the rupture velocity, and 6, is the azimuth of
the rupture direction with respect to the fault strike.
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As seen from Egs. (2) to (8), fundamental mode surface
wave spectra contain information about the source moment
tensor, source depth (centroid), source process time, and,
under favorable circumstances for very large earthquakes,
source directivity. However, propagation effects U,, have to be
known or effectively eliminated.

In order to correct for propagation, different approaches
need to be taken depending on the size of the earthquake and
period range considered. At very long periods (7 > 180 sec)
and for large earthquakes (M >6.5), propagation effects
can be accounted for approximately in the framework of
a spherically symmetric reference Earth model. At shorter
periods and for smaller earthquakes, corrections on individual
source—station paths need to be known much more accurately.
We thus discuss these two domains separately.

3.1 Teleseismic Studies of Moderate
Size Events (M ~ 5=6)

Today significant efforts are still expended toward surface
wave “path calibration,” in particular in the framework of
CTBT research (e.g., Stevens and McLaughlin, 2000). How-
ever, several methods have been developed to deal with poorly
known path effects, with particular applications to the study of
moderate earthquakes, for which good signal-to-noise records
of 20-100sec surface waves are obtained at teleseismic dis-
tances. In this case, source duration and directivity can generally
be neglected, since their effect is significant only at shorter
periods. A standard procedure is to use a “reference event,” for
which a reliable mechanism has been obtained independently,
to obtain path corrections to specific stations. These path cor-
rections are then used to infer source parameters of other
neighboring events of interest. Following the approach of
Weidner and Aki (1973), Patton (1977) developed an iterative
method to infer simultaneously depth, source mechanism, and
propagation effects for a group of closely located events
observed teleseismically. On the path to a given station, the
propagation effects are assumed to be the same for all events. In
adjacent steps of the procedure, path effects and source char-
acteristics are alternately improved. In the source improvement
step, the linear system in M;; [Egs. (4) and (5)] is solved suc-
cessively for different depth values, and a solution is declared
corresponding to the depth that provides the best fit to the data
in a least-squares sense. The imaginary parts of Egs. (4) and (5)
generally do not contribute to the depth determination, as,
for shallow earthquakes, the eigenfunctions corresponding to
the moment tensor elements M,. and M, are very small (and
go to zero at the free surface). This also results in poor con-
straints on these two moment tensor elements for shallow
(h<20km) earthquakes if only fundamental mode surface
waves are used.

The method of Patton (1977) is limited by the fact that it
requires several earthquakes located in the same area to be
well recorded teleseismically at the same set of stations.
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Moreover, Aki and Patton (1979) have shown that, in
order to obtain reliable moment tensor solutions from data in
the period range 20-100sec, it is necessary to know average
phase velocities on source station paths with an accuracy
of 0.5%. When path corrections in the phase are inaccurate,
the method breaks down because a clear minimum in the
residuals/depth curves cannot be defined. On the other hand,
because path effects on amplitudes are less coherent, an
average-Q model is sufficient if only amplitude data are used
(Mendiguren, 1977). Tsai and Aki (1971) first showed how the
amplitude spectrum of Rayleigh waves (and to a lesser extent
Love waves) contained the signature of depth of source in
the period range 10-100sec, in the form of a “hole” in the
spectrum, which appears at a given period for a specific source
mechanism. However, when amplitudes only are used, the
inverse problem becomes nonlinear in the moment-tensor,
requiring the knowledge of a reasonable starting solution.

A procedure that greatly relaxes the constraint of accurate
path corrections in the phase was proposed by Romanowicz
(1982a), based on the following observation: For a given
source and at a given frequency wy, the real (o) and imaginary
(B) parts in Egs. (4) and (5) are functions of the azimuth 6
only, and can be written in the form

a(wy, ) = A + By cos 20 + Cy sin 20

9
B(wy,8) = Dy cosf + E;sin 6 ©)

where Ay, By, Cy, Dy, and E; depend on frequency. By virtue
of the uniqueness of the Fourier decomposition of continuous
functions, at each frequency wy, given a set of values of o
and [ for different azimuths 6, these coefficients are uniquely
determined. The Fourier expansions of « and (3 in azimuth
contain other coefficients, of degree n>2, that arise from
imperfect knowledge of path corrections. In solving Egs. (9),
these other terms are eliminated. Thus only the very long-
wavelength (n <2) terms of the phase velocity “map” in the
region containing sources and stations need to be known
accurately, an increasingly reachable goal today, thanks to
improvements in global surface wave tomography.

The inversion procedure thus proceeds in “two steps”: First,
Egs. (9) are solved at a set of frequencies wy,...,w, and
second, the following system of equations is solved for depth
h, searching, as previously, for a minimum in the residuals/
depth curve. Thus, for example, for Rayleigh waves:

Ay = %S,.(w, M.,
By = 1P, (w,h)(M,,
Cy = —P (w,h)M,y
Dy = Oy (w, )M,
E; = 0, (w, h)MyZ

- MZZ)
(10)

Here we have assumed that there is no volume change at
the source so that ), M;; =0 and M.+ M,, is replaced by
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— M., in Eq. (2). While justified for most earthquakes, this
assumption needs to be relaxed when a volumetric compo-
nent of the source is sought. To resolve the latter requires
multimode observations, and Egs. (2) to (8) show that resolv-
ing M,,, M,,, and M., separately involves many trade-offs
with structure effects (e.g., Dufumier and Rivera, 1997).
Romanowicz (1982a) showed that this procedure allows the
determination of accurate source parameters for small events
(M <5.5), for which only surface wave observations are
available teleseismically, provided one event of larger mag-
nitude is available, with a well-constrained mechanism, in
a source region ~1500km in aperture. This method was
later extended to the nonlinear inversion of surface wave
amplitude data (Romanowicz and Suarez, 1983).

3.2 Global Studies of Large Earthquakes

At very long periods (150 < T < 320sec) and for large earth-
quakes (M > 6.5), spherically symmetric Earth models can be
used to correct for propagation effects in the phase of “mantle”
waves (as surface waves are called in this period range), and
the biases introduced by neglecting lateral heterogeneity are
relatively small, except for very shallow events, for which the
source phase needs to be known with greater accuracy. In
the last 15 years, the availability of global 3D tomographic
models of the upper mantle of increasing accuracy has not
only facilitated very long-period source studies but has also
made it possible to extend the period range to shorter periods
(down to ~120sec) and to efficiently make use of alternative
methodologies, based on time-domain waveform inversion,
that are no longer restricted to the fundamental mode, thus
providing more accurate estimation of the source depth. Such
a waveform approach was introduced by Dziewonski et al.
(1981), who combined waveforms of mantle waves at
periods greater than 120sec with waveforms of body waves
at periods greater than 80 sec. This forms the basis of a now
routine procedure that serves to construct the widely used
Harvard centroid moment tensor (CMT) catalog.

The development of methodologies to invert fundamental
mode mantle wave data has nevertheless continued, following
Kanamori and Given (1981), who showed how the spectra of
mantle waves, sampled at only a few frequencies, could be
used to rapidly determine moment tensors of large earth-
quakes, when the depth of the event is known. Romanowicz
and Guillemant (1984) extended the approach of Romanowicz
(1982a) to show how centroid depth could be accurately
determined using mantle waves even in a spherically sym-
metric reference Earth model. For the size of earthquakes
considered here, the source process time (Nakanishi and
Kanamori, 1982) cannot be neglected and there can be sig-
nificant trade-offs with source depth. However, the source
process time can be estimated, as a function of frequency,
prior to the inversion by computing phase differences between
three wave trains at each individual station (e.g., Furumoto,

153

1979; Furumoto and Nakanishi, 1982). For example, if
Rayleigh wave trains R,,, R,,, 1 and R, , are used, with
R»,, .1 traveling in the opposite direction to the two other
trains, we have, for the corresponding phases ®;:

(p2n + @2m+l + (I’l + m)(QZn - (I)2n+2) + 2(binstr

= —wr + k27 (11)
where k is an arbitrary integer and the source time 7 is defined as
[Egs. (6), (7), and (8)]

L
T=—+21mp

c (12)

Expression (11) is independent of structure within the
framework of the high-frequency approximation in which
it is derived. This procedure requires that at least three
mantle wave trains traveling in opposite directions have
adequate signal-to-noise ratio, which can be rather restrictive.
Romanowicz and Monfret (1986) proposed an approach that
requires the availability of only one mantle wave train.

