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Abstract

We investigate the impact of the theoretical limitations brought by asymptotic methods on upper-mantle tomographic
Ž .models deduced from long-period surface wave data period )80 s , by performing a synthetic test using a non-asymptotic

formalism. This methodology incorporates the effects of back and multiple forward scattering on the wave field by summing
normal modes computed to third order of perturbations directly in the 3D Earth, and models the sensitivity to scatterers away
from the great-circle path. We first compare the methods we used for the forward problem, both theoretically and
numerically. Then we present results from the computation of 7849 synthetic Love waveforms in an upper mantle model
consisting of two heterogeneities with power up to spherical harmonic degree 12. The waveforms are subsequently inverted

Ž .using a 0th order asymptotic formalism equivalent to a path-average approximation in the surface waves domain . We show
that the main structures are retrieved, but that the theoretical noise on the output model is of the same order as the noise due
to the path-coverage and a priori constraints. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the early 1980s global seismic tomography
has provided images of the large scale variation of

Žseismic velocities in the mantle Woodhouse and
.Dziewonski, 1984 . Tomographic models are widely

) Corresponding author. Fax: q33-1-44-27-38-94; e-mail:
clevede@ipgp.jussieu.fr

used to infer thermal and mineralogic heterogeneities
in the mantle, making tomography a popular and
powerful tool. The images of the uppermost mantle
rely essentially on the inversion of surface wave
data, as the body waves give poor resolution in this
part of the mantle, due to the uneven distribution of
seismic sources and receivers. All the global tomo-
graphic models seem to agree reasonably well on the

Žlong wavelength structure i.e., the first 12 degrees
in spherical harmonics, corresponding to a resolution
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.of about 1500 km at the surface between 100 and
600 km depth: the upper mantle is usually consid-

Žered to be well resolved at the global scale Dzie-
.wonski, 1995; Ritzwoller and Lavely, 1995 .

The tomographic process can be decomposed into
three elements: the data selection, the inversion
scheme and the underlying theory. Concerning the
first point, tomographers have now access to an

Žabundant supply of high quality digital data e.g.,
.from the GEOSCOPE and IRIS networks , ensuring

that the coverage does not introduce significant bias
Žin the inversion at least for global surface wave

.data . The algorithms used to perform the inversion
assume that the problem is quasi-linear, which, in the
case of the large scale structure of the mantle is
considered to be a robust hypothesis. If the data
coverage and the inversion algorithms differ from
one group to another, the theories employed to model
the surface wave seismograms are very similar.
Hence, the differences between the upper mantle
tomographic models do not depend on the theory.
The impact of the theory on the models obtained has
never been fully assessed: the resolution tests per-
formed use the same theory to compute synthetic
data, giving only information on the quality of the
data coverage, the selection scheme and the choice
of a priori conditions.

The theory used for surface wave inversion in
global tomography finds its formulation and first

Žapplications in the late 1970s and early 1980s Jordan,
1978; Woodhouse and Girnius, 1982; Woodhouse,
1983; Tanimoto, 1984; Woodhouse and Dziewonski,

.1984 . It relies on two assumptions: the lateral varia-
tion of the seismic velocities are small in amplitude
Ž .a few percent with respect to a global average , and

Žvary smoothly the lateral velocity gradients are
.small . This implies in theoretical terms that the

actual wave field in the mantle is a weak perturba-
tion with respect to a spherically symmetric Earth,
and that the wave propagation is well explained by
the laws of geometrical optics. In other words, the
wave equation in the Earth is simplified by two
approximations: the first order Born approximation
Žthe heterogeneities are considered as secondary

.sources in an unperturbed reference wave field , and
Žthe 0th-order asymptotic approximation or high fre-

quency approximation: the wave number of the seis-
mic signal is higher than the wave number of the

anomalies, so the wave path can be modeled by a
.0-dimension ray laterally . These approximations

were necessary for computational purposes, as a
global inversion of surface wave data requires the
computation of several thousands of seismograms
and their partial derivatives with respect to the seis-
mic parameters, which is still a huge task in terms of
computation time and size of the problem.

In the past 10 years, numerous efforts have been
directed towards improving the theoretical frame-
work of surface wave propagation in a three-dimen-

Žsional Earth e.g., Woodhouse and Wong, 1986;
Dahlen, 1987; Park, 1987; Romanowicz, 1987;
Snieder and Nolet, 1987; Snieder and Romanowicz,
1988; Lognonne and Romanowicz, 1990; Park, 1990;´
Lognonne, 1991; Tromp and Dahlen, 1992;´
Friederich et al., 1993; Tromp and Dahlen, 1993;
Pollitz, 1994; Wang and Dahlen, 1994; Cummins et

.al., 1997 . However, most global tomography appli-
cations assume that the first-order Born approxima-
tion is valid and, in general, in its 0th-order asymp-
totic approximation. Most efforts beyond that have
so far focused on regional applications, in studies of

Žcrustal and lithospheric structure e.g., Alsina and
Snieder, 1996; Alsina et al., 1996; Meier et al.,

.1997a,b; Friederich, 1998 , where lateral variations
are known to be large and strong effects on wave-
forms have been documented.

Only one attempt has been made to introduce
more accurate waveform modeling in global mantle

Ž .imaging: Hara et al. 1993 used a non-asymptotic
Žfully-coupled modes method Geller and Hara, 1993;

.Geller et al., 1990 to infer S-wave velocity in the
Župper mantle in a long wavelength degree-8 later-

.ally model, and compared a posteriori the results
Žwith the M84A model Woodhouse and Dziewonski,

.1984 . Even at this large scale they found signifi-
cantly different results. However, no one has ever
tried to estimate experimentally the theoretical noise
in the inversion scheme and the resulting models.

