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9 RELATIONSHIPS BETWEEN SEISMIC AND
HYDROLOGICAL PROPERTIES

STEVEN R. PRIDE
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

9.1 Introduction

Reflection seismology is capable of producing detailed three-dimensional images
of the earth’s interior at the resolution of a seismic wavelength. Such images
are obtained by filtering and migrating the seismic data and give geometrical
information about where in the earth the elastic moduli and mass densities change.
However, information about which specific property has changed and by how much
is not contained in the images. Hydrologists can use such migrated images to place
geometrical constraints on their possible flow models, but must rely on well data
to place constraints on the actual values of the hydrological properties.

With more effort, the seismic data may be inverted to yield the seismic velocity
and attenuation structure within a region probed by the waves at a resolution
of one or two wavelengths. However, the problem of further relating the seismic
velocities and attenuation to hydrological properties such as permeability, porosity,
and fluid type is still an ongoing research problem despite more than 50 years of
effort. A computer program does not presently exist that can read in seismic data
and output reliable information about permeability, porosity, or saturation.

Nonetheless, such hydrological properties can influence seismic properties, and
much about the relationship is known. The theoretical framework for studying
the connection is poroelasticity, which simultaneously provides the laws govern-
ing the hydrological response of a porous material caused by pumping and the
seismic response caused by seismic sources. This chapter provides an up-to-date
review of porous-media acoustics. It shows how seismic properties can change
due to hydrological pumping and acts as a user’s guide to the forward problem of
predicting seismic wave speeds and attenuation from knowledge of porosity, satu-
ration, and permeability. Similar recommendations for how to optimally perform
the inverse problem and obtain hydrological properties from the seismic data are
not yet available.

In Section 9.2, general expressions for the seismic wave speeds and attenua-
tion in a porous material are obtained. The pedagogic exercise of obtaining the
hydrological and seismic limiting cases of poroelasticity is also demonstrated. In
Section 9.3, the definition and model of the dynamic permeability is obtained. In
Section 9.4, definitions and models of the various poroelastic moduli are provided
in the quasi-static limit where fluid-pressure is effectively uniform throughout each
sample of the earth. In Section 9.5, these same moduli are modeled over the en-
tire range of frequencies where the fluid-pressure equilibration on different spatial
scales must be allowed for. Such wave-induced flow is responsible for attenuation
and dispersion in porous materials and provides the possible link for obtaining
permeability from seismic properties. Finally, in Section 9.6, the results of the
chapter are discussed and interpreted with an eye toward understanding the pos-
sible connection between permeability and seismic properties.



218 Steven R. Pride

9.2 Acoustics of isotropic porous materials

The governing equations for porous-media acoustics are generally credited to Biot
(1956a,b, 1962), although Frenkel (1944) produced a similar set of equations.

Implicit in the standard form of Biot theory is that the porous material is
uniform at “mesoscopic scales,” which are those length scales lying between the
“microscopic” grain scale and the “macroscopic” wavelength scale. As a compres-
sional wave propagates through such a porous material, a fluid-pressure gradient
is established between the peaks and troughs of the wave. The fluid tries to equi-
librate by flowing from the peaks to the troughs. Such “macroscopic”’ flow is the
only source of compressional-wave attenuation in standard Biot theory; however,
this flow simply does not produce enough loss to explain the attenuation measured
in both field work and most laboratory experiments involving geological materials.

To remedy this situation, a microscopic flow mechanism called “squirt” was
proposed (Mavko and Nur, 1975, 1979; O’Connell and Budiansky, 1977; Dvorkin
et al., 1995). Squirt flow is based on the fact that any broken grain contacts or
microcracks in the grains are necessarily more compliant than the main part of the
pore space. When a compressional wave squeezes the material, there is a larger
fluid-pressure response in the microcracks than in the main pores, which results
in a fluid flow from the microcracks to the main pore space. Such microscopic
squirt flow can effectively explain ultrasonic attenuation data (frequencies near
1 MHz) obtained in the laboratory under ambient conditions. However, as will
be explained in Section 9.5, squirt flow does not seem capable of explaining the
measured attenuation in the seismic band of exploration frequencies (say, 10 Hz
to several kHz).

One way to account for the attenuation in exploration work is if mesoscopic-
scale heterogeneity is present. This heterogeneity may be due to patches of differ-
ent immiscible fluids or to lithological variations (such as sand/shale mixtures, or
pockets/fingers where the grains are less well cemented together, or the presence
of joints/fractures within in a sedimentary host material). When a compressional
wave squeezes a material having such mesoscopic heterogeneity, the effect is sim-
ilar to squirt: the more compliant parts of the material respond with a greater
fluid pressure than the stiffer portions. There results a mesoscopic flow of fluid
that does seem capable of explaining the measured levels of attenuation in the
seismic band as shown in Section 9.5. Early models of such mesoscopic flow were
developed by White (1975) and White et al. (1975), while more recent models are
those of Johnson (2001), Pride and Berryman (2003a,b), and Pride et al. (2003,
2004). An interesting aspect of the mesoscopic-loss mechanism is that it depends
on the permeabilities of the materials present. Squirt loss, however, depends on
h/R where h is the effective aperture of any microcracks in the grains of a rock
and R is a characteristic grain radius. Squirt is only indirectly related to the
permeability through the effective grain size R.

As shown in Section 9.5, both the micro and meso mechanisms result in the
poroelastic moduli being complex and frequency dependent. The macro mecha-
nism credited to Biot/Frenkel (wavelength scale equilibration) is normally modeled
using real frequency-independent elastic moduli that are the focus of Section 9.4.
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9.2.1 GOVERNING EQUATIONS OF POROUS MEDIA ACOUSTICS

Many authors, including Levy (1979), Burridge and Keller (1981), Pride et al.
(1992) and Pride and Berryman (1998), have demonstrated that Biot’s (1962)
theory is the correct general model for porous-media acoustics. Assuming an e~**
time dependence so that cumbersome time-convolution integrals (associated with
the loss processes) are not explicitly present, Biot’s (1962) equations controlling
isotropic poroelastic response are

V-t? —-VP. = —w*(pu+psw) (9-1)
~-Vp; = —w?pju-— iwﬁw (9:2)

™ = G|Vut(Va)' -2V ul (9.3)

—-P, = KyV-u+CV-w (94)

—py = CV-u+MV- -w. (9.5)

The various fields u, w, 77, P, and p; represent the average response in volumes
that are much larger than the grains of the material but much smaller than the
wavelengths. If @, is the average displacement of the solid grains throughout an
averaging volume and Uy the average displacement of the fluid in the pore space,
then the displacement fields of the theory are u = @, and w = ¢(dy — T,) where
¢ is the porosity of the averaging volume. When the area porosity defined on
a slice of the porous material is equivalent to the volume porosity (for isotropic
media, this can be considered exact in the limit of large averaging volumes), —iww
corresponds to the Darcy filtration velocity. The dilatation V-u can be shown (e.g.,
Pride and Berryman, 1998) to accurately represent the total volume dilatation of
a sample of material (exactly so when the geometrical center of the grain space is
coincident with the geometrical center of the pore space). The dilatation V - w
corresponds to the accumulation or depletion of fluid in the sample and is often
called the “increment of fluid content” (denoted —( by Biot). Let the tensor 7
represent the average stress tensor throughout the entire averaging volume (both
solid and fluid). Upon separating this average total-stress tensor into isotropic
and deviatoric portions 7 = —P, I+ 7P (where I is the identity tensor), the scalar
P, = —tr{r}/3 represents the average total pressure acting on a sample (the
so-called “confining pressure”), while the tensor 77 represents the average shear
stress. Last, py is the average fluid pressure throughout the pores of a sample.
Generally, the fields and moduli change with the size of the averaging volume.
This size is ideally chosen so that the averaged fields correspond to those that a
measuring device such as a geophone or geophone group records. In this man-
ner, modeled fields and recorded data may be directly compared in the inverse
problem. Alternatively, the size of the averaging volume implicitly corresponds to
the size of the discretization element when these equations are solved numerically
by finite difference, and is necessarily much smaller than the seismic wavelength.
If laboratory experiments are performed to determine the moduli of the theory,
the sample size corresponds to the averaging volume (and, therefore, discretiza-
tion element) employed in the forward model (Pride and Berryman, 1998). Since
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averaging volumes on the order of cubic meters (and even much larger) are com-
monly used in seismic forward modeling, one can properly say that no laboratory
experiment has ever been performed that measures the moduli/coefficients at the
scale required for the seismic forward modeling. Measurement of the moduli at
the seismic length scale can only come indirectly from inversion of seismic data.

