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S U M M A R Y
We present a new tomographic method based on the non-linear least-squares inversion of
seismograms using the spectral elements method (SEM). The SEM is used for the forward
modelling and to compute partial derivatives of seismograms with respect to the model param-
eters. The main idea of the method is to use a special data reduction scheme to overcome the
prohibitive numerical cost of such an inversion. The SEM allows us to trigger several sources
at the same time within one simulation with no incremental numerical cost. Doing so, the
resulting synthetic seismograms are the sum of seismograms due to each individual source for
a common receiver and a common origin time, with no possibility to separate them afterward.
These summed synthetics are not directly comparable to data, but using the linearity of the
problem with respect to the seismic sources, we can sum all data for a common station and a
common zero time, and we perform the same operation on synthetics. Using this data reduction
scheme, we can then model the whole data set using a single SEM run, rather than a number
of runs equal to the number of events considered, allowing this type of inversion to be feasible
on a reasonable size computer.

In this paper we present tests that show the feasibility of the method. It appears that this
approach can work owing to the combination of two factors: the off-path sensitivity of the
long-period waveforms and the presence of multiple-scattering, which compensate for the loss
of information in the summation process. We discuss the advantages and drawbacks of such a
scheme.
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1 I N T RO D U C T I O N

Global seismic tomography is one of the most powerful tools to study
the earth’s interior structure (for a recent review, see Romanowicz
2003). Its basic principle involves two steps. The first step is a for-
ward modelling step, in which a starting 1-D or 3-D model is chosen,
and a seismic wave propagation theory is used to compute a syn-
thetic data set to be compared with real observations. Depending on
the approach, the observed data set can consist of time domain wave-
forms, that is, entire seismograms or portions thereof, or extracted
‘observables’ such as body wave traveltimes or surface wave phase
velocities, collected from earthquake records at seismic stations dis-
tributed around the globe. In the second step, an inverse problem
is solved, in which perturbations to the starting model are sought
in order to explain differences between the synthetic and observed
data sets. The procedure can be iterated until convergence.
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Practically all forward modelling approaches used so far to ac-
count for 3-D structure at the global scale are based on first order
perturbation theory (Born approximation), which is limited in its
domain of validity to weak lateral seismic velocity contrasts. Even
within this theory, further approximations are considered, such as,
in the context of normal mode perturbation theory, the Path Aver-
age approximation (PAVA, Woodhouse & Dziewonski 1984), which
limits the sensitivity to the average 1-D structure beneath the great
circle path containing the source and the receiver, and is therefore
strictly only a good approximation for the analysis of phase ve-
locities of fundamental mode surface waves. In the context of the
analysis of body wave traveltimes, the approximation often used is
ray theory, which is an infinite frequency approximation and dis-
tributes the sensitivity to structure uniformly along the infinitesimal
ray path. These standard approximations carry with them another
drawback, which is that only a fraction of the information contained
in whole seismograms can be utilized, well-separated body wave
phases in the case of ray theory (except diffracted waves), funda-
mental mode surface wave phase velocities and mode frequency
shifts for modes that are well separated in the frequency domain,
in the case of normal mode perturbation theory. The advantage of
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these approaches is that they are very fast computationally. Re-
cently, the introduction of more sophisticated, higher order approx-
imations to Born seismograms has allowed to perform tomographic
inversions of complete long-period seismograms, containing wave-
forms of mixed body wave phases, diffracted waves, fundamental
and higher mode surface waves, with more accurate forward mod-
elling step and structure sensitivity kernels. For example, the Non-
linear Asymptotic Coupling Theory (NACT, Li & Tanimoto 1993;
Li & Romanowicz 1995) considers across- branch mode coupling to
zeroth order asymptotically, resulting in 2-D broadband sensitivity
kernels appropriate for body waves and diffracted waves, leading
to the first global 3-D models based entirely on whole seismogram,
long-period waveforms (Li & Romanowicz 1996; Mégnin & Ro-
manowicz 2000; Gung & Romanowicz 2004). Still, sensitivity is
limited to the 2-D vertical plane containing the source and the re-
ceiver. An extension to a higher order asymptotic approximation
(Romanowicz 1987), which allows the introduction of sensitivity to
the third dimension (focusing/defocusing), is still computationally
effective, but restricted in validity to relatively smooth heterogeneity
and observations away from the source and its antipode (Capdeville
et al. 2002) or fundamental mode surface waves (Zhou et al. 2004).
On the other hand, broadband kernels have recently been introduced
for the computation of long-period body wave traveltimes. Most re-
cently, with the advent of more powerful computers, full Born com-
putations have started to be put in practice (e.g. Zhao et al. 2000),
however, at the global scale, the corresponding broadband kernels
have only been used for tomography based on traveltimes (Montelli
et al. 2004), again, limiting the type of information utilized in seis-
mic records, and therefore the sampling of the earth’s interior that
can be obtained.