In this paper we try to test the theoretical noise
induced by using first order Born and asymptotic
approximations in global upper mantle tomography
using long-period surface wave data. To do so, we
compute long-period seismic waveforms using the

Ž .method developed by and Lognonne 1991 and´
Ž . ŽLognonne and Romanowicz 1990 hereby referred´

.as HOPT, for Higher Order Perturbation Theory
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where normal modes of a given aspherical model are
computed using HOPT, and where no asymptotic
approximation is assumed.

In Sections 2 and 3 we recall the main features of
the methods used in this paper. Section 4 addresses
the theoretical differences between these methods. In
Section 5 we introduce our test model and compare
synthetic seismograms and phase velocity observa-
tions. Section 6 presents the inversion of the syn-
thetic data, computed with the HOPT method, using
first order Born and asymptotic approximations. The
number of seismograms and the coverage are realis-
tic, corresponding to the surface waveform data used
in the whole mantle shear velocity model SAW12D

Ž .by Li and Romanowicz 1996 consisting in 7849
SH accelerograms of first and second orbit Love
waves.

2. Asymptotic theory

In this paper K will denote a normal mode multi-
Ž Ž ..plet corresponding to a doublet n, l consisting of

Ž Ž ..2 lq1 normal mode singlets k triplet n,l,m , with
l the angular order, n its radial order, and m its

Ž .azimuthal order. The superscript 0 will refer to a
Ž .spherical reference Earth model, the superscript n

Ž .with n)0 will refer to an order of approximation
of the actual Earth. The equation defining the dis-

Ž .placement field u x,t due to an earthquake can be
Ž .written in the non-rotating case :

AqKE 2 u x ,t s f x ,t , 1Ž . Ž . Ž .Ž .t

Ž .where A is the elasto-dynamic operator, K x is the
Ž .density distribution and f x,t is the equivalent body

force distribution of the source. In the case of a step
Ž . Ž .function source where E f t sd t S , the corre-t i i

Ž .sponding accelerogram is exactly :

y1s t sR e Rexp iHt K S , 2Ž . Ž . Ž .
where R is the receiver term, S the source term, K
is the density term and H is defined by the relation:
H 2 sKy1A. Lets consider the normal modes of a
spherical non-rotating elastic isotropic Earth model
Ž . < :SNREI u , which verify the homogeneous eigen-k

value equation is:

Ž0. Ž0. 2 < :A yK w u s0, 3Ž .Ž .k k

Ž . < :where w sw , kgK is the eigenvalue and uk K k

the eigenfunction of the singlet k of the degenerated
multiplet K. They obey the orthogonality conditions:

Ž0. ² < Ž0. < :X X XK s Õ K u sd , 4Ž .k k k k k k

Ž0. ² < Ž0. < : 2
X X XA s Õ A u sw d , 5Ž .k k k k K k k

Ž0. ² < Ž0. < :X X XH s Õ H u sw d , 6Ž .k k k k K k k

Ž .Following Woodhouse 1983 , the operators repre-
senting the laterally heterogeneous Earth are decom-
posed as the sum of a reference spherical term and a
first order aspherical perturbation term: Q Ž1.sQ Ž0.

qd Q with Q Ž0.
4d Q X , where Q can assume1 k k 1 k k

Žthe values of K , A and H, and with Woodhouse,
.1983; Li and Tanimoto, 1993 :

² < Ž1.y1 < : ² < < :X X XÕ K u sd y Õ d K u , 7Ž .k k k k k 1 k

and

² < Ž1. < :XÕ H uk k

² < < : 2 ² < < :X X XÕ d H u yw Õ d K uk 1 k K k 1 k
Xsw d q ,K k k

Xw qwK K

8Ž .

Ž .or equivalently Li and Romanowicz, 1995 :

² X < Ž1. < :Õ H uk k

Ž . Xs w qd w dK K k k

² X < < : 2
X² X < < : XÕ d H u yw Õ d K u y2w d w dk 1 k K k 1 k K K k k

q ,
Xw qwk k

9Ž .

where

² < :² < < :² < :X X XÝ R u Õ d H u Õ Sk ,k g K k k 1 k k
d w s , 10Ž .K ² < :² < :XÝ R u Õ Sk g K k k

Ž .is the location parameter defined by Jordan 1978 ,
corresponding to an apparent frequency shift of a
multiplet for a given seismogram.

Ž .Eq. 2 can be written, neglecting the amplitude
Žterm due to the density perturbation e.g., Wood-

house, 1980; Romanowicz, 1987; Li and Tanimoto,
.1993 :

s t sR e Rexp iHt S . 11Ž . Ž . Ž .



´ ( )E. CleÕede et al.rPhysics of the Earth and Planetary Interiors 119 2000 37–56´ ´ ´40

Fig. 1. Input model: the heterogeneities are located in the upper mantle and expanded up to spherical harmonic degree 12 laterally and 5th
Ž .order Legendre polynomials radially see Fig. 2 . The small structures around the main heterogeneities are due to the spherical harmonic

truncation.

Ž .Following Woodhouse 1983 , and choosing the ap-
Ž .proximation 9 , the phase term can be linearized:

exp iH Ž1.
X tŽ .k k

sexp iw t d XŽ .ˆK k k

q d H X yw2
X d K X y2w d w d XŽ .1 k k K 1 k k K K k k

=
exp iw t yexp iw X tŽ . Ž .ˆ ˆK K

X Xw qw w ywŽ . ˆ ˆŽ .K K K K

y itd w exp iw t , 12Ž .Ž .ˆK K
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ŽFig. 2. Spectral content and rms profile of the input model. The left plot shows the amplitude spectrum spherical harmonic degrees in
.abscissa at each depth in the upper mantle.

where w sw qd w and w X sw X qd w X . Us-ˆ ˆK K K K K K
Ž . Ž .ing the equality 12 in Eq. 11 results in the

expression of the first order Born approximation
Ž .seismogram obtained by Li and Romanowicz 1995 .