Equation (9.1) is the total balance of forces acting on each sample while Equa-
tion (9.2) is a generalized Darcy law and is itself a force balance on the fluid from
a frame of reference fixed on the skeletal framework of grains. The apparent force
w?pru that acts along with —Vpy to drive the fluid flux —iww is caused by wave-
induced acceleration of this reference frame. The bulk density p of the rock is
p = (1—¢)ps + ¢ps where py is the average density of the pore fluid and p, the
average density of the solid grains in a sample. The so-called “dynamic permeabil-
ity” k(w) is a complex frequency-dependent quantity such that at low-frequencies
(to be precisely defined in Section 9.3.1) it is exactly the hydrological permeability
k, of a sample (lim,_ k(w) = k,) while at high-enough frequencies it includes
inertial effects associated with the relative fluid-solid movement. The viscosity of
the pore fluid is 7.

Equations (9.3)—(9.5) are the constitutive equations. Since linear wave prop-
agation is being assumed, the displacements can always be considered small. As
such, we have forgone placing a differential “d” in front of the various stresses and
strains appearing in Equations (9.3)—(9.5). However, these constitutive equations
are obtained by differentiating a strain-energy function and, as such, should al-
ways be thought of as differential equations (changes in strain related to changes
in stress). Models for the three poroelastic incompressibilities Ky, C;, M and for
the shear modulus G are the focus of Sections 9.4 (quasi-static) and 9.5 (frequency
dependent).

9.2.2 SEISMIC WAVE PROPERTIES

The seismic wave speeds, attenuation, and fluid-pressure diffusivity implicitly con-
tained in Equations (9.1)—(9.5) are now obtained. These results are independent
of whether the coefficients k, Ky, C, M, and G are complex and frequency de-
pendent. The low-frequency limit of Equations (9.1)—(9.5) is also shown to yield
both the laws of hydrology and seismology.

To obtain these results, one need only consider a homogeneous porous contin-
uum and insert the stress/strain relations into the force balances to obtain

[(Ku + G/3)VV + (GV? +w’p)I] -u+ [CVV +w’psI] -w = 0 (9.6)
[CVV + +w?pfI] -u+ [MVV + w?fI] - w 0 (9.7)

where I is again the identity tensor and where the relative-flow resistance in the
Darcy law has been written as if it were an inertial property

N
plw) = w B @) (9.8)

We consider a plane wave that, by definition, has a material response of the form

u=Uexp(ik-r)i and w=Wexp(ik- -r)w. (9.9)
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Here, &1 and W are unit vectors defining the polarization of the response, while k
is the wave vector that we write in the form

k = ws(w)k, (9.10)

where s(w) is the complex slowness (to be determined) and k is a unit vector in
the direction of propagation.

The quantities of interest are the phase velocity v and attenuation coefficient a
(units of inverse length) for the various wave types that are related to the complex
slowness as

v(w) = 1/Re{s(w)} and a(w)=wIm{s(w)}. (9.11)

Taking k to be in the z direction, the plane-wave spatial response is then of the
form e~@)zeiwz/v(w) and g is seen to control the exponential decay of the wave
amplitude with distance x propagated. It is sometimes convenient to use the
inverse of the quality factor @) (dimensionless) given by

2a(w)v(w) _ 2Im{s(cu)}
w Re{s(w)}

Q 'w) = (9.12)

as the measure of attenuation. By definition, Q! represents the energy lost in a
wave period divided by the average stored strain energy (and divided by 4r).
Putting the plane-wave response into Equations (9.6) and (9.7) gives

(Ky +G/3)s?(k - i)k — (p— Gs¥)ir  Cs?(k - W)k — pyw ] [ U ] —o
Cs?(k - i)k — psit Ms?(k - W)k — jw e
(9.13)
By definition, a transverse wave has a material response perpendicular to the wave
direction (k - it = k - W = 0) while a longtitudinal wave has a material response
parallel with the wave direction (ﬁ =k -w= 1). A plane wave having “mixed
response” (i.e., i # W) leads to the trivial solution U = W = 0 and thus does not
exist. We may therefore take it = w for plane waves in a homogeneous material.

9.2.2.1 Tmnsvejse Wapes
Upon placing k - 1 = k - w = 0 in Equation (9.13) we obtain

| AR

which has nontrivial solutions only when the determinant vanishes. This occurs
at the complex wave slowness s; given by

_ 2 /5
2_Prilp

s e (9.15)

When G can be considered real (no mesoscopic or microscopic flow), the imaginary
part of s; is due entirely to relative fluid-solid motion induced by the acceleration
of the framework of grains.
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The amplitude W of this relative displacement (as normalized by the amplitude
U of the displacement of the solid grains) can then be read from Equation (9.14)
w k
W _ Pk (9.16)
U U
where the definition of p was used. If it were possible to measure the relative
displacement w of a passing shear wave in addition to the average grain velocity
—iwu recorded by a geophone, Equation (9.16) would provide a direct measure of
permeability. Unfortunately, a device for measuring w does not presently exist.

9.2.2.2 Longtitudinal Waves
Upon placing k-t = k- w = 1 in Equation (9.13) we obtain

Hs*>—p Cs*—ps vl _
Cs?—p; Ms*—p w | =Y (9-17)

where we have introduced the “undrained” P-wave modulus H as
H = Ky +4G/3. (9.18)

An undrained elastic response is one in which fluid exchanges between each sample
of the earth and its surroundings do not take place. Again, nontrivial solutions
of Equation (9.17) are obtained when the determinant vanishes and this occurs
at two values of the slowness that are called here s,; and sp,;. Upon solving the
quadratic characteristic equations for s2, one finds that

4(pp — p3)

25510 =V F\V ~ S e (9.19)
where taking the “—” gives the so-called ‘“fast” P-wave slowness and taking the “+”
gives the “slow” P-wave slowness and where 7 is the auxiliary parameter

_ pM + pH — 2p;C (9.20)

HM —C?

Equation (9.19) is what allows P-wave attenuation and dispersion to be determined
once models for the complex frequency dependence of H, C', and M are determined.
When these three moduli are taken to be real and frequency independent, the
associated fast-wave attenuation is called “Biot loss” and results entirely from the
fluid flow occuring between the peaks and troughs of the wave.