The main advantage of the approximations currently used in to-
mography is that their computational speed is fast enough to allow
inversion within a reasonable time frame (several days to several
weeks). There are also serious drawbacks, especially as we seek to
constrain increasingly finer details in the models. Because source
station distribution is limited around the globe, restricting the data
set to a few well-isolated body wave phases in the seismogram lim-
its the sampling within the earth, leaving large gaps in areas in-
accessible in other ways than through the illumination by multiply
reflected/converted phases (in the vertical direction), or scattered
waves interacting with lateral heterogeneity (in the horizontal direc-
tion). Also, the large data processing effort involved in measuring
traveltimes or phase/group velocities is somewhat disproportionate
with the limited sampling obtained—which is not likely to improve
significantly unless major data collection efforts such as USArray
of Earthscope are systematically extended to the whole globe, in-
cluding the ocean floor.

Therefore, we look to future progress in mantle tomography
through the combined use of full time domain seismograms and
an accurate wave propagation theory in a 3-D earth, with fewer lim-
its of validity. Until recently, the latter has not been available. In
recent years, progress has been made in two directions: the devel-
opment of higher order perturbation theory in the context of nor-
mal mode theory (e.g. Lognonné 1989; Lognonné. & Romanowicz
1990), as well as numerical approaches (e.g. Cummins et al. 1997).
While higher order perturbation theory is currently being explored
as a possible tool for mantle tomography (e.g. Millot-Langet et al.
2003), we will here consider a numerical approach, the Spectral El-
ement Method (SEM), recently introduced in seismology in Carte-
sian Geometry (Komatitsch & Vilotte 1998; Komatitsch & Tromp
1999), and in spherical geometry for global earth scale applica-
tions (Chaljub 2000; Capdeville 2000; Komatitsch & Tromp 2002;

Capdeville et al. 2003a; Chaljub et al. 2003; Capdeville et al. 2003b).
This method has the advantage of being able to model with accu-
racy the entire seismogram at any location with respect to the source,
without any a priori assumptions on the velocity contrasts within
the Earth. The availability of this new tool allows us to address the
issue of full waveform tomography. Obviously, the main difficulty
is the computing power required, which may be so large that the
inverse problem would not be solved in practice with this tool for
many years to come. We will investigate the inverse problem in the
framework of classical non-linear least squares formalism (Taran-
tola & Valette 1982). This choice, in contrast to full space search
approaches, already limits the type of models that can be obtained,
but is arguably a reasonable approach at the global scale. We first
show that, even with a least squares inversion technique, the com-
plete inverse problem is numerically too expensive to be solved
with presently accessible computers. Then, we present an approach,
based on a specific data reduction scheme, which makes this prob-
lem more tractable. We illustrate the feasibility and potential of this
approach through several synthetic tests.

2 N U M E R I C A L C O S T O F S O LV I N G
T H E I N V E R S E P RO B L E M W I T H S E M

Our aim is to find an Earth model with the minimum number of
parameters that can explain our seismic data set, as well as data not
used in the inversion but obtained under similar conditions. By Earth
model, we mean the 3-D variations of elastic parameters, anelasticity
and density. Let us assume that we wish to solve the inverse problem
using a classical least square inversion (Tarantola & Valette 1982)
and with a complete modelling theory (i.e. the SEM applied to the
wave equation). Let p be the set of parameters which describe our
model. The data set d is comprised of seismic time traces of Ns

events recorded by Nr three component seismometers yielding 3
× Ns × Nr time series. We call g the forward modelling function
that allows us to model the data for a given set of model parameters:
d = g(p). In our case g represents the SEM, which is able to compute
a precise set of synthetics in any given model. The inverse problem
has to minimize the classical cost function �,

�(p) = t [g(p) − d]C−1
d [g(p) − d] + t (p − p0)C−1

p (p − p0), (1)

where p0 is the a priori value of the model parameters, Cd and C p

are the covariance matrices of data and model parameters respec-
tively. If g is a nonlinear function, the minimum, or the closest local
minimum to the starting model, of �, can be found by the Gauss–
Newton method iterative process (Tarantola & Valette 1982). Given
the model at iteration i, we can obtain model at the iteration i + 1:

pi+1 = pi + (
t Gi C

−1
d Gi + C−1

p

)−1

[
t Gi C

−1
d (d − g(pi )) − C−1

p (pi − p0)
]
, (2)

where Gi is partial derivative matrix

Gi =
[

∂g(p)

∂p

]
p=pi

. (3)

Usually, the forward problem is solved using first-order approx-
imations such as, for example, the Born approximation within the
normal mode framework (e.g. Woodhouse & Dziewonski 1984) or
arrival time Frechet kernels (Dahlen et al. 2000). This leads to a
linear relation matrix (G0) between the set of parameters and the
synthetic data. In that case, only one iteration of (2) is required
and the partial derivative matrix is built in the forward theory and
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computed at a relatively low numerical cost. Some tomographic ap-
proaches are slightly non-linear (e.g Li & Romanowicz 1996) but
are still based on the Born approximation. They also have the advan-
tage of providing naturally the partial derivative matrix with no extra
numerical cost, at least at the a priori model stage (i = 0). When
the SEM is used, the partial derivative matrix or kernels cannot be
computed naturally. We must use a ‘brute force’ finite difference
formulation.