Noting from Egs. (3) to (9) that, if U. is the observed
spectrum corrected for instrument response and propaga-
tion, then,

U.(0,w)e'® = Uy(0,w) = a + i (13)
where
wT
R (14)

0¢ is the residual phase shift due to inaccurate propagation
corrections in the phase, and « and  are the real and imaginary
parts of Egs. (4) and (5), respectively. For specified, incre-
mental values of 7;, j=1,...,p of 7, the system of Egs. (4) and
(5) is solved for different frequencies wy, the squared residuals
of this inversion for each frequency are summed to obtain a
squared residual as a function of 7, and the solution is found for
the value of 7 corresponding to the minimum value of this
residual. The second step of the inversion proceeds as described
above [Egs. (9) and (10)]. Unlike the three-train method of
Furumoto and Nakanishi (1982), because of the trade-off with
Earth structure as seen in Eq. (14), the determination of the
source time by this method depends on the accuracy of the
Earth model used, and specifically, on errors in the Earth
model that contribute a constant phase shift as a function of
azimuth, that is, long-wavelength features. A regionalized
global model, such as that of Okal (1977), was shown to be
sufficient to obtain stable source time estimates. With the
increased precision of currently available 3D tomographic
models, this is no longer an issue. This method can be
extended to the case of large earthquakes with significant
directivity, by including a parameter search over the azimuth
o of the fault and the rupture length L. For very large earth-
quakes, Kuge et al. (1996) showed that source complexity
(spatiotemporal changes in the source mechanism) sometimes
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needs to be invoked to reconcile source mechanisms obtained
separately using Love and Rayleigh waves. The spectral
domain inversion of fundamental mode mantle waves was
further tested against Earth models and applied to large
earthquakes by Zhang and Kanamori (1988a,b), showing gen-
erally consistent results with the Harvard CMT solutions. An
alternative approach to study the spatiotemporal character-
istics of large earthquakes from surface wave data has been
proposed by Bukchin (1995), who used a representation of
the source in terms of higher-order moments.

3.3 Regional Distance Source Studies

While most of the modern formalism and methodology for
intermediate-period surface wave inversion for source param-
eters was in place by the mid-1980s, they have only been
recently adapted to the case of earthquakes observed at
regional distances. This has been made possible by the rapid
expansion, in the last ten years, of regional broadband networks
in seismically active regions, such as, for example, TERRA-
scope (Thio and Kanamori, 1995) or the Berkeley Digital
Seismic Network (BDSN; Romanowicz et al., 1993) in
southern and northern California, respectively, MEDNET in
the Mediterranean region (Giardini et al., 1993), and also
in Japan. In the regional case, target frequent earthquakes have
smaller magnitude (generally M < 4.5) and the period range
of interest is ~10-60sec (Fig. 4). Here, an important aspect
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FIGURE 4 Moment tensor solutions obtained for all earthquakes
of magnitude My > 3.5 in northern California for the period 08/98 to
09/99, using data from the Berkeley Digital Seismic Network. The
size of the beachball is proportional to magnitude. (Courtesy of
Hrvoje TkalCic.)
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is to obtain information about the earthquake source rapidly
to guide local emergency response, and this has led to the
development of automated procedures (e.g., Pasyanos et al.,
1993). The theoretical framework is essentially the same as
was developed for teleseismic observations at intermediate
(Romanowicz, 1982a) or long periods (Kanamori and Given,
1981; Romanowicz and Monfret, 1986). Some automatic pro-
cedures involve the comparison of a spectral domain inversion
of fundamental mode surface waves with a time domain com-
plete waveform inversion, at periods longer than 10sec (e.g.,
Pasyanos et al., 1993).

With the improvement of global upper mantle models, it is
now also possible to extend to smaller magnitudes (Mw > 4.5)
the time-domain CMT inversion methodology developed by
Dziewonski e al. (1981), making use of intermediate-period
surface waves (Ritsema and Lay, 1993). Arvidsson and
Ekstrom (1998) use a low-pass cutoff at ~45 sec and consider
the fundamental mode surface waves as traveling waves. The
phase is corrected for propagation effects using recent global
phase velocity maps.

4. Structure Studies Using
Surface Waves

4.1 Fundamental Mode Studies

Fundamental mode surface waves are well suited to study the
elastic structure of the crust and upper mantle, which can be
deduced from their group and/or phase dispersion properties.
They allow the sampling of vast areas of the globe that are
otherwise devoid of seismic stations and sufficiently strong
earthquake sources, such as the oceans.

It is beyond the scope of this chapter to review the
numerous studies that have used surface waves to infer lateral
variations of seismic velocities in the crust and upper mantle,
since the 1950s and up to this day. Many early studies docu-
mented the correlation of seismic velocity variations with
surface tectonic features, using regional measurements of
phase and group velocities of fundamental mode Love and
Rayleigh waves in the period range 20-100 sec (e.g., Knopoff,
1972; Kovach, 1978) or at longer periods (e.g., Toksdz and
Anderson, 1966; Dziewonski, 1971; Wu, 1972). Orginally,
group velocity dispersion was obtained by measuring the times
of arrival #(w) of peaks and troughs of waves in a dispersed
wave train. The time between two successive peaks would
give the half period (7/2 = m/w), and the group velocity U(w)
would be computed as

(15)

where X is epicentral distance in kilometers and #(w) is
measured with respect to the earthquake’s origin time. Since
the early 1970s, the computation of “energy diagrams,” as
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FIGURE 5 Example of group velocity dispersion diagrams obtained for the fundamental Rayleigh
wave mode on the vertical record of the Chile M 6.8 earthquake of 15 Oct. 1997 at Geoscope station
INU, using a multiple filtering approach as perfected in the FTAN method (e.g., Lander, 1989; Levshin
et al., 1994). (a) Dispersion diagram before filtering; (b) same after filtering. The group velocity
dispersion curve obtained follows the maxima of energy as delineated by the gray scale contours.
(c) Corresponding time-domain seismogram before and after variable filtering. The “raw” seismogram
is bandpass filtered in the period 50400 sec. (Courtesy of Boris Bukchin.)

described below, has greatly facilitated group velocity disper-
sion measurements (e.g., Fig. 5).

On the other hand, phase velocity C(w) is obtained from the
phase @ of the Fourier spectrum of a dispersed wave train that
has been corrected for the contribution of the source and the
instrument [Eq. (2)]:

- X
oty —[®—N—(m/4) — 1/8]/w

C(w) (16)

where ¢, is the start time of the Fourier window with respect
to the event’s origin time, m is the number of polar passages,
and N is an integer arising from the 27 indeterminacy of
the phase. This integer is determined first at long periods to
obtain reasonable values of phase velocity compatible with
well-constrained global models (e.g., PREM; Dziewonski and
Anderson, 1981). It is then successively obtained at decreasing
periods in such a way as to obtain a smooth phase velocity
curve. This can become a problem at periods shorter than
30 sec, where small variations in phase velocity correspond to
rapid cycling of the phase. The source phase also needs to be
accurately corrected for.

Most early studies circumvented the issue of separating
source and propagating effects by making measurements
using the “two-station method,” in which dispersion was
measured between two stations approximately aligned with
the epicenter on a great circle path, thus eliminating the
common source phase. If, in addition, the two stations were
located within a relatively homogeneous geological province,
such measurements were called “pure path” and led directly
to the determination of elastic velocity structure beneath
that province. An extension of this method to “many stations”
to infer structure beneath an array of stations spanning a
geologically homogeneous region was also devised and
used extensively in the 1960s (e.g., Knopoff et al., 1967). To
access remote regions devoid of stations but with relatively
frequent earthquakes of magnitude 5.5 or larger, such as
the Tibet Plateau, a “two-event” method was also devised.
The success of this approach, which relied on an accurate
independent knowledge of the source phase, was only possible
under very restrictive conditions. In particular, the align-
ment of the three points (two epicenters, one receiver) had to
be within 3° of the great circle path (e.g., Romanowicz,
1982b).
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At longer periods, especially beyond the group velocity
minimum at 200-250sec, fundamental mode dispersion
measurements were hampered by interference with higher
modes (a problem also in the vicinity of the group velocity
maximum around 60 sec), and the fact that the longest-period
waves are not sufficiently well dispersed on first-arriving
trains. In the early 1970s sophisticated filtering techniques
were developed (Dziewonski et al., 1969; Cara, 1973a,b) to
isolate a surface wave mode along its group velocity curve
(Fig. 5). This approach, later perfected by Levshin and col-
laborators in the FTAN method (e.g., Lander, 1989; Levshin
et al., 1994), involves two steps. In the first step, an “energy
diagram” is formed, in which the energy contained in the
seismogram is plotted as a function of period and time (i.e.,
group velocity). The maxima of the 2D diagram thus obtained
delineate the group velocity curve of the dispersed surface
wave modes present in the seismogram in the time window
and frequency window considered. In a second step, the time-
domain seismogram is then filtered using multiple filters
centered, at each point in time, on the frequency corresponding
to the maximum of energy at that time. The possibility of
simultaneously inverting group and phase velocity data has
been discussed by Yanovskaya and Ditmar (1990).