Ž .If the approximation 8 is chosen, we obtain the
Ž .expression of Li and Tanimoto 1993 .

At this point, we assume that the spatial wave-
lengths of the structure are much larger than the
seismic wavelengths considered. Under this high fre-
quency hypothesis, it is possible to estimate asymp-
totically the phase and amplitude perturbations: when

Ž .s <min l , s being the maximum angularmax max

order of the model expressed in spherical harmonics
and l the angular order of any mode considered
Ž .e.g., Romanowicz and Roult, 1986 , we can use the
following approximation:

Z K K X

X s2w XH d w X u ,f Y mU
u ,fŽ . Ž .m m k k V k k l

=Y mX

X u ,f dV , 13Ž . Ž .l

with m and mX referring to the azimuthal order of
the singlets kgK and kX gK X, respectively, and
where the Y m are the fully normalized sphericall

Ž .harmonics Edmonds, 1960 , and the scattering term
Žcan then be written see Li and Tanimoto, 1993, for

.the definition of each terms :

Rk Zk kX

X Sk kX

XÝ m m m m
Xmm

1r2X2 lq1 2 l q1Ž . Ž .
Xs R SÝ k N k Mž /4p 4p NM

=H d w2
X P N cosu P M

X cosuŽ . Ž .V k k l pr l p s

=exp i Mf yNf dV . 14Ž .Ž .p s pr p

To order 1rl, the associated Legendre function in
Ž . ŽEq. 14 can be reduced to a cosine e.g., Romanow-
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.icz, 1987 . Applying the stationary phase to the two
resulting integrals yield:

s t ss t qs t q D X t E X ,Ž . Ž . Ž . Ž .Ý ÝPAVA 1 K K K K
XK K gGK

15Ž .

Ž .where s t , the ‘‘Path Average’’ seismogramPAVA
Ž .Jordan, 1978; Woodhouse and Dziewonski, 1984 ,
is

s t s A exp iw t withŽ . Ž .ˆÝPAVA K K
K

² < :² < :A s R u Õ S , 16Ž .ÝK k k
kgK

and

s t sy itd w A exp iw t . 17Ž . Ž .Ž .˜ ˆÝ1 K K K
K

G is the set of multiplets with eigenfrequenciesK

w X Gw and the time dependent term is defined as:K K

exp iw t yexp iw X tŽ . Ž .ˆ ˆK K
XD t s , 18Ž . Ž .K K

X Xw qw w ywŽ . ˆ ˆŽ .K K K K

and the asymptotic scattering terms E X , whereK K

only the pf dependent terms are kept inside the
Ž .Žintegral, are given in Li and Romanowicz 1995 Eq.

.12 and Appendix A .

3. Non-asymptotic theory

The non-asymptotic HOPT has been developed by
Ž .Lognonne and Romanowicz 1990 and Lognonne´ ´

Ž .1991 . Let us summarize the principal points of the
method.

We start from the normal modes of a spherical
non-rotating anelastic isotropic Earth model
Ž .SNRAI . The eigenmodes and eigenfrequencies of
the three-dimensional Earth model are expressed us-

< :ing perturbation theory. The eigenmodes u andk

associated complex eigenfrequencies s , with s sk k

w q ia , are solutions of:k k

2 < : < : < :ys K u qs B u qA s u s0, 19Ž . Ž .k k k k k k

where A is the elasto-dynamic operator and B the
Coriolis operator. Note that now the problem lies in

Fig. 3. Source–receiver paths used in the forward modeling
experiment: the sources are represented by the stars and the
receivers, labeled clockwise, by the triangles. The epicentral
distance is 1108 for all the paths.

the complex space. Here the model can include
laterally heterogeneous anelastic and anisotropic
structure.

Let us define the Hamiltonian H:

H 2 sKy1 s BqA s . 20Ž . Ž .Ž .
ŽThe nth order approximation of the problem Eq.

Ž ..19 , in the sense of the perturbation theory, where
< :u and s are developed in terms of a power seriesk k

of a small parameter e related to the perturbation of
the operator A, is:

Žn. < Žn.: Žn. < Žn.: Žnq1.s u sH u qo e , 21Ž . Ž .k k k

To avoid a convergence problem occurring in the
perturbation procedure due to the instability of the
interaction terms within a multiplet, the perturbation
path is constrained in order to cancel the first secular

Žn. w Žn.xXterms of the perturbation series. Then, H s H ,k k
Žn. ² < Žn. < :X Xwith H s u H u , can be diagonalised suchk k k k

that:

H Žn.
X ss Žnq1.d X qo e Žnq1. . 22Ž . Ž .k k k k k
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Ž . Ž .Fig. 4. Asymptotic solid lines and reference dashed lines seismograms. The seismograms are the transverse component with maximum
Ž .frequency 8.0 mHz. The reference model is the spherically symmetric model PREM Dziewonski and Anderson, 1981 .

Fig. 5. Apparent phase velocity perturbation measured on the asymptotic seismograms represented on Fig. 4 at four different frequencies: 4
Ž . Ž . Ž . Ž .mHz losanges , 5 mHz pluses , 6 mHz squares and 7 mHz crosses .
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Ž . Ž .Fig. 6. Non-asymptotic solid lines and reference dashed lines
seismograms.