At iteration i of the inversion scheme (3), the line l of the partial
derivative matrix Gi is given by[

∂g(p)

∂pl

]
p=pi

� g(pi + δpl ) − g(pi )

δpl
, (4)

where pl is the parameter vector set in which only the component
l is nonzero. Therefore, in order to compute the partial derivative
matrix, one needs to compute synthetic data for each seismogram,
which involves Ns runs, and for each parameter of the model. This
will obviously be the most expensive part of the inversion.

Let us estimate the computing time of such a tomography. Here
we assume that only G0 is needed and that it can be used throughout
the iteration of (2). This assumption is probably valid if the starting
model is not too far from the solution and if the problem is only
weakly non-linear (Note that if the problem is strongly non-linear,
the least squares inversion would probably not converge toward the
right solution anyway). Obviously, the determination of G0 will
dominate the computation time. Let us assume that we wish to build
a model with a lateral resolution equivalent to a degree 12 spheri-
cal harmonic expansion, which is indeed a modest objective given
that current global tomographic models consider expansions up to
or beyond degrees 20–24. We consider 10 vertical parameters and
invert only for one elastic parameter (S velocity), which means that
our model is roughly described by 3000 parameters. We also assume
that very long-period waveforms (160 s and above) that will be used
here are sensitive up to degree 24 in the sense of a spherical harmon-
ics expansion. This is true in theory, but in practice it is not obvious
that the effect of the highest degree is large enough to overcome
the background noise. One may have to use higher frequencies to
obtain a good result which means our estimation will be optimistic,
since numerical cost increase as a power four with the frequency
(for a given number of parameters and a given trace length). Let
us assume that our data set is comprised of seismograms for 100
events recorded at a large number of receivers (the exact number is
not relevant to the numerical cost). Finally, let us assume that we
can simulate a 3-hr waveform at a frequency cut-off of 1/160 Hz for
a single event in 1 hr, which is roughly what we can do now using
a state-of-the-art 16 processors PC cluster. With such a hardware,
computing the partial derivative matrix would take 100 × 3000 ×
1 hr � 34 yr. Of course, using a 100 or 1000 times faster com-
puter would reduce the computing time to several weeks, but even if
such a computer exists nowadays (i.e. the Earth Simulator, Japan),
it would require to use 100 per cent of the machine’s capacity for
weeks. Therefore, such an approach is not realistic for the moment.

The seismic exploration community has faced such a problem for
waveform tomography, and the Gauss—Newton method to solve the
inverse problem is not used in practice because it requires to compute
the partial derivative matrix explicitly. Instead, the gradient method
is used, which does not require to compute the partial derivative
matrix. Indeed, it has been shown that the gradient of the cost func-
tion � (t Gi C

−1
d (d − g(pi ))) in eq. (2), can be computed with only

two forward modelling computations per source using the adjoint
problem (Lailly 1983; Tarantola 1984; Tarantola 1988, or more re-
cently, Pratt et al. 1998; Tromp et al. 2005), which considerably

reduces the number of forward modelling runs despite the fact that
the gradient method requires a larger number of iterations than the
Gauss—Newton method to converge. The solution can perfectly be
applied to our problem but we would not do so in this article. We will
investigate another solution that can be cumulated with the adjoint
problem to compute gradients. So when reading the next sections,
keep in mind that the numerical cost can be even more reduced than
what we describe here.

3 DATA R E D U C T I O N

We propose in this paper to use two SEM properties to reduce the
numerical cost of a non-linear least square inversion with this tool.
First, because the SEM computes the wave field at any location of
the Earth, the numerical cost of an inversion is independent of the
number of receivers. Second, it is possible in SEM (and in most other
direct solution methods) to input several sources in the scheme, to
trigger them simultaneously, without increasing the numerical cost.
Of course, the resulting traces on the receivers side will be the sum
of the traces due to each individual source and there is no possibility
to separate them once the computation is done. If we cannot recover
the individual synthetic seismograms after the computation, we can
perform an equivalent stack of data for common seismometers as-
suming a common origin time for all the events, and use that reduced
data set instead of traces of individual events, as the stacked data
are directly comparable to the stacked synthetic seismograms. This
operation is possible thanks to the linearity of the wave equation
with respect to seismic sources which means that computing traces
for one seismometer for each source separately and then summing
them is equivalent to computing one trace of all the sources triggered
simultaneously. This data reduction scheme allows us to model the
whole data set with one SEM simulation with respect to Ns when
traces for a common station are not stacked. Finally, note that sum-
ming the traces with a common zero time is not necessary (i.e. the
sources can be staggered in time), but it is used here to provide a
simpler explanation.