By allowing the extraction of a mode branch over many
consecutive wave trains, these techniques also resulted in
better measurements of the spheroidal and toroidal eigen-
frequencies for the fundamental and several higher modes
(e.g., Jobert and Roult, 1976). With the advent of digital
recording in the mid-1970s and the expansion of global digital
long-period and later broadband networks, the processing of
the relatively long time-series needed to measure surface
waves became much easier and opened the way in the 1980s to
large-scale and global studies of upper mantle structure.

Large-scale studies first proceeded according to a region-
alization scheme, in which it was assumed that the depth
variation of seismic velocities is the same throughout each
tectonic province. These studies confirmed and extended to
longer periods (and hence larger depths) early results on the
age dependence of structure in the oceans (e.g., Forsyth, 1975;
Montagner and Jobert, 1983; Nishimura and Forsyth, 1989).
The constraint of regionalization was soon relaxed, after
Dziewonski et al. (1977) introduced the expansion of lateral
heterogeneity into a basis of spherical harmonics (applied first,
however, to the lower mantle using body wave travel time data).

On the global scale, as in source studies, two different
approaches emerged, one based on dispersion measurements
in the frequency domain, the other based on time-domain
waveform inversions. Dispersion measurements in the frequency
domain have been focused primarily on the fundamental mode,
and thus limited in resolution beyond depths of 350-400 km.
This approach has led to several generations of collections of
global phase velocity maps at discrete frequencies. These
maps can then be inverted jointly, in a second step, to infer 3D
S-velocity structure of the upper mantle. This approach was
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pioneered by Nakanishi and Anderson (1983) and Nataf ef al.
(1986), and is now well established, with different research
groups introducing various improvements in the measurement
technique leading to increasingly high-resolution maps (e.g.,
Trampert and Woodhouse, 1995; Laske and Masters, 1996;
Zhang and Lay, 1996; Ekstrom et al., 1997). Trampert and
Woodhouse (1995) designed an automatic method to measure
phase and amplitude of surface waves in the period range 40—
150 sec and invert the resulting dataset to obtain global phase
velocity maps expanded in spherical harmonics up to degree 40.
On the other hand, Ekstrom ef al. (1997) used phase-matched
filters to isolate the fundamental mode and make global dis-
persion measurements in the period range 35-150sec and
obtain models of phase velocity also up to degree 40 in spher-
ical harmonics. In these studies, lateral variations of structure
seem to be well resolved down to wavelengths of ~1000-
2000 km. At the long-period end the period range is limited by
the difficulty of separating consecutive wave trains, and at
the short period end by the increased complexity of surface
wave propagation in the strongly heterogeneous crust and
uppermost mantle, resulting in lateral refractions and multi-
pathing. The latter are not taken into account by the simple high-
frequency, great circle propagation assumptions underlying the
interpretation procedures.

Still in the frequency domain, but aiming at exploiting both
the real and imaginary parts of the spectrum, Dziewonski and
Steim (1982) developed a method to retrieve both phase
velocity and attenuation averaged over complete great circle
paths. These authors considered the frequency-dependent
transfer function T(w) between two consecutive fundamental
mode Rayleigh wave trains traveling in the same direction
along the great circle linking the epicenter and the station (say,
R, and R, ,) and related it to the average dispersion and
attenuation over the great circle path:

R,
T(u]) _ R+2
n

T(w) = CXP{_W‘I [i <2k(w) a é) * ;}g(((:))] }

where k(w)=w/C is the real wavenumber, U(w) is group
velocity, g(w) is the inverse of the quality factor, and the extra
term 7 accounts for polar passages. The transfer function T(w)
is linearized and compared to that predicted by a reference
model, to retrieve perturbations in phase velocity C and
attenuation ¢ along the great circle.

In order to proceed to a time-domain waveform inversion,
synthetic seismograms needed to be computed in a reference
model and perturbed. First-order perturbation theory had
been developed in the 1970s, culminating in the work of
Woodhouse and Dahlen (1978) and Woodhouse (1980b).
Without going into detail beyond the scope of this chapter, we
will briefly point out the key steps that led to the formalism
routinely used today. An asymptotic expression relating the

(17)
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observed frequency shift 6w, of a normal mode k observed on
a given source station path to the underlying average elastic
structure over the corresponding great circle path was derived
by Jordan (1978) and Dahlen (1979):

1 2

bw = bwy(s) ds (18)

21 Jo
where the local frequency shift dwi(s) represents an integral
over depth of the difference between the local elastic structure
and the reference Earth model at point s along the source—
station great circle, weighted by the depth sensitivity kernels
of mode k (e.g., Woodhouse and Girnius, 1982). The local
frequency shift can be related to the phase velocity perturba-
tion using Jeans’s formula. A perturbed synthetic seismogram
could then be formed as a sum over normal modes:

u(A,t) =Re ZA{‘;(A) exp(i(wy + 6uy) exp(—(aux + dci)t)
[

(19)

where A is epicentral distance in radians, and the amplitude
term A’é, frequency wy, and attenuation o are computed in
the reference spherically symmetric Earth model. 6, and dciy
are the real and imaginary parts, respectively, of the average
frequency shift along the complete great circle path. However,
this expression only reflects the effect of heterogeneity that is
symmetric with respect to the center of the Earth, in agree-
ment with the fact that, to zeroth order in the asymptotic
approximation, normal modes are only sensitive to that part of
lateral heterogeneity (e.g., Woodhouse, 1983).

Relating observed waveforms of a single (say, the first
arriving) surface wave to a synthetic normal mode seismogram
presented a challenge. From the practical point of view, this
stumbling block was removed by Woodhouse and Dziewonski
(1984), who introduced a “distance shift” that depended on
the structure of the minor arc in the computation of the
seismogram in a slightly heterogeneous Earth, as follows:

u(A,t) =Re ZAS(A + 6A) exp(i(@ + ) exp(—akt)]
T

(20)
where the summation is over all modes &, and
wrda ~ N
6N = —+—— (60 — O 21
T+ 120 09— 1)

Here U is the group velocity of the mode £, a is the radius of the
Earth, and 6w is the minor arc average of the local frequency
shift 6w, defined as
1 /A
ow = Z/o bw(s) ds (22)
Theoretical proofs of Eqgs. (20) and (21) were later given
independently by Romanowicz (1987), Park (1987), and
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Mochizuki (1986a,b), in the framework of zeroth-order
asymptotic coupling theory (Woodhouse, 1983; Tanimoto,
1984). The minor arc average 6w arises as a consequence of
coupling of neighboring modes along a single dispersion
branch, due to lateral heterogeneity, in contrast to the great
circle average, which is obtained through coupling within
isolated mode multiplets (Jordan, 1978; Woodhouse, 1983;
Romanowicz and Roult, 1986).

The frequency-domain approach involves a two-step pro-
cedure: First, determine phase velocity maps of a single
surface wave mode branch at individual frequencies; second,
invert the dispersion curves obtained at every point on
the globe to obtain the laterally varying depth distribution of
shear velocities (since surface waves are primarily sensitive to
shear velocity). On the other hand, the waveform approach is
a single-step approach that obtains the 3D structure directly
from the seismograms. Moreover, it can also be used for
multimode waveforms, the approach favored by Woodhouse
and Dziewonski (1984) and later extended, in combination
with body wave travel time measurements, to whole-mantle
tomography (e.g., Su et al., 1994).

Whatever the approach, a significant issue regarding the
inversion of fundamental mode surface waves is that of crustal
corrections. Indeed, surface waves are sensitive to shallow
crustal structure even at long periods (e.g., Dziewonski,
1971). Most studies perform crustal corrections in the frame-
work of linear perturbation theory. However, Montagner and
Jobert (1988) showed that the effect of strongly varying crustal
structure is nonlinear and proposed a more accurate correction
procedure based on a tectonic regionalization. The nonlinear
part comes primarily from very large lateral variations in
depth to Moho and other crustal discontinuities (for example,
depth to Moho can vary by a factor of 4 between oceans
and continents). The crustal contribution is computed in two
steps. First, i=1—n regional reference models are con-
sidered, and phase velocities as well as partial derivatives
with respect to elastic parameters and discontinuity depths
are computed for each of these models. In a second step,
linear corrections are applied for each point along the source—
station path, taking into account perturbations of the actual
crustal elastic parameters and discontinuity depths with
respect to the local tectonic model. The contribution A®
to the observed phase, due to crustal structure, is thus of

the form:
AP R 5i(M) R 8i(M)
- "2 {/S ds (M) C —/S ds (M) 2

(23)

oC oC
X <Z’: ap—,, 5[7,‘,A + Xk: M 6hik>:|

where 8(M) is 1 if point M belongs to a tectonic region i, and 0
otherwise; C; is the phase velocity in crustal model #; A is the
depth of the kth discontinuity of the tectonic model i; and 6,
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is the perturbation in that depth at point M. Also, p;, is
the rth elastic parameter in tectonic model i, and dp; is
the perturbation in that parameter at point M. Montagner
and Jobert (1988) give a slightly different expression for
the crustal contribution, arguing that only the lateral varia-
tions in discontinuity depths need to be treated in a nonlinear
fashion.