< :A seismogram corresponding to a source S and
² <a receiver R will write as:

Ž .Žn. nq1 Žn. Žn.² < :² < :s t sR e exp its R u Õ SŽ . Ž .Ý k k k
k

qo te Žnq1. , 23Ž . Ž .
Ž .Žn. 0 Žn.s t sR e exp its A tŽ . Ž .Ž .Ý K K

K

qo te Žnq1. , 24Ž . Ž .
where s 0 is the SNRAI complex frequency associ-K

ated with the multiplet K , and the modulation func-
Žn.Ž .tion A t , a time-dependent function, which slowlyK

modulates the oscillations of the spherical mode:

Žn. Žnq1. Ž0.A t s exp it s ysŽ . Ž .ÝK k K
kgK

=² < Žn.:² Žn. < :R u Õ S . 25Ž .k k

In the absence of lateral heterogeneity, this function
is constant in time, and simply represents the initial
amplitude of the mode at the receiver.

The first order perturbation, in te , corresponding
to the 0th order in eigenfunction and first order in

eigenfrequency, is equivalent to the isolated multi-
plet hypothesis, for which only coupling between
singlets in a same multiplet occurs, and this term is
only sensitive to the symmetric part of the lateral
heterogeneities. The higher order perturbations, in

n Ž .te , correspond to the ny1 th order in eigenfunc-
tion and nth order in eigenfrequency, implying multi-
plet–multiplet coupling, and are both sensitive to
symmetric and anti-symmetric lateral hetero-
geneities. A detailed analysis of the perturbation

Ž .procedure is given by Lognonne 1991 .´
Ž .Lognonne and Romanowicz 1990 have shown´

Žthat, in the elastic case using the model M84,
.Woodhouse and Dziewonski, 1984 , the second or-

der approximation of the eigenmodes and third order
of the eigenfrequencies compares with the solutions
obtained with the variational method within a rela-
tive error lower than the observation error. We as-
sume that in the following cases this order of pertur-

Žbations is sufficient the extension of the computa-
tion to higher orders is straightforward, but the gain

.in accuracy is outweighed by the computational cost .

Ž . Ž .Fig. 7. Non-asymptotic solid lines and asymptotic dashed lines
Ž .seismograms see Figs. 4 and 6 .
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4. Theoretical comparison

As NACT and PAVA represent a first-order ap-
proximation in terms of the perturbation of the
Hamiltonian H, a convenient way to relate HOPT to

Ž .these methods is through the perturbation d s t of
the HOPT formulation of the seismograms, which
corresponds to the first-order term of the Taylor
expansion of the HOPT expression with respect to a
perturbation of the structural parameters.

The derivatives appear through the expression:

s t ,s t qd s tŽ . Ž . Ž .0

Ž .where s t is the synthetic seismogram in the per-
Ž .turbed model, s t is the seismogram computed in0

Ž .the reference Earth model, and d s t is the perturba-
tion expressed in terms of the Frechet derivatives.´

Ž .The estimation of d s t in the general case, where
the reference model is an a priori three-dimensional
anelastic model, has been done by Clevede and´ ´ ´

Ž .Lognonne 1996a . Considering the particular case of´
Ža spherical non-dispersive reference Earth model and

taking into account the problem of polarity rectified
.by Clevede and Lognonne, 1996b , the expressions´ ´ ´ ´

of the perturbation of the seismograms given by

Ž . Ž .Clevede and Lognonne 1996a Eq. B4 and C1´ ´ ´ ´
reduces straightforwardly, as shown in Section A.1,
to the short-time approximation given by Li and

Ž . Ž .Tanimoto 1993 Eq. 20 :

is tKs t sR e A 0 eŽ . Ž .Ý K
K

is t is tK Ke ye
qR e Ý Ý Ý 2 2

XX X X s ysK KK K gG kgK ,k gKK

=² < :² < < :² < :X XR u Õ d A u Õ S , 26Ž .k k k k

where G is the set of multiplets whose eigenfre-K

quencies s X are higher than or equal to s . TheK K
Ž .first term in the right-hand side of Eq. 26 is the

spherical contribution; the second term, correspond-
ing to 3D structure effects, is valid for both self-cou-

Ž X .pling i.e., within a multiplet: K sK and cross-
Ž X .coupling i.e., between different multiplets: K /K .

If the coupling is restricted to modes that belong to
the same dispersion branch, this expression is equiv-
alent to the PAVA method before asymptotic ap-
proximation.

Fig. 8. Apparent phase velocity perturbation measured on the non-asymptotic seismograms represented on Fig. 6 at frequencies 4 mHz
Ž . Ž . Ž . Ž .losanges , 5 mHz pluses , 6 mHz squares and 7 mHz crosses .
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In both cases no density perturbation is consid-
ered but, as shown by Lognonne and Romanowicz´
Ž .1990 , the density perturbation can be renormalized
to yield a modified operator A. Perturbing the den-
sity with respect to the spherical density model then

produces a perturbation of the new operator A alone,
thus the same formula applies.