If we apply this to our example of Section 2, the 34 yr of computa-
tion reduce to 4 months. Of course, this data reduction is not without
drawbacks and some information that is contained in independent
seismograms will be lost in the summation process. However, we
hope that this loss of information will be compensated by the fact
that we are able to use all the information present in a long time
series for each trace.

4 VA L I DAT I O N T E S T S

In this section, we present several numerical experiments to assess
the robustness of the inversion when the stack data reduction is
applied. These tests are circular tests in the sense that the ‘data’
to be inverted are generated with the same forward theory as the
one used to invert. We name the model used to generate the data
to be inverted the input model or the target model. These tests only
provide information on the ability of the process to converge toward
the solution under some circumstances (e.g. amplitude of velocity
contrast, data coverage, presence of noise etc.) They do not provide
any information on the behaviour of the inversion in the case of
an incomplete theory, like, for example, how an isotropic inversion
would map an anisotropic medium or how high degree horizontal
spherical harmonics components (or equivalent) would leak or alias
in a low degree inversion. Nevertheless, these tests provide valuable
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Figure 1. Two examples of meshes of the sphere used to parametrize the velocity model: one with 274 free parameters (left) and one with 2610 free parameters
(right).

information on the feasibility of the process. At least if the process
failed in these tests, there is little chance that it will ever succeed.

In the following tests, no damping is applied (Cd = I and
C−1

p = 0) so that the least squares inversion process is simply a
Gauss—Newton method to invert g:

pi+1 = pi + (
t Gi Gi

)−1 [
t Gi (d − g(pi ))

]
. (5)

In order to limit the numerical cost of these experiments, only G0

will be computed and will be used instead of Gi at iteration i. We
will see that this approximation does not hinder the convergence,
at least for these tests. Note that if the starting model is spherically
symmetric, normal mode perturbation theory would provide an exact
solution for G0 (Woodhouse 1983) and will be computationally
more efficient. In practice we already use that possibility, but this
work will be presented in a later publication. Of course, this normal
mode perturbation approach is only an option when the starting
model is spherically symmetric, which may not be desirable with
the present level of sophistication in tomography. Nevertheless, an
interesting possibility for 3-D starting models may be to combine
the adjoint problem solution mentioned in Section 2 to compute an
accurate gradient of the cost function and normal mode perturbation
theory to compute the approximate Hessian (t Gi Gi ).

4.1 Parametrization

Instead of spherical harmonics or block parametrization, we use
a piecewise-polynomial approximation description based on our
spectral element discretization (Sadourny 1972; Ronchi et al. 1996;
Chaljub et al. 2003). The sphere is discretized in non-overlapping
elements and each of these elements can be mapped on a reference
cube. On the reference cube, a polynomial basis is generated by the
tensor product of a 1-D polynomial basis of degree ≤N in each
direction. The continuity of the parametrization between elements
is assured. More details on this discretization mesh can be found in
Chaljub et al. (2003). Fig. 1 presents two examples of meshes on the
sphere used for this parameterization with a polynomial degree over
elements N = 2. The first mesh (left) has 274 free parameters and
roughly corresponds to a spherical harmonic degree 8 horizontally
in the upper mantle and a degree 4 horizontally in the lower man-
tle. The second mesh (right) has 2610 free parameters and roughly

corresponds to a spherical harmonic degree 16 horizontally in the
upper mantle and a spherical harmonic degree 8 horizontally in the
lower mantle. In practice, this parameterization may not be a good
choice, because parameters at the corner of elements have a dif-
ferent spatial spectral content than parameters at the centre of an
element. However, for the tests presented here, as the input model
is represented on the same mesh as the inversion mesh, this choice
does not affect the results.

4.2 Experiments setup and input models

For computation cost reasons, the following experiments have been
carried out with the small mesh (274 free parameters) and only one
elastic parameter has been inverted (S velocity). We choose a re-
alistic source-receiver configuration of 84 well-distributed events
recorded at 174 three-component stations of the IRIS and GEO-
SCOPE networks (Fig. 2). The corner frequency used here is
1/160 Hz and each trace has a duration of 12 000 s. For each test, the
starting model is the spherically symmetric PREM (Dziewonski &
Anderson 1981). The partial derivatives matrix G0 is therefore the
same for all tests and requires 275 SEM runs to be built, which is
reasonable in terms of numerical cost (11 days using our hardware
example, Section 1).