Developing accurate crustal models (e.g., Mooney et al.,
1998) remains a challenge for large-scale surface wave
inversions for structure, as does the accurate treatment of
crustal effects.

4.2 Higher-Mode Surface Wave Inversion

While well separated in the time domain from other mode
branches and therefore well suited for single mode analysis
techniques, fundamental mode surface waves have several
shortcomings: at intermediate periods (say, 20-150 sec) their
sensitivity to structure below about 200 km is poor, whereas
longer-period mantle waves, which reach down to the top of
the transition zone, have poor spatial resolution. In any case,
resolving structure in the upper mantle transition zone, which
is also poorly sampled by body waves, requires the analysis of
higher-mode surface waves, whose sensitivity is larger at
these depths (Fig. 6). They are also a powerful tool for inves-
tigating structures where low velocity zones may be present
(e.g., Kovach and Anderson, 1964).

In some specific frequency windows, and for some specific
source excitations, it has been possible to isolate and mea-
sure the dispersion of the first higher Rayleigh wave modes,
either at very short period, where they are well separated
on the seismogram (e.g., Crampin, 1964), or with the help
of time-variable filtering at periods between 100 and
200 sec (e.g., Roult and Romanowicz, 1984). In general, how-
ever, higher-mode surface waves overlap in the time—fre-
quency domain, and single mode dispersion methods therefore
cannot be applied. For example, in the period range 80-
150 sec, Rayleigh modes 3, 4, and 5 are well excited by
intermediate-depth earthquakes, and are observed on seismo-
grams as single energetic wavepackets, labeled “X-phase” by
Jobert et al. (1977).

In the 1970s, in order to isolate higher modes of surface
waves, similar array methods were developed independently
by Nolet (1975) and Cara (1973b, 1978) and applied in the
period range 20 to 100sec to paths across Eurasia and the
Pacific Ocean, respectively.

These methods require a linear regional array of stations
approximately aligned with the epicenter (and not in a nodal
direction) to separate modes in the (w k) domain, where £k is
wavenumber. After correction for the instrument response, an
array stack is formed (e.g., Nolet, 1975):

2

S(k,w) ‘ZF,I exp(i®,)H, (k, w) (24)
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FIGURE 6 Depth profiles of partial derivatives of Rayleigh wave
fundamental and first three higher modes with respect to S velocity at
a period of ~100 sec, computed in the PREM model (Dziewonski and
Anderson, 1981). At this period, the fundamental mode sensitivity
peaks around 150 km depth and is negligible below 300 km depth. On
the other hand, higher modes have significant sensitivity throughout
the transition zone, and even, for modes 2 and 3, at the top of the
lower mantle. (Courtesy of Yuancheng Gung.)

where the “array response” is

- 1
|H, (k,w)|* = ‘NZ exp[i(ky(w
J

and F,(w), ®,(w), and k,(w) are, respectively, the amplitude
spectrum, initial phase, and wavenumber of mode 7, A; is the
epicentral distance to station j, and the spectrum of the multi-
mode signal at station j is

ZF

The array-response has a peak at k = k,. These peaks are
measured from plots of contours of the function S (lg w) in the
(w, Ig) plane, from which dispersion curves k,(w) are then
derived (Fig. 7).

This method is nevertheless limited in its application to a
few regions of the world with relatively dense, linear arrays.
The condition of alignment of the array in a narrow azimuthal
range was later relaxed by Okal and Jo (1985, 1987), by
correcting for the azimuthal variations of the initial phase
®,(w). This approach still suffered from lack of accuracy in
the reading of the maxima in the S(k,w) plots, in particular due
to the presence of large side-lobes.

— k)Aj] (25)

) exp|iky(w)A; + i®,(w)] (26)
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U (km sec™)

C (km sec™)

R (K-K5)

FIGURE 7 Example of UC diagram for the determination of dispersion of Rayleigh wave higher modes. This
diagram was obtained from records of WWSSN stations in North America, at a period of 35 sec, for an event in Fiji-
Tonga, which occurred on 13 Oct. 1969 at a depth of 246 km. The numbers indicate amplitude levels in percent of
maximum. The maxima correspond to modes 1, 2, and 3, traveling with similar group velocities, but well separated
in phase velocity. (Reproduced with permission from Cara, 1978.)

In the meantime, following a cross-correlation technique
first proposed by Dziewonski et al. (1972), a waveform-based
method involving the comparison of single record observed
and synthetic seismograms was developed by Lerner-Lam
and Jordan (1983) and later improved by Cara and Lévéque
(1987) and Lévéque et al. (1991). In this approach, branch
cross-correlation functions (bccf’s) are formed between a
particular single-mode synthetic and the observed seismo-
gram, as follows. The observed seismogram s(f) is written as
the sum over overtone branches u,(?),

s(t) = (1)

and a synthetic seismogram §(¢) is computed for a refer-
ence spherically symmetric model suitable as a starting
model for the average structure along the source—station path
considered:

(27)

(28)

$(0) =Y (1)

The matched filter is the synthetic seismogram i,,() for a
particular mode branch m, so that the objective function to be

minimized is formed as

Dn(7) = (s() = (1)) * tim(2) (29)

The objective function should be peaked near =0, and the
displacement of the peak from 7=0 is a function of the dif-
ference between the observed and the computed dispersion.

Partial derivatives with respect to model parameters can be
formed to then invert for elastic model perturbations and
obtain an average structure along the specific source—station
path. Cara and Lévéque (1987) added a bandpass filter to
further improve the resolution, and Lévéque et al. (1991)
added a procedure to invert the envelope and phase of the
filtered cross-correlograms. Indeed, this formalism lends itself
also to the derivation of secondary observables such as group
or phase velocities, which have a more linear dependence on
the elastic structure, an approach discussed by Cara and
Lévéque (1987) and also further developed by Gee and Jordan
(1992). The main drawback of this cross-correlation method-
ology is the contamination of the single mode objective
function by interference from other modes.



160

Other waveform inversion approaches have been developed
that do not try to separate individual higher modes. Nolet
(1990) introduced the “partitioned waveform inversion”
approach in which inversion for elastic structure proceeds in
two steps. Path integral parameters are defined and retrieved
by nonlinear waveform fitting and, in a second step, inverted
linearly for elastic structure. The main goal of this approach is
to reduce the number of parameters to be fit in the nonlinear
part of the inversion, and thereby to simplify the computations
and increase their robustness. This method has subsequently
been applied by Zielhuis and Nolet (1994) to retrieve upper
mantle structure under central Europe, by van der Lee and
Nolet (1997) in North America, and by Zielhuis and van der
Hilst (1996) in Australia.

Alternatively, following the waveform modeling approach
of Woodhouse and Dziewonski (1984), Li and Romanowicz
(1995, 1996) introduce a global waveform modeling approach,
based on a theoretical normal mode formalism that includes
coupling across different mode branches (Li and Tanimoto,
1993). This formalism is particularly appropriate for body
waves, in that it involves the computation of broadband sen-
sitivity functions centered around the ray path, a more correct
approach than the standard surface wave path average
approximation, which averages kernels laterally between the
source and the receiver. However, for higher-mode surface
wave trains with sensitivity to the top of the lower mantle,
across-branch mode coupling also starts to matter if increased
resolution of structure is to be attained (e.g., Mégnin and
Romanowicz, 1998). A similar mode-coupling formalism,
using a propagating wave approach in the frequency domain,
has been derived by Marquering and Snieder (1995) and Zhao
and Jordan (1998).

Efforts to extract single mode observables using a wave-
form approach continued in the 1990s. Stutzmann and
Montagner (1993, 1994) directly compare observed and syn-
thetic waveforms of multimode wavepackets for paths between
several earthquakes approximately in the same location, but at
different depths, and for a given station. They set up an
iterative, nonlinear inversion, in which they assume that the
only unknowns are perturbations of the phase velocities of
the fundamental mode and first few higher modes (in general
three) along each path. They thus retrieve path-dependent
dispersion properties, which, in a second step, they combine in
a global inversion for structure. The drawback of this method
is the constraint on path selection imposed by the requirement
of finding several well-recorded neighboring earthquakes of
different depths, which limits the number of paths that can be
processed around the Earth, and therefore the resolution of
the model.