The relative-displacement amplitude W is then read from Equation (9.17)

w H32f s P
— = Bpfps = — 22—, (9.21)
U plp C82¢ oo = Pf

The nature of B,¢,ps for fast and slow waves is key to understanding the entirely
different nature of these two disturbances. It is informative to investigate the B, ;5
in the low-frequency limit defined by the dimensionless condition wpsk,/n < 1.
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For water in the pores (py = 10 kg/m? and = 1072 Pa s) and for permeabilities
on the order of 10 Darcy or smaller, this limit holds for frequencies satisfying f <
10* Hz which corresponds to the entire band of interest in exploration seismology.
From Equations (9.19)—(9.21), it is straightforward to obtain

— iwprko p C
P = (1 - ;E) [1+ Owpsko/n)] (9.22)
Prs = _%[1 +O(wpsko/m))- (0.23)

Equation (9.22) shows that in exploration work, the macroscopic relative fluid-
solid displacement vanishes for the fast wave, and the response becomes effectively
undrained. For the slow wave, the relative fluid-solid displacement is much larger
than the displacement of the solid grains (because normally H > C) and is exactly
out of phase with the solid displacement. We will now show that the slow wave at
low frequencies is a pure fluid-pressure diffusion and thus not a wave at all.

9.2.2.3 Understanding the Fast and Slow Response
As just seen, in either a fast or a slow disturbance the fluid accumulations are
related to the volume changes of a sample by the relation

V-w = BprpsV - (9.24)

This relation is also trivially satisfied by the equivoluminal shear waves. If V-w =
BpsV -u is introduced into the governing equations along with Equation (9.22) for
Bps, then to leading order in wpyrk,/n, Biot’s equations reduce to

(Ky + G/3)VV -u+ GV?u + w?pu = 0. (9.25)

This is exactly the usual elastodynamic wave equation having compressional and
shear wave slowness given by the standard expressions

[ P [p
- L =,/ 2
Spf Ko +4G3 and s e (9.26)

If Ky and G are complex and frequency dependent in the seismic band of fre-
quencies due to mesoscopic-scale flow, both of these fast and shear waves will
be attenuative despite the response being undrained. Again, the term undrained
means only that fluid does not enter or leave an averaging volume and is indepen-
dent of any fluid redistributions that occur within the averaging volume.

If we introduce V-w = ,;V -u into the governing equations and use Equation
(9.23) for S, then to leading order in wpyk,/n, Biot’s equations reduce to

orr (1= % V2p; +iwps =0 (9.27)
p g )V Pr tiwps = :
which is exactly a diffusion equation for the fluid pressure having a fluid-pressure
diffusivity given by

D= %M (1 ¢ ) . (9.28)

- MH
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So in the seismic band of frequencies (f < 10 kHz), the slow wave is in fact
a pure fluid-pressure diffusion. Because C? <« M H, the small correction in the
parentheses that is due to fluid-pressure-induced frame expansion is often neglected
in hydrology. The undrained P-wave modulus H = Ky + 4G/3 depends on the
shear modulus. The shear modulus is present in D because fluid-pressure diffusion,
like P-wave propagation, is a uniaxial response (a sum of both compression and
shear) with no displacements occuring perpendicular to the diffusion front; i.e., all
displacement of the solid is in the direction of diffusion. When seismologists or
rock physicists talk about a “slow wave,” all that is being referred to is hydrological
fluid-pressure diffusion.

So the two low-frequency longtitudinal modes of Biot theory correspond to seis-
mology (fast-wave or “P-wave” response) and hydrology (slow-wave response). In
the presense of heterogeneity in the porous continuum, seismology and hydrology
are coupled (fast waves generate slow waves), and a possible connection between
seismic attenuation and permeability can be envisioned. Details of such a possible
relation are explored in Section 9.5.

9.3 Relaxation processes in standard Biot theory

The term “standard Biot theory” simply means that the poroelastic moduli Ky,
C, M, and G are all real frequency-independent constants as in Biot’s (1956a,b,
1962) work. There are two P-wave relaxation processes in this case. One relaxation
occurs at the frequency where viscous boundary layers first develop in the pores
of a rock and is allowed for within the so-called dynamic permeability k(w). The
other relaxation occurs when the fluid pressure between the peaks and troughs of
a compressional wave just has time to equilibrate during a wave period.

9.3.1 DYNAMIC PERMEABILITY

At low-enough wave frequencies, the relative fluid flow in the pores has a lo-
cally “parabolic” flow profile, and the resistance n/k, to the average fluid-solid
movement is entirely a result of the viscous shearing associated with this flow.
However, as frequency increases, so does the importance of inertial forces in the
local force balance on the fluid (the Navier-Stokes equations that hold through-
out the pore space). Since every fluid in earth materials (water, air, natural gas,
oil, LNAPL, DNAPL, CO-) remains attached to the grain surfaces, there develop
viscous boundary layers in the pores that connect the purely inertial “plug-profile”
flow in the center of the pores to the no-slip condition on the grains surfaces.
Johnson et al. (1987) exactly determine the nature of the flow in the high-
frequency limit where viscous-boundary layers become so thin as to be considered
locally planar relative to the curved grain surfaces. They connect this exact high-
frequency limit to the low-frequency limit (where 7/k, controls the flow resistance)
using a simple frequency function that respects causality constraints. Their final

model is |
k(w) [[ 4w w]

L = 1—g—— —§— 2

k. [ sz o sz] (9.29)

where the relaxation frequency wy, which controls the frequency at which viscous-



Seismic Properties 225

boundary layers first develop, is given by

- _n
pkao‘

Here, F' is exactly the electrical formation factor when grain-surface electrical
conduction is not important and is conveniently (though crudely) modeled using
Archie’s (1942) law F = ¢~ ™. The cementation exponent m is related to the
distribution of grain shapes (or pore topology) in the sample and is generally close
to 3/2 in clean sands, close to 2 in shaly sands, and close to 1 in rocks having
fractured porosity. For an extremely clean sandstone, one might have ¢ = 0.3
and k, = 1072 m? (1 Darcy) in which case the relaxation frequency is (assuming
water in the pores) f; = wy/(27) = 10 kHz which can almost be considered a lower
limit for sedimentary rock in the earth. A more common shaly sandstone might
have ¢ = 0.15 and k, = 10~!* m? (10 mD) in which case f; = 1 MHz, a value
much more typical of consolidated sandstones. Generally, the onset of viscous
boundary layers occurs at a frequency well above the seismic band of exploration
frequencies (10 Hz to a few kHz) and, as such, it is safe to simply take k(w) = &,
for most seismic applications. Note as well that the condition for the neglect of
viscous boundary layers w < wy, is equivalent to the low-frequency limit of the
Biot theory where the fast-wave becomes an undrained seismic response and the
slow-wave becomes a pure fluid-pressure diffusion.

Proper modeling of the remaining parameter n; in Equation (9.29) is, therefore,
not essential in seismic exploration. Nonetheless, this parameter is defined

A2
Tk F

where A is a weighted pore-volume to pore-surface ratio with the weight favoring
constricted regions of the pore space (the pore throats). See Johnson et al. (1987)
for the precise mathematical definition of A. The modeling choice of convenience
is simply to take njy = 8 for all materials, which is experimentally observed to do a
fine job in unconsolidated materials and clean sandstones and is the theoretically
expected result for cylindrical tube models of the pore space. In shaly sands, the
local pore-volume to pore-surface ratio in the throats becomes smaller, owing to
the presence of clays on the grains, and in this case the value of n;y becomes smaller
than 8 (potentially much smaller). However, since the precise value of ny is not
of great importance in the seismic band of frequencies, we will not propose here
how A and k, might depend on clay content.