Two input models will be used. For both of them, the reference
background model is PREM to which a 3-D Vs velocity contrast
field is added. This 3-D Vs velocity contrast field is generated on the
same mesh as the one that will be used for the inversion (Fig. 1 left).
The first model is named BIDON (Fig. 3) and is a very simple model:
all the parameters are set to zero except one in the upper mantle and
one in the lower mantle. The amplitude of the velocity fluctuations
is large (9 per cent) compared to what we expect for the Earth for
such a long spatial wavelength. On Fig. 3 (left) we plot a depth cross
section of the model and on Fig. 3 (right) we plot the Vs velocity as
function of the parameter number of the mesh (from 1 to 274). This
1-D representation does not provide a precise idea of what a map of
the model would actually look like, but it gives accurate information
on the precision of the inversion, which a geographical map does
not. The parameter indexes are sorted such that the lower mantle
is predominantly on the left side of the plot and the upper mantle
predominantly on the right side of the plot to give some information
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Events (84), Receivers (174)

Figure 2. Sources (stars) and receivers (diamonds) configuration used to test the inversion process in this article. A total of 84 earthquakes recorded over
174 three components stations are used.

0.00 0.08
dVs/Vs

1780km depth

0.0000 0.0899

335km depth

0 100 200
parameter number

-0.02

0

0.02

0.04

0.06

0.08

0.1

dV
s/

V
s

Figure 3. Earth model BIDON. Only two parameters have a velocity contrast with respect to the spherically symmetric reference model (PREM). Left panel
shows maps at two different depths and on the right is shown a 1-D representation on the model where the Vs velocity contrast is plotted as a function of the
parameter number (from 1 to 274).

about the location of potential errors when looking at these plots.
The second model is named SAW6 (Fig. 4) and is more realistic
than BIDON. This model is derived from the tomographic model
SAW24B16 (Mégnin & Romanowicz 2000), truncated at degree 6
and mapped on the 274 parameter mesh (Fig. 1 left). The maximum
amplitude velocity contrast is much lower (about 3 per cent) than in
BIDON which is typical of long-wavelength mantle heterogeneity. In
this case all the parameters have non-zero values has it can be seen
on the right plot of Fig. 4.

4.3 Test in BIDON model

Stacked data are generated with SEM in the model BIDON and are
inverted following the inversion scheme presented in this paper.
The results of the first three iterations of inversion are shown in
Fig. 5. The first iteration already gives a velocity contrast very close
to the correct value for the two parameters with non-zero velocity
contrast, but for the other ones the result is very noisy. The second
iteration gives a much better result and the third one has converged
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Figure 4. Earth model SAW6. This model is derived from the tomographic model SAW26B16 (Mégnin & Romanowicz 2000). Maps at two different depths
(left) and a velocity contrast of each parameters as a function of the parameter number (right) are represented.

toward the correct result. This first experiment is satisfactory and
shows that the process can work, at least in simple models. The
fact that the first iteration is relatively far from the correct model
is interesting because it means that a method based on the first
order Born approximation would give a very poor result in that
case. The non-linearity is here strong enough to justify a non-linear
scheme, but it is weak enough to allow the convergence toward
the right solution and not toward a wrong local minimum model,
and this without updating the partial derivative matrix Gi at each
iteration.

4.4 Test in SAW6 model

We now perform the same test but with data generated in the more
realistic model SAW6. Results of the first two iterations of the in-
version are shown Fig. 6 and already present a good convergence
toward the input model for the second iteration. This faster con-
vergence compared to the first test can be explained by the lower
velocity contrast of the input model, which implies smaller non-
linear effects. All model parameters, from the lower mantle to the
surface, are well retrieved.

4.5 Test in SAW6 model with noisy data

The purpose of this experiment is to assess the noise sensitivity
of the inversion scheme. This kind of test reflects how stable the
inversion is, and in this experiment, we are not in a favourable case.
Indeed, data with periods 160 s and above have a very poor depth
resolution, and to obtain very good results with such an experiment,
one should use higher frequency data or decrease the number of
vertical parameters. We nevertheless perform the test with SAW6
input model again, but this time synthetic noise is added to the data.
To do so, we generate a random noise corresponding to a realistic
background noise in this frequency band (the noise spectrum is a
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iteration 2

0 50 100 150 200 250
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0
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Figure 5. Inversion results for the three first iterations for data generated
in the model BIDON (Fig. 3). The velocity contrast with respect to PREM is
plotted as a function of the parameter number. The input model is accurately
retrieved after three iterations.

slope from −175dB and −165dB in the 100 to 300-s period range)
and for each event-station pair, stack them and then add them to
the synthetic data. The result of the inversion is shown Fig. 7. The
noise affects the results of the inversion, but the scheme is still
able to retrieve the target model correctly. The deepest parameters
of the model are the most affected by noisy data, which is not a
surprise knowing the poor sensitivity to deep layers of long-period
data. Fig. 8 shows that, despite the noise, the inversion is able to
retrieve a model that explains the data far beyond the noise level.
The fact that we are able to fit the data so well, even though the
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Figure 6. Inversion results for the two first iterations for data generated
in the model SAW6 (Fig. 4). After two iterations, the inversion result match
very well the input model for all model parameters.

model is not perfect, is also due to the lack of depth sensitivity of
long wavelength data.