Recently, van Heijst and Woodhouse (1997, 1999) proposed
a “mode-branch stripping” method based on a becf approach
combined with a frequency-stepping procedure. These authors
proceed iteratively to extract phase velocity and amplitude
information, as a function of frequency, for the well-excited
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modes contained in a higher-mode wavepacket. They start at
low frequency and proceed to higher frequencies, taking
advantage of the smoothness of dispersion as a function of
frequency, and thus are able to avoid the indeterminate 27
phase shifts that can be a problem at higher frequencies. By
computing synthetics, they also determine the respective
strengths of the different mode branches, and start the proce-
dure by fitting the strongest mode branch. The improved
synthetics for this mode branch are then subtracted from the
data and the procedure is repeated for the next strongest
mode with data and synthetics “stripped” of the already fitted
preceding mode. At each step, the objective function to be
minimized for mode ¢ is then
Dy(7) = (7772 (1) = §777) ity (m) (30)

where s ”1P2(f) and § 772 are the observed and synthetic
seismograms, respectively, stripped of the modes p;, p,,...
that have already been fit.

van Heijst and Woodhouse (1997) argue that this approach
not only provides better resolution for a given path than the
original becf approach, but, by allowing the determination of
single mode dispersion and amplitude with many fewer
restrictions on the paths than the method of Stutzmann and
Montagner (1993), it also leads to better sampling of the globe
and, not being limited to theoretical assumptions on great
circle path propagation, leaves open the possibility of
extracting information on off-path propagation.

4.3 Upper Mantle Anisotropy from
Fundamental Mode Surface Waves

The incompatibility of dispersion curves measured for Love
and Rayleigh waves has provided some of the earliest evidence
for anisotropy in the crust and upper mantle (e.g., Anderson,
1961; Aki and Kaminuma, 1963; McEvilly, 1964). Its wide-
spread character was confirmed in the 1970s and 1980s,
mainly for fundamental modes, and in the oceans (e.g., Forsyth,
1975; Schlue and Knopoff, 1977; Mitchell and Yu, 1980;
Montagner, 1985), but also for higher modes (Levéque and
Cara, 1983). This discrepancy can be explained by introducing
a transversely isotropic medium with vertical symmetry
axis, and it is in this framework that the widely used Pre-
liminary Reference Earth Model (PREM) has been constructed
(Dziewonski and Anderson, 1981). Studies of the Love/
Rayleigh discrepancy have been extended to the global scale
and at long periods (100-250 sec) by Nataf et al. (1984), who
first mapped the global lateral variations of transverse isotropy
as a function of depth, expanded in spherical harmonics
up to degree 6.

Recently, Ekstrom and Dziewonski (1998) used global Love
and Rayleigh wave dispersion measurements in the period
range 35-300sec, complemented by long period waveform
and travel time data, to invert separately for Vgy and Vgy in
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the upper mantle, and thus obtain a measure of the global
distribution of transverse isotropy. Their model (“S207),
which is expanded laterally in spherical harmonics up to
degree 20, confirms the widespread presence of this type of
anisotropy in the upper mantle, and particularly singles out a
strong anomaly in the central Pacific Ocean.

In addition, surface wave dispersion has also been shown to
vary with azimuth, another indication of anisotropy (e.g.,
Forsyth, 1975; Suetsugu and Nakanishi, 1987). The global
azimuthal variations of Rayleigh and Love wave dispersion at
long periods (100-250sec) were first mapped by Tanimoto
and Anderson (1984, 1985), who showed that the fast direction
appears to correlate with flow directions in the mantle.

Surface waves thus show two manifestations of anisotropy:
(1) variations of phase and group velocities with azimuth
(azimuthal anisotropy), and (2) inconsistent dispersion curves
for azimuthally averaged Love and Rayleigh waves (transverse
isotropy).

The theoretical expressions for the propagation of surface
waves in an anisotropic plane layered medium was studied by
Crampin (1970) and Smith and Dahlen (1973). The latter
provided expressions for the azimuthal dependence of Love
and Rayleigh waves in a slightly anisotropic medium. This
formalism was extended to the case of a spherical Earth in
a normal mode and spherical harmonics framework by
Tanimoto (1986) and Mochizuki (1986b). Romanowicz and
Snieder (1988) developed an equivalent formalism that
does not require a spherical harmonics expansion and thus is
applicable to regional studies, and Park (1997) generalized
this to include source terms and compute complete synthetic
seismograms in the Born approximation.

Here, we only present the basic asymptotic expressions that
relate dispersion to anisotropic elastic structure. To first order
in anisotropy, and at frequency w, the azimuthal variation of
phase velocity (Love or Rayleigh wave) is of the form:

C(w,0) = A (w) + Az(w) cos 26 + Az (w) sin 20

+ As(w) cos 460 + As(w) sin 46 (31)

where 6 is the azimuth of the wavenumber vector defined
clockwise from north.

Montagner and Nataf (1986) provided expressions for the
coefficients A;(w), which are depth integral functions, in terms
of the following combinations of standard cartesian elastic
coefficients Cy;, for both Love and Rayleigh waves:

Constant term (A;):

A=pViy =3(Cii+Cn) +1Cin +1Ce
C=pVs, =Cs

F=1(Ci3+C2)

L=pV3, =1(Ca + Css)

N = pV§y = §(Ci1 + Cx — 1C12 + 1 Ces)
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20 azimuthal term:
(A2) (A3)
cos 260 sin 260
B.=1(Cy1 — Cn) By = Ci6 + Ca (33)
G =3(Css — Cas) Gy =Cs4
H.=%(Ci3 —Cx) H; = Cs6
46 azimuthal term:
(Ag) (As)
cos 40 sin 460 (34)

E.=4(Ci1 4+ Cp) —1C1p —1Cos  E; =3(Ci6 — Ca)

The term A,, independent of azimuth, involves only the five
independent combinations of elastic coefficients needed to
describe a transversely isotropic medium with vertical sym-
metry axis, labeled A, C, F, L, N (Love, 1927; Takeuchi
and Saito, 1972). Montagner and Nataf (1986) showed that
the partial derivatives of all the other terms only require
the computation of partial derivatives with respect to the five
parameters of a reference transversely isotropic Earth, thus
providing the means to invert the azimuthal variations of sur-
face wave phase velocities. They also estimated the different
terms for realistic upper mantle models and showed that for
Love waves, the N kernel is much larger than L and that the
40 term is dominant, making it difficult to use Love waves to
constrain azimuthal anisotropy on the global scale, whereas
for Rayleigh waves the 260 term prevails. Finally, because
Rayleigh waves are sensitive both to shallow crustal and
deeper mantle anisotropy, it is important to use a wide fre-
quency range to resolve the depth dependence of anisotropy
using surface waves.

Montagner and Nataf (1988) showed how this formalism
could be used for the inversion of surface wave dispersion data
including the azimuthal terms, under the assumption that
the material possesses a symmetry axis (orthotropic medium).
In this case the 3D model can be described using seven
parameters (plus density): the five parameters A, C, F, L, N
describing transverse isotropy, and two angles describing
the orientation in space of the axis of symmetry. These
authors used the inversion algorithm of Tarantola and Valette
(1982) in its continuous form, as adapted to surface waves by
Montagner (1986) with the introduction of an appropriate
spatial correlation function, providing the description of the
model and its error distribution on a grid of points (rather
than a global basis function expansion), suitable for regional
studies. This methodology, called “vectorial tomography,”
was first applied by Montagner and Jobert (1988) to retrieve
lateral heterogeneity and anisotropy, described at each point
by an amplitude scalar, and a direction vector (under the
hypothesis of orthotropy), to the study of the Indian Ocean,
and the results were interpreted in terms of flow in the mantle.
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This procedure involves two steps: (1) determining maps of
azimuthal variations of anisotropy at individual frequencies,
and (2) inverting the retrieved coefficients locally for hetero-
geneity and anisotropy variations with depth. A similar
approach was subsequently applied to many other regions
(e.g., Mocquet et al., 1989; Roult et al., 1994; Griot et al.,
1998; Pillet et al., 1999), and extended to the global study
of heterogeneity and anisotropy in the upper mantle by
Montagner and Tanimoto (1990, 1991). In this latter case, an
approximation was introduced for the calculation of the data
covariance matrix in the Tarantola and Valette (1982) frame-
work, to make the computations manageable for a global
dataset. While some questions linger about trade-offs between
lateral heterogeneity and anisotropy in this type of inversion,
Montagner and collaborators have shown that they can explain
their datasets with fewer parameters when azimuthal aniso-
tropy is considered than when it is ignored.