Ž .Li and Romanowicz 1995 use a slightly differ-
ent formulation by introducing the location parame-

Ž .ter d w expression 10 , and by using the first orderK

Fig. 9. Output model obtained using non-asymptotic data. These synthetic data are used as input in the inversion scheme based on the
Ž .asymptotic assumption ‘‘non-circular test’’ .
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equivalence 1q itd w ,e id wK t, which allows to re-K

move the secularity arising in the self-coupling term.
This corresponds, in terms of the modulation func-

Ž . Ž . id wK t Žtion, to approximating A t by A 0 e seeK K
.also Woodhouse, 1983; Tanimoto, 1984 . Using this

approximation of the modulation function in the
Ž .expression given by Clevede and Lognonne 1996a ,´ ´ ´ ´

and keeping the first order terms in ds , we obtain
Ž .the following expression see Section A.2 :

is tˆKs t sR e A 0 eŽ . Ž .Ý K
K

is tˆKyR e itd w A 0 eŽ .Ý K K
K

is t is tˆ ˆK Ke ye
qR e Ý Ý X

XžX s qs s ysŽ . ˆ ˆŽ .K K K KK K gGK

² < :² < < :² < :X X= R u Õ d A u Õ S ,Ý k k k k /X XkgK ,k gK

27Ž .

where s ss qd w . This formula is equivalent toˆK K K
Ž .the NACT expression of Li and Romanowicz 1995

Ž Ž . .Eq. 15 in this paper . The first term is the non-lin-
earized PAVA contribution. Note that in this case the
normal modes are those of the spherical reference
model. Thus, a first-order Born expansion of the
HOPT seismogram reduces to a NACT seismogram.

A noticeable difference arises from the practical
choice in the coupling between multiplets: on one
hand, HOPT focuses on the coupling along the same

Ždispersion branch same radial order n, different

.angular order l ; on the other hand, NACT privileges
Žcoupling among different branches different radial

.order n, same angular order l , while the coupling
along the branch is treated asymptotically to the 0th
order, as in the PAVA method: NACT is broad-band
radially but assumes infinite frequencies laterally. In
other words, NACT corresponds to ‘‘body-wave

Žtreatment’’ of the waveform due to the choice of the
. Žcoupling with single scattering due to the Born

.approximation , PAVA corresponds to ‘‘surface-
wave treatment’’ with single scattering, while HOPT
corresponds to ‘‘surface-wave treatment’’ with mul-

Žtiple scattering as the actual wave field is computed
— in the limit of the accuracy of the perturbation

.scheme . In the rest of this paper we perform numer-
ical comparisons between the methods on long-period
seismograms, involving only surface waves, for
which NACT and PAVA are equivalent to the first
order. Hence we expect the differences to mostly
reflect the effect of finite frequencies versus infinite
frequency approximation through lateral sensitivity
to the structure.

Note that, despite the similarity with PAVA in the
surface wave domain, we use NACT because the
renormalization procedure applied on the modulation
functions provides a better approximation with in-
creasing time compared to the short-time approxima-
tion used in PAVA.

5. Numerical experiment: forward problem

As this paper focuses on the difference between
asymptotic and non-asymptotic approaches, we need

Table 1
Maximum amplitudes at depth. The second column represents the maxima for the input model, the third column shows the maxima obtained
by the inversion using asymptotic input data, the fourth column shows the maxima obtained by the inversion using non-asymptotic input
data, and the fifth column the differences of the maxima depth by depth obtained by the two inversions

Ž .Depth km Input model Asymptotic data Non-asymptotic data Difference

150 y0.44%r0.45% y1.55%r1.50% y0.81%r0.77% y0.76%r0.82%
250 y3.92%r3.98% y3.39%r3.49% y1.74%r1.76% y1.76%r1.75%
300 y5.04%r5.12% y4.13%r4.31% y2.33%r2.44% y1.91%r1.91%
400 y5.82%r5.91% y4.92%r5.23% y3.24%r3.56% y1.88%r2.13%
450 y5.79%r5.88% y4.89%r5.21% y3.22%r3.59% y1.88%r2.19%
500 y5.61%r5.70% y4.55%r4.83% y2.77%r3.14% y1.96%r2.24%
600 y3.64%r3.69% y3.07%r3.16% y0.97%r1.16% y2.11%r2.16%
650 y0.15%r0.15% y2.09%r2.08% y0.24%r0.32% y1.80%r1.87%
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Ž . Ž .to design a test such that expressions 23 and 27
are both in their domain of validity, so that we can
compare the resulting seismograms. This supposes a
smooth test model, and ‘‘short-time’’ seismograms,
which in this case consists in the first direct and
indirect surface-wave trains. In order to perform a

detailed analysis of the seismograms, we choose to
consider a very simple structure. The model we
designed, consists of two adjacent anomalies, one
negative and one positive, with respect to the spheri-

Žcally symmetric PREM model Dziewonski and An-
.derson, 1981 . The heterogeneities extend from 200

Fig. 10. Output model obtained using asymptotic data. These synthetic data are used as input in the inversion scheme based on the same
Ž .asymptotic assumption ‘‘circular test’’ .
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to 600 km in depth, and 458 by 458 laterally. They
are located between the North Pole and the latitude
458 North, hence the spectral content of the model is
strong up to spherical harmonic degree 12. We ex-
pand the model in spherical harmonics up to the
degree 12 laterally and radially to 5th order Legen-

Ž .dre polynomials in the upper mantle Figs. 1 and 2 .
The resulting model is used for both forward model-
ing and inverse problem tests.

All the seismograms presented in this section are
on the transverse component and include all toroidal

Ž .modes fundamentals and harmonics in the fre-
Ž .quency band 0.3–8.0 mHz 3300–125 s . They are

band-pass filtered with a cosine taper with corner
Ž .frequencies 4.0 and 7.15 mHz 250–140 s . For all

the seismograms the source is the same pure strike–
slip at a depth of 33 km. The position of the sources
and receivers is shown on Fig. 3. The epicentral
distance varies between 1068 and 1108, the 27 re-

Ž .ceivers and traces are labeled clockwise. As ex-
pected, for this particular window in the seismic
signal NACT and PAVA give equivalent results
ŽHowever, this is not true at significantly higher
frequencies, as shown by Megnin and Romanowicz,´

.1999a .