4.6 Test in SAW6 model with only one station

We perform an extreme test to assess the ability of the process to
recover information in the case of very poor data coverage. To do so,
we perform a test with only one receiver, the GEOSCOPE station KIP

in Hawaı (Fig. 9). This time, no noise is added to traces. The input
model is SAW6 (Fig. 4) and the results of the inversion are shown
in Fig. 10, in the 1-D representation for iterations 1, 5 and 10. The
output model for the first iteration is very far from the input model
and at this point it seems that the inversion scheme has no chance to
recover it. However after a large number of iterations, the process
finally converges toward the input model. It is impressive that the
process is still able to converge without updating the partial deriva-
tive matrix G0 at any iteration. The conclusion of this experiment is
that, what allows us to retrieve the input model is not only the wide
off path sensitivity of the theory, but also the non-linearity or, in
other words, the multiple scattering. Indeed, a Born theory with no
geometrical approximation has the same wide off path sensitivity as
a direct solution method like SEM, but would give a wrong model
(similar to the one which is obtained at iteration one). Clearly, the
inversion is in that case highly unstable and a very high data preci-
sion is required to allow the inversion to converge toward the right
model. An application to real data would be a disaster due to the
presence of noise or, equivalently, of physical processes not included
in the theory (anisotropy, attenuation, effect of atmospheric pressure
etc.).

4.7 Test in SAW6 model with moment tensor errors

So far, a perfect knowledge of the source location, origin time and
moment tensor have been assumed. When applying the method to
real data, this will not be the case and significant errors on the source
parameters can be expected. In order to partly address this issue, we
perform a test where the a priori moment tensors are not well known
but we keep the locations and origin times perfectly known. This

reflects the fact that, at least at very long period, the location and
origin time errors are small compared to the wavelength. In this
test we generate data in the SAW6 model with each component of
each a priori moment tensor perturbed by a random coefficient ly-
ing between −30 per cent and +30 per cent. The moment tensors
used to generate the partial derivatives and to compute the forward
modelling part of the inversion are, therefore, not the ones that have
been used to generate the synthetic data to be inverted. The result of
the inversion after three iterations is shown Fig. 11. The scheme can
clearly not retrieve the input model. The unknown moment tensors
create a large noise that can not be overcome with a reduced number
of data. A solution to this problem can be to increase the number
of data, and therefore, because the number of stations can not be
significantly increased, to use multiple stacked data sets. Another
solution is to invert also for the moment tensor at the same time as
Vs velocity. In this case, a difficulty due to the stacked data set, is
that, for sources close to each other, only the sum of these moment
tensors can be retreived, but not individual moment tensors. If the
primary goal of the inversion id to retrieve Vs field, an accurate sum
of the moment tensors of sources very close to each other is enough.
Indeed, an accurate sum of the moment tensors of sources very close
to each will give a correct prediction of the stacked displacement
at stations, which is all what we need for a Vs tomography with
stacked data. Now, if we are also interested in individual moment
tensors, a solution can be to separate sources in the time domain by
introducing time delays between close sources. Doing so, different
sources located at the same place will have a different effect on
stacked data. In this example, we will only focus on retrieving Vs

field. In the case of sources very close to each other, we therefore
wish to invert only for the sum of the moment tensors. In order to
to so, we generate partial derivatives of individual components of
moment tensors. The Hessian matrix (t Gi Gi ) for moment tensors
only is then build, an eigenvalue analysis of this matrix is performed
and only the 75 per cent larger eigenvalues are keept. This is equiv-
alent to a damping that removes the instabilities, but it only affects
the moment tensor inversion part. Of course the choice of 75 per
cent is not precise and will prevent us from explaining the signal
perfectly. Therefore, we expect a small error due to this choice to
spread into the Vs inverted field. We finally invert for the Vs field at
the same time as the moment tensors cleaned from its 25 per cent
lower eigenvalues. Fig. 12 shows the result of the inversion. Thanks
to the inversion for the moment tensors, we are able to retrieve very
well the input model. The remaining errors are due to the 75 per cent
choice in the number of kept eigenvalues for the source inversion.
Indeed, this choice is not optimum and some signal that should be
explained by the moment tensors is not and slightly degrades the Vs

inversion.

5 T O WA R D R E A L C A S E S : D E A L I N G
W I T H M I S S I N G DATA

Thanks to the success of all preliminary tests of this inversion
scheme, we have already started to work on real data to get a prelim-
inary long-period model. The results of this work will be presented
in a later publication. When working with real data, a problem with
this kind of approach immediately appears: the missing data. Indeed
when trying to gather data for a reasonable number of events (let’s
say around 50) recorded at a large number of stations (around 80),
there are always between 10 and 20 per cent of missing data what-
ever the configuration is. The reason why the data are sometimes
not available at a given station varies from case to case, but there are
very few stations that have 100 per cent availability for 50 events.
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Figure 7. Inversion results for third iteration for data generated in the model SAW6 (Fig. 4) but with noise added to synthetic data. The two left maps show
the input model (SAW6) at two different depths and the two right maps show the result of the inversion (output model) at the same depths after three iterations
when synthetic noise is added to the synthetic data. The lower plot shows the Vs velocity contrast on the input and output model as a function of the parameter
number. Note that the deep parameters are more affected by the noise than the one close to the surface. The model is nevertheless correctly retrieved by the
inversion.