In order to circumvent the trade-off between lateral hetero-
geneity and azimuthal anisotropy, Park and Yu (1992, 1993)
have looked for other diagnostic effects of anisotropy in
long-period surface waves, such as waveform anomalies
caused by Rayleigh—Love coupling, which generates “quasi-
Love” waves on vertical components and “quasi-Rayleigh”
waves on transverse components. Yu and Park (1994) have
documented such observations, best seen in nodal directions
of strike-slip sources, in the Pacific Ocean and inferred small
scale variations in anisotropy related to tectonic features.

4.4 Effects of Scattering and Non-Great
Circle Path Propagation

Until now, most regional and global models using surface
waves have been derived using the standard “path-average”
approximation, which is a high-frequency asymptotic approx-
imation in which the propagation is assumed to be confined
to the great circle path between the source and the receiver.
This is valid only if the wavelength of lateral variations of
structure is long with respect to that of the surface waves
considered.

In fact, over the years, there have been many observations
indicating that lateral heterogeneity is strong enough to cause
departures from this simple hypothesis, as evidenced, for
example, at short periods, where 20 sec surface waves sensi-
tive to shallow crustal structure consistently show multi-
pathing (e.g., Capon, 1970; Bungum and Capon, 1974; Fig. 8),
or at long periods (7> 100sec), where amplitude anomalies
have been widely documented, with, for example, later-
arriving trains showing larger amplitudes than the ones pre-
ceding them (Fig. 9), which cannot be explained by lateral
variations of anelasticity (e.g., Lay and Kanamori, 1985; Roult
et al., 1986; Park, 1987).

Several approaches have been developed to try to explain
these effects and exploit them to obtain better constraints on
lateral variations of structure. The principal ones are cast in the
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12/06/2000 Turkmen SSR Mp, 6.7 M,y 7.0 dep 33km
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FIGURE 8 Vertical component records at BDSN stations YBH,
ORYV, and CMB for the 12/06/2000 earthquake in Turkmenia
(Mv 7.0; depth 33km). The records have been bandpass filtered
between 0.001 and 0.03 Hz. These records show clear evidence of
multipathing of 20-30sec surface waves. The corresponding great
circle path has an azimuth coming from the north which runs quasi
parallel to the major structural boundaries in the crust in northern
California (including the coast line). Multipathing is more severe at
more southerly stations ORV and CMB, indicating that it does indeed
originate on the station side. (Courtesy of Yuancheng Gung.)

framework of three different formalisms, depending on the
application: ray theory, scattering theory, and a coupled-mode
formalism. Each of these methods lends itself to various
degrees and, under specific circumstances, to inversion.
Working in a 2D cartesian framework for the description of
surface wave propagation in a smoothly laterally varying
medium, Woodhouse (1974) introduced the concept of local
modes. These are the surface wave modes corresponding to a
laterally homogeneous model, which locally has the depth
distribution of the laterally varying model. If the medium is
smooth, the local mode branches propagate as independent
wave trains, the dispersion and displacement of which are
modified according to the evolution of the local modes.
However, when the lateral variations are sharp (for example,
in the presence of a structural discontinuity such as an ocean—
continent boundary), the coupling of the local modes cannot
be neglected, and its strength depends on the width of the
structural transition zone (Kennett, 1972). Kennett (1984)
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FIGURE 9 Examples of amplitude anomalies due to focusing for
Earth-circling Rayleigh waves. Top traces are observed waveforms
and bottom traces are synthetics computed in the spherically sym-
metric PREM model (Dziewonski and Anderson, 1981). In the syn-
thetics, the later-arriving trains always have smaller amplitudes than
the observed ones. In these examples, the data exhibit larger ampli-
tudes in Rj3 than in R,. The data have been bandpassed filtered
between 90 and 400 sec (event C110696M) and 90 and 300 sec (event
C012499A). (Courtesy of Yuancheng Gung.)

derived a formalism for mode-coupling in 2D laterally varying
structures using a representation of the displacement field on
the modes of a reference, laterally homogeneous structure,
which still requires continuity in the lateral variations. The
coupled, reference mode approach has been extended to the
3D scattering case and for certain types of structures, in
cartesian coordinates, by Bostock (1991, 1992) and Bostock
and Kennett (1992).

To overcome the restriction of smooth lateral variations,
coupled local modes need to be considered. In this case, the
wavefield is expanded in terms of a laterally varying local
mode basis. A specific case, that of Love waves in a one-
layered laterally varied structure, was studied by Odom
(1986), whereas Maupin (1988) generalized the coupled local
mode approach to any 2D structure. In this case, no reference
laterally homogeneous structure is needed.

While 2D mode coupling can provide exact computations of
coupling and conversion, and is appropriate for certain
applications such as the study of continental margins, a scat-
tering formalism has been, so far, more easily implemented in
the context of inversion for the study of 3D heterogeneity in
relatively smooth media.

Several applications of ray theory have been proposed to
study the departure of surface wave paths from the conven-
tional great circle approximation. Theoretical calculations
were proposed by Woodhouse (1974), Babich et al. (1976),
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and Hudson (1981). Using a simple transformation from
cartesian to spherical coordinates, Jobert and Jobert (1983)
traced low-frequency Earth-circling mantle waves in a
smoothly varying heterogeneous model using a combination
of spherical Earth normal mode theory and a Gaussian beam
computation scheme (éerveny et al., 1982), and showed sig-
nificant amplitude and travel time anomalies for a model of
heterogeneity with strength of ~5%. At the regional, shorter
period scale, Tanimoto (1990) showed how to compute the full
wavefield of surface waves in a smoothly varying hetero-
geneous medium using an approximate scalar wave equation,
and applied this to illustrate the distortion of surface waves
propagating across California. Numerical computations show-
ing the strong effects of lateral heterogeneity on the surface
wavefield, in the framework of ray theory, were also
performed by Yanovskaya and Roslov (1989). Tromp and
Dahlen (1992a,b) developed a JWKB theory for the propa-
gation of monochromatic surface waves in an Earth model
with smooth lateral variations. These studies, however, did not
result in any inversion procedures.

On the other hand, Yomogida and Aki (1985) used the
Gaussian beam approach to compute intermediate period (20—
80sec) fundamental mode surface waveforms. They showed
that, in this Born approximation framework, the amplitudes of
surface waves depend on the second spatial derivatives of the
phase velocity distribution, whereas the ray path depends on the
first spatial derivatives and the phase on the phase velocity
distribution itself. Based on this approach, they developed an
inversion method for amplitude and phase data and applied it
to retrieve phase velocity anomalies in the Pacific Ocean
(Yomogida and Aki, 1987). The same dependence of phase and
amplitude anomaly on the underlying phase velocity structure
was derived independently by Woodhouse and Wong (1986)
using ray theory based on the formalism of Woodhouse (1974).
These authors showed that amplitude anomalies, as observed for
long-period mantle waves on multiple Earth-circling paths, can
be caused by focusing or defocusing due to lateral heterogeneity.
Wong (1989) applied this theory to the retrieval of very long-
period global mantle wave phase velocity maps from measured
phase and amplitude anomalies. Since they depend on transverse
gradients of structure along the propagation path, the amplitude
anomalies can help constrain smaller-scale lateral variations of
structure. The expression for the phase (6®), amplitude (0A/A),
and polarization (v) anomalies obtained in this framework, at
epicentral distance A, are of the forms, respectively:

1 [Béc(n/2,0)
A /0 co d

6A 1 A )
A_o = (ZSinA) /0 {Sin(A - ¢)a§ (cg) sin ¢
— 04 (6—C> cos ¢ }dqb
Co

50 = & (35)

(36)
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v(A) = —cosec(A) /(S sin ¢ Og [M} do (37)
0 Co

In these equations, the great circle path under consideration
has been rotated to lie along the Equator, along which the
angle ¢ is measured (¢ =0 at the epicenter and ¢ =A at the
receiver). v is related to the azimuth © along the great circle
path by v =tan(©). The local perturbation in phase velocity at
a point along the source receiver path is éc/co. We note that
the phase 6® depends only on the phase velocity along
the source station path [Eq. (35)]. On the other hand, the
amplitude and polarization depend on first and second deriva-
tives of the phase velocity, that is, on gradients of the
phase velocity distribution, which in turn depend on short-
wavelength features of that distribution. The expression under
the integration sign in Eq. (36) actually corresponds to the
transverse gradient in the direction perpendicular to the
source station great circle (e.g., Romanowicz, 1987). Thus,
amplitude and polarization anomalies potentially provide
constraints on shorter-wavelength structure. Romanowicz
(1987) showed that these expressions are equivalent, for
relatively short propagation times, to those obtained for the
perturbation to a low-frequency seismogram using a normal
mode formalism, under an asymptotic approximation up
to order (1/) in the development of spherical harmonics Y}".
In particular, the normal mode derived expression for the
amplitude perturbation is

where U is group velocity and D is the minor-arc average of
the second transverse derivative of the local frequency pertur-
bation along the source—station great circle path. These
expressions for amplitude anomalies were considered by
Romanowicz (1990) and Durek et al. (1993) in attempts to
separate the effects of focusing and intrinsic attenuation on
the global scale.