The frequency dependence of the attenuation in Biot theory is strongly affected
by the nature of k(w). Recall that (Q~! represents the energy lost to heat in a
wave period (Darcy flux multiplied by the fluid-pressure gradient and divided by
frequency) as normalized by the strain energy (stress multiplied by strain). In
symbols, this may be approximated as

Re{k(w)} |Vpy - V|
wn H|V -uf?

M ( % ) ’ (9.33)

wy (9.30)

ng (9.31)

Q—l

(9.32)
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where a P wavelength of A = 2m/(H/p)/w was used in estimating the pressure
gradient, and it is assumed that fluid-pressure equilibration at the scale of the
wavelength does not have time to occur at each frequency.

Now the exact high-frequency asymptotic behavior of k(w) has real and imag-
inary parts given by

h(w) ~ 3(

wJ)3/2 Wy Wy
ny

+i— as — —0. (9.34)
w

W W

Equation (9.33) then shows that when w < wy, Q! increases linearly with fre-
quency because Re{k(w)} — k,. However, when w > wy, Q! decreases as the
square root of frequency because Re{k(w)} decreases as w=3/2. This behavior is
also seen in the exact results based on Equation (9.19) displayed in Figure 9.1 for
the curve wp/wy > 1.

9.3.2 WAVELENGTH-SCALE FLUID-PRESSURE EQUILIBRATION

The other relaxation in standard Biot theory occurs when (and if) the fluid pres-
sure between the peaks and troughs of the wave just has time to equilibrate in a
wave period.

To approximate the frequency wp = 27 fp at which this occurs, we can use
the standard result of any diffusion process 7 = L?/D for the time 7 required to
diffuse a distance L into a material having a diffusivity D. In the case of a P wave,
the distance to be equilibrated L is roughly half of one wavelength A, which is
stated (for algebraic convenience) as L = \/v/27. Now, A =~ \/H/p/ f, where f is
the wave frequency (Hertz) and the diffusivity is roughly D ~ Mk,/n. Thus, the
critical frequency is defined when 1/fp =7 = A?/(2rD) = H/(2nDpf%) or

H n
= ) 9.35
wB = 3 ok (9-35)
Comparing the expressions for w; and wpg, one obtains
wp _ H py
— =—=—F 9.36
o M p (9.36)

When wp < wy, the wavelength-scale equilibration occurs at a lower frequency
than the onset of viscous boundary layers. In this case, as the wave frequency
becomes greater than wpg, the fluid-pressure equilibrates rapidly in each wave pe-
riod and the seismic response becomes increasingly drained (i.e., as if the fluid
in the pores were no longer present). Accordingly, the velocity decreases when
w > wp as is seen in Figure 9.1 for the curve wp/wy = 0.1. When wp > wy,
the viscous boundary layers develop and the attenuation peaks and begins to fall
as the square root of frequency before wavelength-scale equilibration ever has a
chance to occur. In this case, the wavelength-scale equilibration never has time
to occur at any frequency. Such behavior is also demonstrated in Figure 9.1 using
Equation (9.19) for the complex slowness. For most sedimentary rocks, wg/wy as
given by Equation (9.36) is close to, but greater than, unity.
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Figure 9.1: Various types of dispersion curves in standard Biot theory. The most common
situation in porous rocks is that wp/ws > 1 (i.e., viscous boundary layers develop in the
pores at a lower frequency compared to when fluid-pressure equilibration at the scale of
the wavelength has time to occur). The material properties here correspond to a weakly
consolidated sandstone; however, to achieve the unusual condition that ws/w; = 0.1, we
took the shear modulus to be several times smaller than and the fluid-pressure diffusion
modulus M to be several times larger than in the other two curves.

However, the level of dispersion and attenuation associated with these effects
is almost totally negligible in the seismic frequency band of interest. Attenuation-
dispersion mechanisms of more pertinence to seismic exploration are the focus of
Section 9.5.

9.4 The quasi-static poroelastic moduli

In naturally occuring rocks, the three poroelastic incompressibilities Ky, C, and
M, as well as the shear modulus G of the material, will be complex and fre-
quency dependent due to both mesoscopic and squirt flow. Only in the special
case of porous materials having uniform frame properties and being free of grain-
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scale cracks/damage (such as in some artificially created “rocks”) will these elastic
moduli be real constants at all frequencies. Alternatively, for real rocks in the
limit of very low frequencies (possibly below the seismic band of frequencies), the
imaginary parts of these moduli will tend to zero and the real parts will become
frequency-independent constants. The present section concerns this low-frequency
(quasi-static) limit, where fluid pressure may be taken as uniform throughout a
porous rock sample.

9.4.1 THE THREE POROELASTIC INCOMPRESSIBILITIES

A multitude of names have been given to the three incompressibilities of poroelas-
ticity (here denoted as Ky, C, and M), which sometimes makes the theory seem
more difficult than it really is. From both a laboratory and pedagogic perspective,
the three moduli that have the clearest definition are

0P,
KU - <6V/V0)V-w=0 (937)
0P, )
Kp = -— 9.38
> (50752 L (9.38)
[ dps
B = <5Pc)v.w_0' (9.39)

The modulus Ky is called the “undrained bulk modulus” because it is defined
under the condition V - w = 0 where fluid is not allowed to either enter or leave
the sample during deformation. Recall that V-u = §V/V, where §V is the volume
change of a sample that initially occupied a volume V,. The modulus Kp is
called the “drained bulk modulus” and is defined under the condition that the
fluid pressure in a sample does not change. The modulus Kp is thus not affected
by the presence of fluid in the rock. A drained experiment with any of oil, water
or air in the pores should all produce the same value for Kp. Last, the undrained
fluid-pressure to confining-pressure ratio B is called “Skempton’s coefficient,” after
the work of Skempton (1954).

These three moduli can be conveniently measured in the lab (c.f., Wang, 2000).
An impermeable jacket is usually fitted around a lab sample and a tube is inserted
through the jacket allowing the fluid in the pores to be connected to a reservoir
whose pressure py may be controlled and measured. The jacketed sample is then
immersed in a second fluid reservoir characterized by a confining pressure P,.
First, an increment § P, is applied in such a manner that no fluid flows through
the tube (this is done by controlling the pressure py). The change in volume of
the jacketed sample is recorded to give Ky and the fluid pressure increment dpy
is read off to give B. Next, dpy is returned to zero, allowing fluid to flow through
the tube. The subsequent change in sample volume then yields Kp.

Using these definitions, it is easy to demonstrate that the moduli C' and M in
Equations (9.4)—(9.5) are given by

C=BKy and M =BKy/a (9.40)
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where the new constant « is called the “Biot-Willis constant,” after Biot and Willis
(1957), and is exactly defined as

5P, 1-Kp/Ky
a= =-_ 2/ 9.41

Berge et al. (1993) have demonstrated the not-so-obvious and important fact that
although Ky and B are both dependent on the type of fluid in the pores, a is
not. All of these definitions and relations are independent of the possible presence
of anisotropy at either the sample or grain scale, and are also independent of
whether the grains making up the rock have different mineralogies. The modulus
M is called the “fluid-storage coeflicient,” since it represents how much fluid can
accumulate in a sample when the fluid-pressure changes at constant sample size. It
is the elastic modulus principally involved in fluid-pressure diffusion, as Equation
(9.27) demonstrates. There is no standard name for the modulus C other than
Biot’s (1962) “coupling modulus.”