In the rest of this paper we will refer to NACT
seismograms as asymptotic seismograms, because
they are computed using the high frequency approxi-
mation described in Section 2, and to HOPT seismo-
grams as non-asymptotic seismograms, because no
approximation is done based on a relation between
the wavelength of the structure and the seismic
wavelength. For comparison we also computed the

Žseismograms in the PREM model Dziewonski and
.Anderson, 1981 ; these traces are referred as the

reference seismograms in the text and figures.
We first make sure that the side lobes due to the

truncation of the spherical harmonic expansion do
not induce significant signal on the seismograms:
paths far away from the main heterogeneities show
variations of the order of 0.1%. However, the closest
side-lobe, with a sign opposite to that of the hetero-
geneity, gives detectable signal and can be clearly
identified, as we will see, on the phase velocity
measurement obtained by cross-correlation with the
reference seismograms for the wave packet associ-

Žated to the fundamental branch e.g., Suetsugu and
.Nakanishi, 1985 .

Considering a clockwise sweep of the hetero-
Ž .geneities Figs. 3 and 4 , the asymptotic seismo-

Ž .Fig. 11. Spectral contents and rms profiles of the output model obtained using asymptotic data dotted line for rms and non-asymptotic data
Ž . Ž .dashed line for rms , compared to the input model solid line for rms . Conventions are the same as for Fig. 2.
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grams start to record visible signal from the structure
at station 07, located at longitude y1558, the signal

Ž .disappearing after station 19 longitude 1558 . Note
that for these seismograms, only the phase is per-
turbed. The apparent phase velocity perturbation,
shown on Fig. 5, gives more precise information on
the structure: the asymptotic approximation forces
the same behavior for each frequency by collapsing
the sensitivity to the structure on the great-circle path
associated to the trace. The differences in amplitude
reflect the location at depth of the heterogeneities.
The location and relative strength of the structural

Žside-lobes also appears traces 03 to 05 and 21 to
.23 .
The corresponding results for the non-asymptotic

Žseismograms Fig. 6 for the comparison with the
reference seismograms, and Fig. 7 for the compari-

.son with the asymptotic seismograms are shown in
Fig. 8. The effect of the finiteness of the frequency
manifesting itself through a Fresnel zone appears

clearly. The wavelength corresponding to the fre-
quencies shown on Fig. 8 are about 1300 km at 4
mHz, 1000 km at 5 mHz, 825 km at 6 mHz and 685
km at 7 mHz. Due to the frequency dependence of
the Fresnel zone width, the signal is difficult to
interpret in the time domain, even for such a simple
input model. For example traces 05 to 07 have
evidently mixed information coming from both the
main negative structure and the positive side-lobe.
But it is also the case for all the traces at the lower
frequencies, for which the Fresnel zone is wide
enough to sample regions with a heterogeneity sign
different from the one seen by the great-circle path.

6. Numerical experiment: inverse problem

Our goal in this study is to simulate realistic
seismograms, in terms of the effects of the finiteness
of the frequencies, by using a non-asymptotic ap-

Fig. 12. Spectral content and rms profile of the difference between the asymptotic and non-asymptotic output models.
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proach, and invert them with a quasi-standard
asymptotic approach, in order to investigate the ef-
fects of using the asymptotic approach in real surface
wave data inversion. We use our input model in the
inversion procedure used by Li and Romanowicz
Ž .1996 based on the NACT method. Synthetic data
are computed using the non-asymptotic HOPT
method. The data set consists of 7849 seismograms
corresponding to the actual surface-wave data cover-

Žage used in the SAW12D model Li and Romanow-
.icz, 1996 , in the frequency window 2.5–12.5 mHz

Ž .400–80 s band-passed with a cosine taper with
Ž .corner frequencies 4–10 mHz 250–100 s , and time

windows corresponding to Love waves trains G1 and
G2 are selected.

In the inversion experiment we use the same
synthetic pattern as in the forward problem: the
scatterers represent less than 5% of the volume of
the model. We made this choice, rather than using a
global distribution of heterogeneities, in order to
allow for most of the distortion effects to be actually
seen as mapped heterogeneity.

Since we wish to isolate the effects of the distor-
tion of the input structure due to the choice of the
theoretical formalism from those of the subjective
choice of a priori constraints, we compute the set of
damping parameters that will minimize the Euclidian
distance between input and output models. Using a
simulated annealing algorithm coupled with a down-

Ž .hill simplex method Press et al., 1992 , we compute
two optimal sets of damping parameters: one for the
asymptotic data, one for the non-asymptotic data,
which we use to regulate each of the two inversions.

The output model for the non-asymptotic input
data is shown in Fig. 9. The main heterogeneities are
retrieved, but spatially smeared. The maximum am-
plitudes at depth are given in Table 1. Spurious
structure with maximum amplitude around 1% is
found at every depth. However, these inaccuracies
are a feature of the so-called ‘‘circular test’’ where
the same theory is used in the forward modeling and
inversion scheme. We performed such a test by using
asymptotic input data generated with the NACT
method. The same problems arise, but with much
smaller effects on the model Fig. 10: the maximum
amplitudes are well retrieved, and the heterogeneities
are more localized, with a better contrast with the
background velocities. These problems are, of course,

well known: the radial smearing can be partially
attributed to the use of surface waves only; another
factor contributing to the spatial smearing and under-
estimation of the real amplitudes is the use of damp-
ing parameters to stabilize the inversion procedure;
errors in the estimation of the spherical harmonic
coefficients cause global spurious structure. But the
comparison between the models obtained in the
‘‘non-circular test’’ and the ‘‘circular test’’ shows
that the theoretical noise is of the same order as the
noise induced by the factors described above: off-path
propagation effects contribute significantly to the
surface waveform.