When combining the 80 stations, even for large events (magnitude
from 6.5 to 7) we end up with about 10–20 per cent of missing
data. For our inversion scheme, missing data is a problem as it is
easy to generate the sum of all the data in one run but impossible
to remove some of them without computing each missing source
individually. Since almost all sources are missing at least at one
station, removing missing data would require to perform a sim-
ulation for each source and it seems we are back at our starting
point.

However, the sum of all the data dt can be separated into the sum
of missing data dm and the sum of available data da :

dt = da + dm . (6)

The total direct problem can also be separated into missing and
available synthetic parts:

gt (p) = ga(p) + gm(p). (7)

The main difficulty is that there is no way to compute efficiently the
partial derivatives matrices of ga and gm , therefore trying to solve

ga(p) = da (8)

or

gt (p) − gm(p) = da (9)
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Figure 8. Here is plotted, at KIP station: the noise (dotted line) added to
the synthetic vertical component data before inversion; the starting residual
signal without the noise (solid line) which is difference between the synthetic
data when noise is not added yet and the synthetic seismogram in the refer-
ence model (PREM); finally the residual (solid bold) after two iterations that
is the difference between the synthetic in the obtained model after inversion
and the starting model. We see the scheme is able to go beyond the noise
level (the amplitude of the last residual is smaller than the noise level).

is not an option. On the other hand, solving

gt (p) = da + gm(p) (10)

is possible because the partial derivatives matrix of this last problem
only depends on the sum of all the data, the missing and available
ones. Nevertheless, since the right hand side of the last equation
depends on p, it requires an iterative scheme. This scheme is only
interesting if we do not update the partial derivative matrix at each
iteration of the iterative scheme, but since we can expect only a small
number of missing data, this should not be a problem. The available
solutions for gm(p) are:

(1) 0,
(2) Synthetics in the spherically symmetric model (gm indepen-

dent of p) with normal mode summation,

Events (50), Receiver (KIP)

Figure 9. Data coverage used in the single station test. The same number of events (84, plotted as diamonds) as in the other tests is used, but only one station
(KIP) is used.
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Figure 10. Inversion results with only one station (KIP, see data coverage
Fig. 9) for data generated in the model SAW6 (Fig. 4) for iterations 1, 5 and
10. The convergence is slow, but after 10 iterations, the output model match
the input model.

(3) Synthetics in p with normal mode summation first order per-
turbation and

(4) Synthetics in p with the spectral element method.

The first two solutions are numerically inexpensive but probably not
very good, depending on the amount of missing data. The third one is
probably a good compromise between numerical cost and precision
and the last one is perfect but expensive. An equally good solution
for a finalized model may be to use normal mode perturbation theory
during the iterative process of the inversion and spectral elements
synthetics at the last iteration.

In order to test this solution, we generate a data set in the model
SAW6 (Fig. 4) with missing data. To do so, we first compute synthetic
seimograms from each source individually with 84 runs. We then
select randomly the missing data among each source receiver pair.
The selected data are not used in the construction of the stacked
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Figure 11. Inversion results for third iteration for data generated in the
model SAW6 (Fig. 4, bold line) with error on a priori moment tensors. To
generate the data, a random coefficient lying between −30 per cent and
+30 per cent has been applyed to each component of each moment ten-
sor. The result of the inversion (without inverting for sources) after three
iterations (thin line) doesn’t match the input model.

data set. We perform here a rather extreme case with 35 per cent of
missing data (our experience with real cases have shown that it is
possible to gather data set with 15–20 per cent of missing data when
working with 50 sources and 90 vertical component receivers). We
then perform three inversions. For the first one, the missing data
are replaced with synthetic seimograms computed in the starting
spherically symmetric model. This solution is numerically inter-
esting because the scheme is still explicit: the data set completed
with the synthetics of missing data does not depend on the obtained
model. The drawback is that the final model cannot be accurate as
the signature of the starting model will always be present and can
not be corrected. The result of such an inversion is given Fig. 13.
As expected, the result is noisy, but the main features of the input
model are still retrieved. In the second inversion, the missing data are
replaced by synthetic seismograms computed in the current model
(xi ) with the Born approximation in the normal modes framework
(Capdeville et al. 2000; Capdeville 2005). This time the scheme
becomes implicit as the data set completed with the synthetics of
missing data depends on the current model. The result of such an
inversion is given Fig. 14. The result is much better than for the
previous test but still not perfect. This is expected as the first order
Born approximation is not very accurate especially when time series
are long and non-linear effect cannot be neglected anymore. Finally
we perform a last test in which the missing data are replaced by syn-
thetics computed in the current model with SEM. This solution is
CPU time consuming as it requires to compute each source individ-
ually. To perform such a test and to lower the numerical cost we start
from the model obtained at the last iteration of the previous test and
we perform only one extra iteration. The result is given Fig. 15 and
shows a very good result. Some more iterations would be required
to obtain the same precision as the one we get when no data are
missing, but this result is already accurate enough with respect to
noise coming from other effects (noise, error on moment tensors).