It is sometimes convenient to rewrite the incompressibility laws [Equations
(9.4) and (9.5)] as compressibility laws

( v ) % ( Ca B ) ( igfff ) (9.42)

We often use Kp, B, and « as the fundamental suite of three poroelastic constants.
9.4.2 THE BIOT-GASSMANN FLUID SUBSTITUTION RELATIONS

From the perspective of connecting seismic velocities and hydrological proper-
ties, the pioneering contribution of Gassmann (1951) is without rival. Gassmann
showed that if the solid material making up the grains is both isotropic and uniform
throughout a sample, then in the limit of low-frequencies the undrained modulus
Ky and Skempton’s coefficient B are frequency-independent constants that can
be exactly expressed in terms of the drained modulus Kp, the porosity ¢, the
mineral modulus of the grains K, and the fluid modulus K

~ 1/Kp - 1/K,
B = Ry 1K, + 0/K, 1K’ (9.43)
Ky = Kp (9.44)

1-B(1- Kp/K,)’

From these results, one also has a = 1 — Kp/K, which is indeed seen to be
independent of Ky. The importance of Equations (9.43) and (9.44) is that all
dependence on the fluid type is entirely confined to the fluid modulus K. These
relations tell us how the poroelastic incompressibilities change when one fluid is
substituted for another. Gassmann also made the reasonable assumption that at
sufficiently low frequencies, the fluid has no influence on the shear modulus G.
After some algebra, the following forms for the Biot-Gassmann incompressibil-
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ities are instructive

Kp+[1-(+¢)Kp/Ks|Ks/9

Ky = A , (9.45)
_ (-Kp/Ks)K;/¢
c = o= : (9.46)
_ Kji/¢
M o= L (9.47)

where A is a dimensionless parameter defined as

_1-9¢ Ky Kp
=50 (- aem) (049

These are called the “Biot-Gassmann” relations, because although Gassmann (1951)
treated Ky and C, it was Biot and Willis (1957) who first treated M (Gassmann
only considered the undrained response). These particular algebraic forms are use-
ful because A is always a small number. In an extreme stiff-frame limit defined by
Kp — (1-¢)K, (which actually lies above the Hashin and Shtrikman, 1963, upper
bound), A — 0. The opposite limit of an infinitely compliant frame Kp — 0 occurs
when the grains no longer form connected paths across the sample. In sediments,
this percolation threshhold occurs when ¢ =~ 0.5 with the precise value depend-
ing on details of the grain-size distribution and packing configuration. Thus, A
takes its largest value of K;/K; when there is an infinitely compliant frame and
is never outside the range 0 < A < K;/K, for any material type. For a liquid,
one generally has Ky/K; ~ 10! while for a gas, K;/K, ~ 1075.

Equations (9.45)—(9.47) demonstrate that Ky > M > C in a Gassmann mate-
rial. Only for very soft unconsolidated materials in which Kp <« Kf/¢, does one
obtain Ky ~ M ~ C.

9.4.3 THE DRAINED BULK MODULUS Kp AND SHEAR MODULUS G

For the fluid-substitution relations to be useful in interpreting and/or inverting
seismic data, it will usually be necessary to have a theoretical model for Kp. In
the low-frequency limit, both Kp and G depend only on the microgeometry of
how the framework of grains is put together and on the minerals making up the
grains. There exists a vast literature surrounding the various theoretical models
for such “frame moduli” (c.f., Berryman, 1995, and Mavko et al., 1998). No one
universal model is valid for all porous materials. The goal here is restricted to
recommending a few simple models that are consistent with data.

The single most important factor in choosing a theoretical model for Kp and G
is whether or not the grains are cemented together; i.e., is the material consolidated
or unconsolidated?

9.4.3.1 Unconsolidated Materials

If a material is unconsolidated (e.g., a sandpack or soil), the stress concentration
and deformation in the micron-scale regions surrounding the individual grain-to-
grain contact points is what controls the overall deformation. Such contact points
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are most often modeled as idealized sphere-to-sphere “Hertzian” contacts from
which theoretical results for the overall packing can be approximately derived. A
key concept is that the area of the individual grain contacts increases with effective
stress P, = P, — py (see Section 9.4.5 for a discussion of effective stress). As the
grain-contact area increases, both the contact and the material become stiffer and
more rigid. Data on natural sands (e.g., Hardin and Richart, 1963; Domenico,
1977) indicate that both G and K increase with effective stress as P, 2 for
0 < P, < P,, where P, is observed to be on the order of 10 MPa (corresponding
to a depth of roughly 1 km). For P, > P,, both G and Kp roll over to a more
gradual Pe1 /3 increase.

For natural soils having a spectrum of grain sizes, there need not be a clear
relation between the porosity and the frame moduli. Imagine a packing of large 500
pm sand grains. If smaller 10 ym grains are loosely present in the voids between
the larger grains, but do not act as stress bridges, they can markedly change the
porosity of the soil while leaving the frame moduli effectively unchanged. Most
theoretical models are based on packings of single-radius spheres, in which case
known relations exist between the porosity and the type of packing.

Walton (1987) has produced perhaps the simplest model for a random packing
of identical spheres

1 [3(1 — ¢0)*n2P,

Ep =g T C?2

1/3
5 ] and G = RKp (9.49)

where n is the average number of contacts per grain known as the “coordination
number,” ¢, is the porosity of the random packing at P, = 0, and Cj is a compli-
ance parameter defined as

1 1 1
C =5 (G_ TR+ Gs/3> (930

where G5 and K are the single-mineral moduli of the grains. The parameter R
takes on a value somewhere in the range

3 18(K3+G3>

S<R< (2T e
5=""= 5 \3K, +2G,

(9.51)
where the lower limit corresponds to grains so smooth that tangential slip always
occurs which prevents shear force from being transmitted at the contact, and the
upper limit corresponds to grains so rough that no slip occurs which results in a
maximum transmitted shear at a contact. Our experience is that the lower limit
of R =3/5 does a somewhat better job matching data.

Walton (1987) derived these results assuming that n was a constant (all con-
tacts in place at P, = 0). His result is at odds with the experimentally observed
P /2 dependence when P, < P, which corresponds to the entire depth range of
interest in hydrogeophysics. One way to account for the observed pressure de-
pendence is to assume that the average coordination number increases with the
negative dilatation € = —V - u of the material. At P, = 0, the material is as-
sumed to have, effectively, no contacts in place, but as the material is compressed,
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the contacts between the grains are created. Goddard (1990) has proposed that
stress-free grain rotations create grain-to-grain contacts that result in the law

(9.52)
T, when P, > P,,

n(e) = {no (e/eo)l/2 when P, < P,,
where ¢, is the negative dilatation when P, = P, and where n, is the maximum
number of contacts per grain that can arrive. Using this law within the Walton
(1987) theory gives the relation between dilatation and pressure to be €¢(P.) =
{67?2036(1)/ ’p, /[(1 = ¢o)no)}/? whenever P, < P,. Tt is then straightforward to
re-express the Walton result as

1

41 - ¢o)2ngpo] 1/3 (P,/P,)'/?

T C?2 {1+ [16Pe/(9po)]4}1/24 (9.53)

which is a new result, though anticipated by Goddard (1990). The new parameter
compared to Walton’s (1987) theory is P,, which is the pressure beyond which
n = n, and no new contacts are created. It is taken here as an empirical constant
on the order of 10 MPa in sands. If we put P, = 0, the Walton result [Equation
(9.49)] is exactly recovered. The exponents of 4 and 1/24 in the denominator
of Equation (9.53) were chosen somewhat arbitrarily, the only requirement being
that their product is 1/6. (If we use 8 and 1/48, for example, the results are
imperceptibly different.)