This can be clearly seen in the spectral domain.
The spectral content of the models for the input
model, the ‘‘non-circular test’’ and the ‘‘circular
test’’ are shown on Fig. 11. Fig. 12 shows the
spectral difference between the two output models.
Both figures represent rms amplitude of the hetero-
geneity as a function of spherical harmonic degree
Ž . Ž .horizontal axis and depth vertical axis . The angu-
lar smearing appears clearly at all depths correspond-
ing to the actual location of the input heterogeneities.
Note that even if the fundamental surfave wave
energy is dominant in the data, part of the error can

Žbe attributed to the fact that overtone energy wave
.trains X1 and X2 , which is not treated the same way

Ž .in NACT and HOPT see Section 4 , is present in
some seismograms.

7. Conclusion

We have presented a comparison between long-
period surface-wave synthetic seismograms com-
puted with and without asymptotic approximation.
Both forward modeling and upper-mantle tomogra-
phy have been addressed.

We applied a standard surface-wave inversion
procedure, built on the asymptotic approximation,
using non-asymptotic waveforms as input data. The
goal of this test is to assess the shortcomings of the
asymptotic hypothesis in global mantle surface-wave
tomography through an actual inversion. The output
model shows that neglecting the lateral sensitivity of
the surface waves to the structure leads to the under-
estimation of the amplitudes of the anomalies and to
generation of spurious structure, adding a theoretical
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factor to the numerical noise. We did not address the
issue of noise in the data on purpose: adding noise to
the synthetic data is, of course, a relevant test, but
our goal is to isolate the problem of the choice of the
theory.

This test is extreme for the asymptotic methods:
only long-period surface-waves are involved, and the
input model has a significant spectral content up to
degree 12. We can still, of course, consider that the
up-to-date tomographic models representing large
spatial wavelengths of the upper mantle are reliable
when considering the detection and location of the
main structures, and the estimation of the characteris-

Žtic parameters of the convection Megnin et al.,´
.1997; Megnin and Romanowicz, 1999b . The result´

of this test must be considered in the context of the
many successes of asymptotic tomography. Increas-
ing the spatial resolution of global mantle tomo-
graphic models using surface wave data faces serious

Ž .theoretical problems. Park 1989 and Um et al.
Ž .1991 show that the asymptotic approximation
breaks down rapidly for structure beyond angular
degree 10, when using long-period surface wave data
Ž .period T)150 s . This constitutes a hint that, even

Ž .using shorter period data T)80 s , the presence of
Žrough structures in the upper mantle such as slabs

.and plumes may introduce significant bias in an
inversion scheme based on asymptotic approxima-
tions.

For the deeper mantle, on the other hand, where
body waveform constraints are necessary to achieve
any level of resolution, a more exact theoretical
formalism such as HOPT is still computationally
prohibitive. While computational enhancements are
being sought for HOPT, asymptotic approximations
such as NACT represent a significant theoretical
improvement over PAVA, by allowing us to express
the sensitivity of body waves to structure along the

Žray path more correctly Li and Tanimoto, 1993; Li
and Romanowicz, 1995; Megnin and Romanowicz,´

.1999a . An intermediate step beyond NACT, both
for surface waves and for body waves, is to use
higher order asymptotic approximations as described

Ž .by Woodhouse and Wong 1986 and Romanowicz
Ž .1987 . These methods asymptotically take into ac-
count the off-path influence of the structure on the
signal. Although still limited by the high frequency
approximation, this alternative should be considered

in the generation of long wavelength models, espe-
cially if we wish to retrieve information on anelastic-
ity.
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Appendix A

The perturbation of the seismogram with respect
to a given reference model, in the non-dispersive

Žcase, is given by Eq. B4 and C1 of Clevede and´ ´ ´
.Lognonne, 1996a,b :´

i
is t tK ² < < :d s t se H R tyt d A S t dtŽ . Ž . Ž .K 0 K K½ 2sK

1
t ˙² < < :y H R tyt d A S tŽ . Ž .Ž0 K K24sK

˙² < < :q R tyt d A S t dtŽ . Ž . .K K 5
e isK t

² < < :Xq R t d A S 0Ž . Ž .Ý K K2 2½ XX s ysK KK /K
X:s KK

e isK X t

² < < :Xy R 0 d A S tŽ . Ž .K K2 2
Xs ysK K

e isK t

q 22 2
Xs ysŽ .K K

= ˙² < < :X2 is R t d A S 0Ž . Ž .Ž K K K
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˙² < < :X Xy2 is R t d A S 0Ž . Ž . .K K K

e isK X t

y 22 2
Xs ysŽ .K K

= ˙² < < :X2 is R 0 d A S tŽ . Ž .Ž K K K

˙ ˙² < < :X Xy2 is R 0 d A S t . A.1Ž . Ž . Ž ..K K K 5
A.1. Spherical case

For a spherical reference model the modulation
function is time-independent:

² < :² < :A t s R u Õ S sA 0 , A.2Ž . Ž . Ž .ÝK k k K
kgK

and so for the modulation fields at the receiver and
the source:
² < ² <R t s R 0 A.3Ž . Ž . Ž .K K