Laske (1995) and Laske and Masters (1996) used expression
(37) for the azimuth anomaly to interpret observed polariza-
tion anomalies, measured using a multitaper technique (Park
et al., 1987), in terms of lateral variations of phase velocities
on the global scale and thus retrieve shorter-scale variations
than can be obtained with the same global distribution of
observations using phase data alone. Polarization analysis
using the same multitaper technique had been proposed pre-
viously for the study of lateral heterogeneity by Lerner-Lam
and Park (1989) and Paulssen et al. (1990).

Expression (35) for phase anomaly is correct to first order
in lateral heterogeneity. Pollitz (1994) calculated the second-
order contribution to the phase and concluded that it is
unimportant for global phase velocity models expanded up to
degree 12 but is potentially important for rougher models

(38)

Romanowicz

(degree of expansion > 16). That study suggested systematic
bias in phase velocity maps that do not account for the second-
order effect, though the potential magnitude of that bias
requires further exploration. This effect arises from structure
gradients perpendicular to the great circle path, suggest-
ing that it should be considered jointly with polarization
measurements in global phase velocity inversions.

In the framework of scattering theory, the single-scattering
Born approximation, developed for surface waves by Snieder
(1986) in a flat Earth geometry and Snieder and Nolet (1987)
in a spherical Earth geometry, has been the subject of many
studies. Born scattering is well suited for inversion since
the scattered wavefield depends linearly on structural pertur-
bations. Indeed, following Snieder (1988a), the surface wave
displacement field can be decomposed into a “path average”
part up™®, computed in a classical fashion, and a Born
perturbation 61°°™:

u=up""+ Subom (39)
where
i(kyaly+m/4) i(ksali+m/4)
born // Z 7 o € 7
v (sinAp) (sin Ap)
M) sin 6 df do (40)

where o, v are the excited and scattered modes, respectively, p”
is the polarization vector at the receiver, A; and A, are the
angular distances to the scatterer from the source and the
receiver, respectively, and the scattering matrix X, , depends
on elastic structural parameters via couping kernels K:
a
Sve = / (K,V,U(SN + KZ"ép + K\76X) dr (41)
0

where du, Op, and 6\ are 3D perturbations to the reference
laterally homogeneous model described by wu(r), p(r), A(r). For

intermediate- and long-period surface waves, perturbations in S
velocity [ need only be considered, and S,,, reduces to

VU / KI/(T

If d is expanded using 3D spatial basis functions, this leads to
the linear expression
burn _ Z ~ia;

where a; can be evaluated in the reference medium, and ~; are
the expansion coefficients of 6 in the 3D spatial basis.
Snieder (1988a) showed how to set up a regional tomo-
graphic inversion using many fundamental surface waveforms.
This method has been applied to the area of Europe and the
Mediterranean by Snieder (1988b) and to North America by
Alsina et al. (1996), and has been extended to the case of

(42)

(43)
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multimode wave trains by Meier et al. (1997). In the latter two
cases, the partitioned waveform method of Nolet (1990) has
been used in conjunction with Born scattering, to minimize the
computational effort involved.

Snieder and Romanowicz (1988) generalized this scattering
formalism in the case of spherical earth geometry, and in a nor-
mal mode context, by applying an operator formalism as intro-
duced by Romanowicz and Roult (1986) and Romanowicz
(1987), avoiding expansion in spherical harmonics of the
3D Earth model, as previously employed (Woodhouse and
Girnius, 1982), and thus making it applicable to the case of
any single scatterer (and not only to smooth heterogeneity). In
this formalism, the addition theorem of spherical harmonics
is used:

SV (0. 0077 (6.0) = TN D ¥ (6. 6)Y]' (6. 6,)

=Y} (8) (44)
where / is the angular order of a normal mode k, (6, ¢y), (6,, ¢,)
and (0, ¢) are the coordinates of the epicenter, the receiver, and
the scattering point, respectively (Fig. 10), and ~,= (2[4
1/47)"2. Angular distances A and (3 are defined in Figure 10.
The interaction coefficient Z,'g’,g, between modes K, K’ and their
singlets m, m’ can then be written simply as

z :if://o (XO(N) 6wl (60, 6)Opi(XP2(B) dSL (45)
KK' 2 Di(X; Wik \0s Di\A,

where the operators Op; are linear combinations of differential
operators acting on the coordinates (, ¢) of the running point,

FIGURE 10 Geometry for single scattering corresponding to
Eq. (45). S and R are the locations of the epicenter and the receiver,
respectively. Q is a generic point on the surface of the sphere, and P is
the pole of the source receiver great circle 7. (Reproduced with
permission from Romanowicz, 1987.)
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and incorporate source and receiver effects, computed in the
reference spherically symmetric model. The integral is over
the unit sphere, and éwi, are local frequency perturbations,
describing depth-integrated effects of perturbations in the
elastic model. To zeroth order in an asymptotic expansion in
orders of 1/I, the summation over i reduces to only one term
(i=0). Expression (45) has the same form as Eq. (40) and they
are equivalent in the surface wave, high-frequency limit
(Snieder and Romanowicz, 1988). Romanowicz and Snieder
(1988) extended the same formalism to the case of a general
anisotropic perturbation.

The Born approach is flexible as it is applicable to general
3D structures. However, it is a poor approximation in the
case of strong heterogeneity, or when the region of scatter-
ing is large, in which case multiple scattering can play an
important role.

On the other hand, Friederich et al. (1993) proposed an
enhanced scattering theory for surface waves in a cartesian
geometry, in which multiple forward scattering and single
backward scattering are included. They use a potential form-
alism that can be summarized through the consideration of a
scattering kernel K7™ that includes all the details of the
regional scattering problem relevant to two modes n and m,
depending only on the structural parameters. The surface wave
displacement u for a mode m is decomposed as

Un(X,,2) = Un(2)®"(x,y) (46)
where ®” is the displacement potential and U is a vertical
eigenfunction

B (x,y) = / / Y &y K™(x 5, y) 2 () (47)

where (x, y), (x’, y’) are the coordinates of the observation point
and the scattering point respectively, ®” is the displacement
potential of mode m and ®"" is the scattered potential of mode
n generated by mode m. The computation is simplified by
discretizing the model into cells and assuming a piecewise
plane wave approximation in each cell. When ®" is the
potential corresponding to a reference 1D model of mode m,
this is equivalent to single scattering theory. Friederich et al.
(1993) use the reference potential for the row of cells closest to
the source, compute the scattered potential ) ®¢™ at all other
rows, add the scattered wavefield and use this as starting
potential to compute the scattered wavefield in the next row,
and so on. They show that the computation thus includes all
multiply forward scattered waves, but is incomplete for the
backscattered field. This is not a problem in most cases, how-
ever, except when sharp, reflecting discontinuities are present.
Subsequently, Friederich (1999) extended this approach to the
case of spherical geometry and normal mode summation in a
global Earth framework, using the operator formalism for
the mode coupling terms of Romanowicz (1987). To limit the
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amount of computation, they compute only the seismic dis-
placement wavefield between the S wave and the end of the
first-arriving surface wave, at epicentral distances shorter
than 50°.

Wielandt (1993) showed that the measured (or dynamic)
phase velocity of teleseismic surface waves in a regional
context is different from the structural phase velocity in
the region considered. The former depends strongly on the
geometry of the incoming wavefield, which can be distorted
by structure along the propagation path outside of the area
of study. Based on the work of Friederich et al. (1993),
Friederich and Wielandt (1995) proposed a method to invert
jointly for incoming wavefields and the heterogeneous phase
velocity structure within a study region. In this approach, they
include the multiple forward and backward scattering terms.
They use a plane wave decomposition of the incoming
wavefield and they reduce the nonuniqueness of the joint
inversion by applying an “energy criterion,” constraining the
energy of the total wavefield averaged over all the events
considered to be equal to the mean squared amplitude at the
stations, also averaged over all events. This method has been
applied to fundamental mode surface waves in southern
Germany by Friederich (1998) and in northern California by
Pollitz (1999). Notably, Pollitz (1999) showed how to relate
the inverted 2D phase velocity maps to 3D structure, taking
into account both isotropic [ =1 in Eq. (45)] and nonisotropic
scattering interactions. The application of these promising
methodologies is still in an early development stage, as they
present many computational challenges.