Equation (9.53), along with G = 3K /5, is our recommendation for the drained
moduli of unconsolidated materials which are the key properties affecting wave
speeds in hydrogeophysics. If the same values for K, and G are always employed
(a reasonable modeling choice), there are two free parameters; namely, P, and
(1 = ¢o)n,. For random sand packs, we have 0.32 < ¢, < 0.38 and 8 < n, < 11.

In Figure 9.2, this model with P, = 18 MPa, R = 3/5, ¢, = 0.36, n, = 9,
K, = 37 GPa, and G; = 44 GPa is compared to data collected by Murphy (1982)
on a random glass-bead pack in which the bead-diameters ranged from 74 to 105
pm (common soil grain sizes) and in which the pore space was empty. Murphy
(1982) chose this pressure range because it exhibits the Pl/? to PM/? transition
in the modulus dependence. The theory does an adequate job of modeling this
transition. Particularly interesting is that the model parameters have not been
adjusted to give an optimal fit; they are the parameters one a priori expects to
hold for a dense random pack of identical quartz spheres. Although, the differ-
ence between Equation (9.53) and Equation (9.49) appears to be minimal in this
example, if the velocities are determined over the lower-pressure ranges of interest
in hydrogeophysics, there is a pure P; /% modulus dependence, as has been doc-
umented in many data sets including Hardin and Richart (1963) and Domenico
(1977).

In conclusion, we emphasize that Equation (9.53) is entirely independent of
grain size and, therefore, permeability (permeability depends on the size of the
pores and, therefore, grains). Thus, the predicted low-frequency seismic veloci-
ties for any unconsolidated material having a unimodal grain-size distribution is
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Figure 9.2: Comparison of the Murphy (1982) data set on a dry glass-bead pack to the

theoretical model discussed in the text. The Pel/2 — Pel/3 transition occurs at an effective

pressure of 10 MPa corresponding to P, = (16/9)10 MPa = 18 MPa.

expected to be independent of grain size and permeability, as has been experimen-
tally demonstrated by Murphy (1982) using glass-bead packs.

But, as is shown in Chapter 13 of this volume, field measurements of per-
meability and seismic velocities indicate the two are sometimes at least weakly
correlated in unconsolidated sediments (although in some cases the observed cor-
relation is positive, while in others it is negative). Presently existing models for
the seismic velocities in unconsolidated sediments are all based on single grain-
size distributions. Any link between permeability and velocity must necessarily
come from having a spectrum of grain sizes present. Unfortunately, statistical
relations between grain-size distribution and quantities like average number of
contacts per grain are generally not available since they depend strongly on how
the grain packing was prepared. Possible connections between permeability and
seismic wave speeds will be more thoroughly discussed in Section 9.6.

9.4.3.2 Consolidated Materials

In a consolidated material, diagenetic clay or quartz has been deposited around the
grain contacts, and the Hertzian nature of such contacts is largely if not entirely
removed. The material in this case behaves more like a pure solid with cavities.
Numerous effective-medium theories (e.g., Berryman, 1980a,b) have been proposed
that treat how various shaped cavities (mostly ellipsoidal) at various volume frac-
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tions influence the drained moduli. Although such embedded cavities do not form
a connected porosity as in real rocks, they are often used in estimating the drained
frame moduli so long as each cavity is empty. Upon using sufficient numbers of
relatively stiff spherical cavities and relatively compliant penny-shaped cavities,
effective-medium models can usually predict fairly well the measured frame mod-
uli of consolidated rock including the pressure dependence (which is controlled
largely by crack closure).

Models based on randomly placed ellipsoidal inclusions often have the implicit
form Kp = f1(Kp,G, Ks,Gs,a.,¢) and G = f2(Kp, G, Ks,Gs,ar,¢) where a, is
the aspect ratio of the embedded cavities and ¢ the porosity. The functions f; and
f2 are different depending on the theory, but are highly nonlinear in the variables.
Uncoupled analytical expressions for Kp and G are generally not available. If a
spectrum of ellipsoidal shapes are to be included (e.g., Toksoz et al., 1976), the
model becomes even more complicated.

Our recommendation is to work with the following simple forms

KDZKSI ¢ and GZGS 1 ¢

1+cg 1+ 3cg/2 (934

where the parameter c¢ is called the “consolidation parameter,” since it characterizes
the degree of consolidation between the grains. Again, it seems a reasonable
modeling choice to fix K and G, and to only allow the consolidation parameter
¢ and porosity ¢ to change from one rock type to the next (though one may
want to distinguish between carbonates for which K; =~ 2G, and silicate grains
for which K; ~ G;). Effective-medium theories (e.g., Korringa et al., 1979;
Berryman, 1980a,b) can be approximately manipulated into expressions of this
form and predict that ¢ depends both on the shape of the cavities and the ratio
Gs/K,. The factor of 3/2 in the expression for G is somewhat arbitrary (working
with 5/3 or 2 is also reasonable) but yields plots of P-wave velocity versus S-wave
velocity that are consistent with data on sandstones (e.g., Castagna et al., 1993).
Depending on the degree of cementation, one can expect the approximate range
2 < ¢ < 20 for consolidated sandstones (2 being extremely consolidated and 20
poorly consolidated). An unconsolidated sand in this model can require ¢ >> 20 in
which case it may be more appropriate to use the above modified Walton theory
[Equation (9.53)]. The frame moduli for various ¢ and ¢ in this model are given
in Figure 9.3. With K, and G fixed, both ¢ and ¢ become the targets of seismic
inversion.

9.4.4 POROSITY CHANGE

A general expression exists for how porosity changes d¢ are related to changes in
confining pressure 6 P, and fluid pressure dp;. This is a central result of poroelas-
ticity that is useful in hydrological (and other) applications of poroelasticity, even
if it is not directly needed in modeling linear wave propagation.

Let V; define the pore volume within a sample of total volume V. By definition,
the porosity is ¢ = V;,/V. Taking the derivative yields 6¢ = 6V /V —$0V/V where
0V/V =V -u. The only way the pore volume changes is if the increment of fluid
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Figure 9.3: The frame moduli of Equation (9.54) for various porosities and consolidation
factors ¢. The solid was taken to be quartz (K; = 38 GPa and G, = 44 GPa).

content —V -w differs from the fluid volume change due to compression ¢dps/Kjy.
Thus,
0p=—¢V-u—-V-w—¢dps/Ky (9.55)

which, when combined with the compressibility laws of Equation (9.42), gives
exactly

6¢ = —Cy (0P — aydpy) (9.56)
where the porosity compliance Cy is defined as
1/ 1 1 ¢
=5 (% %) % (957

and where the porosity effective-stress coefficient oy is

_ ¢/Ks+(¢-1/B)(1/Kp —1/Ky)/B
¢/Kp — (1/Kp —1/Ky)/B

(9.58)

In the special case of a Gassmann material [mono-mineral isotropic grains for
which Equations (9.43) and (9.44) apply|, one then has the convenient result
C1-¢ 1
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Note that the porosity changes being modeled here are the purely elastic reversible
changes. The actual porosity variation with depth in the crust is controlled almost
exclusively by diagenetic changes (deposition and dissolution of minerals). The
usefulness of Equation (9.56) is for modeling porosity change when fluids are being
pumped into or out of sand formations, such as in CO4 sequestration.

9.4.5 EFFECTIVE STRESS

Effective stress refers to what linear combination of confining pressure change 6 P,
and fluid pressure change dpy are required to affect change of a particular material
property. So far, we have seen three effective-stress laws; namely, the law for how
the volume V of a sample changes,

1% 1

the law for how much fluid volume §V; either enters or leaves a porous sample,

ove o« 1
7 =V -w= K—D ((S_Pc E(Spf) 5 (961)

and the just-mentioned law for how the porosity changes d¢ = —Cy (0P, — as0py)
where C and ay are defined in Equations (9.57) and (9.58).