< : < :S t s S 0 . A.4Ž . Ž . Ž .K K

Ž .Replacing these fields in Eq. A.1 gives:
d s tŽ .K

it
is tK ² < :² < < :² < :Xse R u Õ d A u Õ SÝ k k k k

X2sK k ,k gK

e isK t ye isK X t

q Ý 2 2
XX s ysK KK /K

Xs )sK K

= ² < :² < < :² < :X XR u Õ d A u Õ S . A.5Ž .Ý k k k k
kgK
X Xk gK

Using

e isK t ye isK X t ite isK t

lim s , A.6Ž .2 2
X X 2ss yss ™sK K KK K

which means that Eq. C1 from Lognonne and Clevede´ ´ ´ ´
Ž . X1997 converges toward their Eq. B4 when sK

converges toward s . We obtain the following ex-K

pression for the seismogram:

e isK t ye isK X t
is tKs t s A 0 e qŽ . Ž .Ý Ý ÝK 2 2

XX s ysK KK K K gGK

= ² < :² < < :² < :X XR u Õ d A u Õ S , A.7Ž .Ý k k k k
kgK
X Xk gK

� X < 4Xwith G s K s Gs . This equation is equiva-K K K

lent to the expression given by Li and Tanimoto
Ž .1993 .

A.2. Spherical case with renormalisation of the mod-
ulation function

The location parameter, corresponding to the ap-
parent frequency shift of an isolated multiplet, is

Ž .defined by Jordan, 1978 :

² < :² < < :² < :X X XÝ R u Õ d A u Õ Sk ,k g K k k k k
ds s . A.8Ž .K ² < :² < :2s Ý R u Õ SK k g K k k

We renormalize the modulation function using
this parameter:

A t sA 0 e idsK t , A.9Ž . Ž . Ž .K K

and the modulation fields at the source and the
receiver become, along with their time derivatives:

² < ² < idsK tR t s R 0 eŽ . Ž .K K

˙ idsK t² < ² <R t s ids R 0 e , A.10Ž . Ž . Ž .K K K

< : < : idsK tS t s S 0 eŽ . Ž .K K

˙ idsK t< : < :S t s ids S 0 e . A.11Ž . Ž . Ž .K K K

Under the weak splitting hypothesis, we can write
the following approximation:

1 1
,2 2

X XX s qs s yss ys Ž . ˆ ˆŽ .K K K Kk k

2 s yds XŽ .ˆK K
= 1y dskž X Xs qs s yaŽ . ˆ ˆŽ .K K K K

2 s X ydsŽ .ˆK K
Xq ds ,k /X Xs qs s ysŽ . ˆ ˆŽ .K K K K

A.12Ž .

where s ss qds and s X ss X qds X , ds sˆ ˆK K K K K K k
Ž X X.X Xs ys and s ys with kgK and k gK .Eq.k K k K

Ž .A.1 becomes:

it dsKis tˆKd s t s e 1yŽ . ÝK ž / X2s 2sK K k ,k gK

=² < :² < < :² < :X XR u Õ d A u Õ Sk k k k

° Xis t is tˆ ˆK Ke ye~q Ý
X XX s qs s ysŽ . ˆ ˆŽ .¢ K K K KK /K

Xs )KK
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=
2 s ds ys X ds Xˆ ˆŽ .K K K K

1qž /X Xs qs s ysŽ . ˆ ˆŽ .K k K K

¶
•² < :² < < :² < :X X= R u Õ d A u Õ S .Ý k k k k ßkgK

X Xk gK

A.13Ž .

As previously, we have the second term of Eq.
Ž . XA.13 converging toward the first term when ŝK

Ž .converges toward s , and Eq. A.13 can be written:ˆK

° Xis t is tˆ ˆK Ke ye~d s t sŽ . ÝK
X XX s qs s ysŽ . ˆ ˆŽ .¢ K K K KK gGK

=
2 s ds ys X ds Xˆ ˆŽ .K K K K

1qž /X Xs qs s ysŽ . ˆ ˆŽ .K k K K

¶
•² < :² < < :² < :X X= R u Õ d A u Õ S .Ý k k k k ßkgK

X Xk gK

A.14Ž .

We now consider the non-linearized PAVA seis-
mogram defined as:

i ŝ tKs s e A 0 , A.15Ž . Ž .Ý1 K
K

which can be approximated up to the second order in
Ž .O ds t as:K

i ŝ tKe A 0Ž .Ý K
K

1
is t 2 2K, e A 0 1q ids ty ds tŽ .Ý K K Kž /2K

s e isK tA 0 q ids te isK tA 0Ž . Ž .Ý ÝK K K
K K

=
1

2 2 is tK1q ids t q ds t e A 0 .Ž . Ž .ÝK K K2K

A.16Ž .

Ž .Using the first-order approximation in O ds t : 1qK
idsK t Žids t,e , the reference seismogram sphericalK

.earth can be written:

s tŽ .0

s e isK tA 0Ž .Ý K
K

i ŝ t i ŝ tK K, e A 0 y ids te A 0Ž . Ž .Ý ÝK K K
K K

1
2 2 is tKy ds t e A 0 . A.17Ž . Ž .Ý K K2K

Ž . Ž .Finally, using Eqs. A.14 and A.17 , and keep-
Ž .ing the first-order terms in O ds t , we obtain theK

following expression for the seismogram:

i ŝ t i ŝ tK Ks t s A 0 e y ids tA 0 eŽ . Ž . Ž .Ý ÝK K K
K K

=

° Xis t is tˆ ˆK Ke ye~Ý
X XX s qs s ysŽ . ˆ ˆŽ .¢ K K K KK gGK

=

¶
•² < :² < < :² < :X XR u Õ d A u Õ S .Ý k k k k ßkgK

X Xk gK

A.18Ž .

This equation is equivalent to the NACT expression
Ž .given by Li and Romanowicz 1995 .
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