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have presented a way to perform non-linear full
waveform inversion at the global scale, using the spectral element
method as a forward modelling tool. This method is based on a non-
coherent trace stacking at a common receiver for a common source
origin time. The data reduction allows us to simulate the whole data
set in a single Spectral Elements run and, therefore, to reduce the
number of computations by a factor equal to the number of sources
with respect to a classical approach. We have presented preliminary
tests which show very promising results. The main advantage of the

approach is that it allows us to investigate full waveform tomography
now, without waiting to have the computing power to use a classical
approach. There is also a data selection and processing advantage.
Phase identification, time picking, phase velocity measurements are
not required for waveform inversions which saves a lot of time and
also minimizes human error.

Clearly, there are also drawbacks to this approach. One of them
is that some information is lost in the data reduction. However all
tomographic methods use some data reduction scheme. For exam-
ple, travel time tomography uses only a limited number of arrival
times per trace (often only one or two). Here, we use traces of
12 000-s duration, which represents a lot of information, even with
a 160 s corner period. We, therefore, hope that these long traces can
overcome the loss of information due to the stacking. Nevertheless
it is important to keep in mind that information is lost when that
data is stacked. If only a single stacked data set is used, there is a
limit on number of sources, after which adding new sources does
not bring anything new. This limit is not obvious to address and
depends on the corner frequency and the length of the signal that is
used. However when this limit is reached, the only way to get more
information about the model (e.g. to improve the resolution) will be
to use multiple stacked source data sets. Note that the process has
the advantage to allow to move gradually toward the classical case
(no data stacking) by splitting the data set into two or more data
subsets as a function of the computing power available. Through
this process, we will end up eventually with the classical case where
all the sources are considered individually.

Another drawback is that the process does not allow us to select
some time windows on traces to enhance some part of the signal with
respect to others, such as separating body wave packates from each
other and from surface waves (e.g. Li & Romanowicz 1996). The
body waves have small amplitude but contain information about the
lower mantle whereas surface waves have a large amplitude but do
not contain information about the lower mantle. As surface waves
will dominate the stacked signal, there is little chance to recover the
lower mantle before the upper mantle is very well explained. We
have seen that it is not a problem in our tests, but this is because
we exactly know what to invert in order to explain exactly the upper
mantle and therefore once the upper mantle is explained, the lower
mantle is easy to retrieve. In a real case, it may be much more
difficult, since we do not know for sure what elastic parameters
are required to explain surface waves well enough, and therefore
to be able to access body waves and information about the lower
mantle.

This last point leads to another difficulty that we will face in
future work. What physical parameters (elastic, anelastic, density,
etc.) do we need to invert for and at what resolution to explain our
data set correctly? The resolution issue is not obvious: a too low
resolution for a given data frequency content will lead to aliasing
and a too high resolution may lead to an unstable inversion scheme,
as our data set may not have the information to resolve all the pa-
rameters, but also to a prohibitive extra numerical cost. The number
of physical parameters is also a difficult question. Are Vs fluctu-
ations enough to explain our data set? Probably not. Do we need
Vs, Vp, density, anisotropy, 3-D anelastisity, perturbations in source
parameters? What is the relative sensitivity of our data set to those
parameters? All these questions will need to be addressed in future
work.

Finally, it is well known that the choice of the type of least squares
inversion can strongly constrain the possible model. This is not really
a choice as we cannot afford the numerical cost of a more general
inversion scheme based on random exploration of our parameter
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Figure 12. Same test as the one presented Fig. 11 with error on a priori moment tensors, but this time a moment tensor inversion joint with the Vs inversion
is performed. The two left maps show the model that has been used to generate that data (SAW6, input model) at two different depths and the two right maps
show the result of the inversion (output model) at the same depth after three iterations. The lower plot shows the Vs velocity contrast on the input and output
model as a function of the parameter number. When moment tensors are inverted as the same time as Vs, the inversion is able to retrieve correctly the input
model despite large errors on a priori moment tensors.

space. Nevertheless the question of what we may be missing due to
this least square inversion scheme, that is, what are the error bars on
the obtained model values, will also need to be addressed in future
work.
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Figure 14. Same as Fig. 13 with 35 per cent of missing data, but solution adopted to deal with the missing data in this test is to replace the missing data by
synthetics computed in the current model (3-D) with the born approximation. They are updated during the iterative inversion. The result is good but not perfect,
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Figure 15. Same as Fig. 13 with 35 per cent of missing data. This time the missing data are replaced by synthetics computed in the current model with SEM
at the iteration 4 starting from the iteration 3 of the precedent test (Fig. 14). The result (dotted line) is in a good agreement with the target model.
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