All porous material properties change to some degree when either 0P, or dpy
change and there is an effective-stress variable 6 P, — a,;0py for each such property
7 (c.f., Berryman, 1992). Alternatively stated, if 6P, = a,d0py, property = will
not change. The coefficient o, is known as the effective-stress coefficient of the
property 7 (note that the effective-stress coefficient for volume change is ay = «
which is what we also call the Biot-Willis constant).

In near-surface hydrological problems, the relatively soft materials are quite
sensitive to the fluid-pressure changes, and it is of interest from a monitoring
perspective to know how the geophysical properties of the subsurface are changing
due to fluid-pressure changes caused, for example, by pumping.

Any physical property that is scale invariant (i.e., a property that does not
change if the grain space is uniformly expanded or contracted) should have an
effective-stress variable d P, — agdpy that is identical to the porosity variable since
porosity is scale invariant (Berryman, 1992). Such properties include soil density,
electrical conductivity, and the low-frequency and high-frequency limits of the
poroelastic moduli. Since ag = 1 in a Gassmann material (isotropic mono-mineral
grains), the effective-stress combination 6P, — dpy is often employed (such as in
Section 9.4.3.1 for the drained moduli of unconsolidated sands). So the general rule
for a scale-invariant property « that, accordingly, depends only on the porosity
¢ is that ém = [dr(¢)/d¢] 6¢, where the porosity change d¢ is given by Equation
(9.56) and where the derivative dr/d¢ requires a model for the property ().

Permeability is an important example of a material property that is not scale
invariant. The general form of the permeability (e.g., Thompson et al., 1987) is
k = ¢?/F, where F is the electrical formation factor and ¢ is some appropriately
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defined pore-throat dimension. This gives

ok o4 OF

—=2— - —. .62

k l F (9.62)
Upon stressing the material, the length £ will change only if the pore volume Vj
changes. Thus, it is reasonable to assume that £ = const V(; /% which results in

o0 146 1 : )

ot _ 1oV  L(V-w  Opr) (9.63)
L 3V 3 o) Ky

If Archie’s (1942) law F' = ¢~™ for the electrical formation factor is employed,

one obtains SF 56 v 5
‘W Dy
6F _ % —+—+v-u>. 0.64
F ¢ ( ¢ Ky (964

Putting this together then gives an effective-stress model for permeability

%k _ _[20/3 :s;{n]ga - 9)] (6P, — axdpy) (9.65)

where
_ ¢am —(2/3+m)(a/B — ¢)

k= ém — (2/3 +m)a

is the effective-stress coefficient for permeability in the model.

(9.66)

9.5 Attenuation and dispersion in the seismic band of frequencies

The intrinsic attenuation Q~! so far allowed for in standard Biot theory is inade-
quate to explain the levels of attenuation observed on seismograms in the field.

For transmission experiments (VSP, crosswell tomography, sonic logs), the total
attenuation inferred from the seismograms can be decomposed as Q;yt,; = Qsene +
Q! where both the scattering and intrinsic contributions are necessarily positive.
In transmission experiments, multiple scattering transfers energy from the coherent
first-arrival pulse into the coda and into directions that will not be recorded on
the seismogram, and is thus responsible for an effective “scattering attenuation”
Q;cflt. Techniques have been developed that attempt to separate the intrinsic loss
from the scattering loss in transmission experiments (e.g., Wu and Aki, 1988, and
Sato and Fehler, 1998). In seismic reflection experiments, back-scattered energy
from the random heterogeneity can sometimes act to enhance the amplitude of the
primary reflections. At the present time, techniques that can reliably separate the
total loss inferred from reflection experiments into scattering and intrinsic portions
are not available.

Inverting seismic data for attenuation is not yet standard practice and there
are only a limited number of published examples. Quan and Harris (1997) use
tomography to invert the amplitudes of crosswell P-wave first arrivals to obtain
the Q1! for the layers of a stratified sequence of shaly sandstones and limestones
(depths ranging from 500-900 m). Crosswell experiments in such horizontally
stratified sediments produce negligible amounts of scattering loss so that essentially
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all apparent loss (except for easily corrected spherical spreading) is attributable
to intrinsic attenuation. The center frequency in the Quan and Harris (1997)
measurements is roughly 1750 Hz, and they find that 1072 < Q—! < 10! for all
the layers in the sequence. Sams et al. (1997) have also measured the intrinsic loss
in a stratified sequence of water-saturated sandstones, siltstones and limestones
(depths ranging from 50-250 m) using VSP (30-280 Hz), crosswell (200-2300 Hz),
sonic logs (8-24 kHz), and ultrasonic laboratory (500-900 kHz) measurements.
They calculate that in the VSP experiments, @'/ Q;c}n = 4, while in the sonic
experiments, Q! /Q;:}a,t = 19; i.e., for their sequence of sediments, the intrinsic
loss dominates the scattering loss at all frequencies. Sams et al. (1997) also find
that 1072 < Q! < 107! across the seismic band.

One way to explain these measured levels of intrinsic attenuation in the seismic
band is if mesoscopic heterogeneity is present within each averaging volume. A
P wave creates a larger fluid-pressure change where the sediments are relatively
more compliant than where they are relatively more stiff. A fluid pressure equi-
libration ensues that attenuates wave energy. This mechanism has a Q! that
can peak anywhere within the seismic band, depending on the length scale of the
heterogeneity and the permeability of the material. White et al. (1975), Norris
(1993), Gurevich and Lopatnikov (1995) and Gelinsky and Shapiro (1997) have all
modeled such mesoscopic loss in the case of waves normally incident to a sequence
of thin porous layers.

The approach taken here is to model the mesoscopic-scale heterogeneity as an
arbitrary mixture of two porous phases. Each porous phase is assumed to locally
obey Biot’s Equations (9.1)—(9.5) and both porous phases are present in an aver-
aging volume of the earth. In this case, Pride and Berryman (2003a,b), following
up on work by Berryman and Wang (1995), have shown that the macroscopic-
scale compressibility laws (the laws controlling the response of each sample of a
two-porous phase composite) are

V-v ailr a2 a3 P, 0
V-a; = iw | a2 G2 a3 |[+| Py | +iw Cing ,  (9.67)
V-q ai3 azs ass Dyo —Gint

—iwGine = (W) (Bs1 — Pya)- (9.68)

Here, v is the average particle velocity of the solid grains throughout an averaging
volume, q; is the average Darcy flux across phase i, P, is the average total pressure
acting on the averaging volume, Dy, is the average fluid pressure within phase i,
and —iw(ny is the average rate at which fluid volume is being transferred from
phase 1 into phase 2 as normalized by the total volume of the averaging region.
The dimensionless increment (¢ represents the “mesoscopic flow.”

The compressibilities a;; are real and control the elastic response at high
frequencies before there is time for fluid-pressure equilibration between the two
porous phases to occur. The internal transport coefficient vy(w) controls the rate
at which fluid is being transferred from one porous phase to the other within a
porous sample. It is complex and frequency dependent, and has been shown by



Seismic Properties 239

Pride and Berryman (2003b) and Pride et al. (2004) to take the form

V(W) = Yoy /1 — zwio (9.69)

At sufficiently high frequencies defined by w > w,, the fluid-pressure diffusion
penetrates only a small distance from one phase into the other during a wave
cycle. At sufficiently low frequencies defined by w < w,, the fluid-pressure front
has time to advance through the entire sample during a wave cycle and the final
stages of equilibration are better characterized as nearly uniform fluid-pressure
gradients that are quasi-statically decreasing in amplitude until they ultimately
vanish in the dc limit. Models for the a;j, 7,, and the transition frequency w, will
be presented in the sections that follow in various geometrical circumstances.