4.5 Surface Wave Attenuation Measurements
and Inversion for Upper Mantle Anelastic
Structure

Surface wave amplitude measurements can be used to try to
retrieve information about the anelastic structure of the crust
and upper mantle. In the absence of perturbing effects due to
scattering and focusing, the amplitude spectrum of a mono-
mode wave train i, usually the fundamental mode, can be
written as

Ai(w) = Ao(w) exp(—ni(w))Xi (48)

where X; is the epicentral distance in kilometers and Aq(w)
represents the amplitude at the source. The attenuation coeffi-
cient can be related to Q through (e.g., Aki and Richards, 1980)

w
"= 2cwow )
where C is phase velocity. Surface wave measurements provide
the primary constraints on attenuation structure (both variations
with depth and lateral variations) in the crust and uppermost
mantle. To investigate the radial structure in Q over a wider
depth range, long-period surface wave or normal mode
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attenuation measurements can be used. Both the radial and the
lateral structures in Q are, however, to this day, less well con-
strained than elastic structure, due to a large extent to the
contamination of amplitude data by scattering and focusing
effects due to wave propagation in a heterogeneous elastic
Earth, as described in the previous section. There still exists an
apparent discrepancy (on the order of 15%, Fig. 11) between the
measurements of fundamental mode (@ obtained using a
standing wave approach (e.g., Masters and Gilbert, 1983; Smith
and Masters, 1989; Widmer et al., 1991) and those using a
propagating wave approach (Dziewonski and Steim, 1982;
Romanowicz, 1990, 1995; Durek et al., 1993; Durek and
Ekstrom, 1996). This was investigated by Durek and Ekstrom
(1997), who proposed that the discrepancy could be due to
measurement techniques, with the presence of noise leading to
an overestimation of Q from normal modes, which require
the computation of spectra over long time-series (typically
24 hours). On the other hand, Masters and Laske (1997) have
questioned the accuracy of surface wave measurements of Q
at very long periods, in particular due to the difficulty of
selecting appropriate time windows to isolate the fundamental
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FIGURE 11 Fits of various mantle Q, model predictions to
spheroidal mode data (Sailor and Dziewonski, 1978; Widmer et al.,
1991; Resovsky and Ritzwoller, 1998) and Rayleigh wave data
(Dziewonski and Stein, 1982; Durek et al., 1993; Romanowicz, 1995;
Masters and Laske, 1997), illustrating the discrepancy between
measurements obtained using standing wave and propagating wave
approaches, respectively. Models QL6 and QM1 were constructed by
Durek and Ekstrom (1996) and Widmer et al. (1991) respectively.
(Reproduced with permission from Romanowicz and Durek, 2000.)
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mode, in the presence of overlapping wave trains. This issue
remains to be resolved.

Regional studies of amplitudes of fundamental mode sur-
face waves in the period range 5-100sec (Anderson et al.,
1965; Mitchell, 1975; Canas and Mitchell, 1978, 1981) and of
Lg waves (Xie and Mitchell, 1990a,b) have long established
the existence of large variations of Q in the crust and upper-
most mantle, correlated with tectonic provinces and in partic-
ular with the age of the oceans, and with time elapsed since the
latest tectonic activity on continents. A recent review can be
found in Mitchell (1995). At longer periods, large lateral
variations also exist (e.g., Nakanishi, 1978; Dziewonski and
Steim, 1982). These lateral variations can be an order of
magnitude larger than those in elastic velocity.

Progress in using surface wave data to constrain global 3D
anelastic structure of the upper mantle has been slow because,
as mentioned previously, of the inherent difficulty of mea-
suring attenuation in the presence of focusing and scattering
effects that can be as large as or larger than anelastic
effects and depend strongly on the short-wavelength details of
the elastic structure. Indeed, as discussed previously
[Eq. (36)] to first order these effects depend on the transverse
gradients of structure along the great circle path linking epi-
center and station, which in turn depend on terms of the
form s°C,, where C,, are the coefficients of an expansion in
spherical harmonics of the elastic model (s and ¢ are the
degree and order of the corresponding spherical harmonic Y?).
If the elastic structure of the Earth were accurately known
to short wavelengths, one could first correct for its effects
on the amplitude.

In the meantime, indirect methods have been used to
minimize contamination of amplitudes by unwanted elastic
effects. Romanowicz (1990) and Durek er al. (1993) took
advantage of the fact that, in the linear approximation,
focusing and anelastic effects could be separated by combin-
ing measurements over several consecutive wave trains, since
attenuation effects are always additive whereas focusing
depends on the direction of propagation. However, the longer
the wave path the more the waves are affected by 3D elastic
structure, and the harder it is to account for that in a simple
approximate fashion. Another source of bias comes from
uncertainties in the amplitude at the source. Romanowicz
(1994) developed a method that involves computing attenua-
tion coefficients in two ways: (1) using first-arriving trains
only; (2) using the first three wave trains. The first measure-
ment involves a source bias, but is less contaminated by
elastic effects. On the other hand, in the second measure-
ment, the source effect has been canceled out; however, the
attenuation measurement is less accurate, and generally shows
large variations with frequency, due to increased -elastic
effects over the longer paths. Comparison of the two n(w)
curves allows determination of a source correction factor and
thus allows one to obtain a relatively accurate attenuation
measurement using first- and second-arriving trains only.
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Progress in the retrieval of accurate Q information from
long-period surface wave data for global modeling is coupled
to the development of efficient techniques for the modeling of
elastic scattering effects. Recently, Billien ez al. (2000) have
proposed an approach in which phase and amplitude mea-
surements of Rayleigh waves at intermediate periods (40—
150 sec) are jointly inverted for elastic and anelastic structure,
taking into account the first-order asymptotic focusing term
[Eq. (36)]. It is still not clear, however, whether such a first-
order, “smooth” approximation is sufficient to rule out biases
due to scattering by small-scale heterogeneity.

Another issue is to account for dispersion in velocities due
to attenuation, using an absorption band model for the Earth.
This has been found to explain the discrepancy between
average velocity models obtained using high-frequency body
waves and surface waves (Kanamori and Anderson, 1977).
However, most of the frequency dependence in surface waves
is related to the effects of depth-dependent elastic structure.
Surface waves alone cannot resolve the frequency dependence
of Q. More detailed recent reviews on global Q structure can
be found in Romanowicz (1998) and Romanowicz and Durek
(2000).

5. Conclusions

We have reviewed the evolution of the main methodologies
based on the inversion of surface wave data over the last several
decades. We find that much progress has been made in the last
20y in the development of surface wave methods to retrieve
both source parameters and Earth structure using surface wave
data. This progress has built upon fundamental theoretical
developments of the 1960s and 1970s, during which the basis
for the computation of earthquake source excitation as well as
modeling of surface wave dispersion properties in terms of the
Earth’s structure was established. In the 1980s, surface wave
studies have benefited from progress in computer speed and
capacity, which, together with the deployment of a new gen-
eration of digital, broadband, high dynamic range global and
regional seismic networks, has opened the way to large-scale
source and structure inversions, with recent efforts to include
anisotropic and anelastic contributions, as well as to system-
atically exploit information contained in overtones.

Most inversions, so far, have been performed under the
assumption that the effects of propagation in the laterally
heterogeneous Earth can be accounted for using the simple
great circle path average approximation, which assumes that
surface waves are sensitive only to the structure in the vertical
plane containing the source and the receiver, and to the
laterally averaged structure along this path. Beyond this
approximation, there are two particularly important issues.
One is the computation of more accurate kernels for propa-
gation in the vertical plane containing the source and the
receiver. This is important for waveform inversion that
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includes body waveforms, and is relevant, in the context of
this review, to the inversion of overtone waveforms sensitive
to the mantle transition zone and greater depths. The first
step in this direction has been the incorporation of across-
branch coupling effects computed asymptotically to zeroth
order, both in a normal mode and in a propagating wave
framework. This has started to be put into practice in the
context of global waveform inversion (Li and Romanowicz,
1996; Mégnin and Romanowicz, 2000), and should help
improve the resolution of shorter-wavelength features of
tomographic models. The other issue is that of how to account
for scattering and focusing effects, which can be viewed as
departures of the wave path from the source-receiver great
circle. Theoretical progress on how to describe these effects
accurately has been steady, evolving from the consideration of
single scattering to the more complex question of multiple
scattering. Transition into practice (i.e., into large-scale
inversions of real data) still presents many computational
challenges. It is, however, a necessary step if the ever-
increasing broadband data collection assembled in the last
quarter of the 20th century is to be fully exploited to gain
improved resolution at shorter wavelengths.
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