We now reduce these “double-porosity” compressibility laws to an effective Biot
theory having complex frequency-dependent coefficients. The easiest way to do
this is to assume that phase 2 is entirely embedded in phase 1, so that the flux
> into and out of the averaging volume is zero. By placing V - q2 = 0 into
the compressibility laws of Equation (9.67), the fluid pressure p;, can be entirely
eliminated from the equations. If we then introduce the average solid displacement
u using —iwu = v and the relative fluid-solid displacement w using —iww = qi,
Biot’s compressibility laws [Equations (9.4) and (9.5)] are exactly recovered, but
now with complex effective moduli given by

o e (9.70)
Kp(w) T g - y(w)/iw’ .
— —a12(aszz — y(w) /iw) + ai13(azs + v(w)/iw)
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The effective complex C' and M moduli are obtained from these results using
Equations (9.40) and (9.41).

In the three sections that follow, examples of attenuation and dispersion will
be presented corresponding to: (1) a double-porosity model of the mesoscopic
heterogeneity; (2) a patchy-saturation model of the mesoscopic heterogeneity; and
(3) a squirt-flow model of the microcracks in the grains.

9.5.1 DOUBLE POROSITY OR PATCHY SKELETAL PROPERTIES

The mesoscopic heterogeneity in this case is modeled as a mixture of two porous
skeletons uniformly saturated by a single fluid.

Various scenarios can be envisioned for how two distinct porosity types might
come to reside within a single geological sample. For example, even within an
apparently uniform sandstone formation, there can remain a small volume fraction
of less-consolidated (even non-cemented) sand grains. This is because diagenesis
is a transport process sensitive to even subtle heterogeneity in the initial grain
pack, resulting in spatially variable mineral deposition (e.g., Thompson et al.,
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1987) and spatially variable skeletal properties. Alternatively, the two porosities
might correspond to interwoven lenses of detrital sands and clays; however, any
associated anisotropy in the deviatoric seismic response will not be modeled in this
chapter. Jointed rock is also reasonably modeled as a double-porosity material.
The joints or macroscopic fractures are typically more compressible and have a
higher intrinsic permeability than the background host rock they reside within.

The constants a;; in this case are given exactly as (c.f., Berryman and Pride,
2002; Pride and Berryman, 2003a; and Pride et al., 2004)

an = 1/K (9.73)
i 1 aq (1 - Ql)
azz = 7@ <B1 1= K1 /K (9.74)
_ V202 1 a2(1 — QQ)
azgz = e (32 1= KoKy (9.75)
a2 = -v1Qion /Ky (9.76)
a;3 = —120Q202/K> (9.77)
_ alagKl/Kg 1 U1 V2
a3 = (1= K1/ (K X K2> (9.78)
where |- Ko/K |- K\ /K
— -2/ -~
lel = 1_ K2/K1 and U2Q2 1_ KI/KQI (979)

Here, v; is the volume-fraction of phase i in each averaging volume (vy + vo = 1),
K; is the drained frame modulus of phase i, B; is the Skempton’s coefficient of
phase i, and «; is the Biot-Willis constant of phase i. Models for all of these
parameters have been given earlier in Section 9.4.

The one parameter in these a;; that has not yet been modeled is the overall
drained modulus K = 1/aq1 of the two-phase composite. It is through K that
all dependence on the mesoscopic geometry of the two phases occurs. As more
thoroughly discussed by Pride et al. (2004), a reasonable modeling choice for most
geological scenarios in which a more compressible phase 2 is embedded within a
stiffer phase 1 is the Hashin and Shtrikman (1963) lower bound given by

1 V1 V2
_ 9.80
K +4G/3 Ky +4G2/3 T Ky +4Ga/3 (9:80)

1 vy V2
— + 9.81
G+¢ Gi+G G2+ (0.81)
where (» is defined as
Gy (9K> + 8G

G = G2 (9K> + 8G) (9.82)

6 (Kz +2G2) )

Roscoe (1973) has shown that this lower bound is exactly realized when the Brugge-
man (1935) differential-effective-medium theory is used to model phase 2 as a col-
lection of arbitrarily oriented penny-shaped oblate (squashed) spheroids or disks
embedded within a stiffer host phase 1.
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When phase 2 is much more permeable than phase 1, the low-frequency limit
of the internal transport coeflicient 7, is given by

B kK¢ <a12 + Bo(as2 + ass)
T)L% R, — BO/Bl

o= JELERCICYZS) PR
where the parameters B,, R;, and L; are now defined. The dimensionless number
B, is the static Skempton’s coefficient for the composite and is exactly

_ (a12 + a13) ‘ (9.84)

az2 + 2a23 + ass

The dimensionless number R; is the ratio of the average static confining pressure
in the hose phase 1 of a sealed sample divided by the confining pressure applied
to the sample and is exactly

a1(1 — Ql)Bo . '1)_2012(1 — QQ)BO

R, =
1 =Gt 1-K¢/K§ v 1-KJ/K¢

(9.85)

where the Q; are given by Equation (9.79). Last, the length L; is the distance
over which the fluid-pressure gradient still exists in phase 1 in the final approach
to fluid-pressure equilibrium and is formally defined as

9 1
L= v /91 ®, dV (9.86)
where )y is the region of an averaging volume occupied by phase 1 and having
a volume measure V;. The potential ®; has units of length squared and is a
solution of an elliptic boundary-value problem that under conditions where the
permeability ratio ki /ks can be considered small, reduces to

V2%, = -1 inQy, (9.87)
n- V‘I)l = 0 on 6E1, (988)
<I>1 = Oon 6912 (989)

where 9212 is the surface separating the two phases within a sample of composite
and OF; is the external surface of the sample that is coincident with phase 1.
Pride et al. (2004) suggest values to use for L; in various circumstances. For
example, if phase 2 is modeled as penny-shaped inclusions of radius a, then L? ~
a?/12. If it is more appropriate to consider phase 2 as being less permeable than
phase 1 (e.g., embedded lenses of clay), then one need only exchange the indices
1 and 2 throughout Equations (9.83)— (9.89) with the exception of B,, which is
independent of permeability.

The transition frequency w, corresponds to the onset of a high-frequency regime
in which the fluid-pressure-diffusion penetration distance becomes small relative
to the scale of the mesoscopic heterogeneity, and is given by

2
nB1 K A k1BaKsoy
o= L () 1y 22 9.90
v k1a1 (’Y S) + szlKlaz ( )
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Figure 9.4: The attenuation and phase velocity of compressional waves in the double-
porosity model. The thin lenses of phase 2 have frame moduli (K2 and G2) modeled using
the modified Walton theory given in Section 9.4.3.1 in which both K> and G2 vary strongly
with the background effective pressure P, (or overburden thickness). These lenses of porous
continuum 2 are embedded into a phase 1 continuum modeled as a consolidated sandstone.

where S is the surface area of the interface between the two phases in each volume
V of composite. For penny-shaped inclusions of phase 2 having radius a, an aspect
ratio € and a volume concentration v, this volume-to-surface ratio is V/S =
ae/(2vz).

In Figure 9.4, we give the attenuation and phase determined using the complex
slowness of Equation (9.19) and the above complex Ky, C and M moduli. The
embedded phase 2 was modeled as 3 cm radius penny-shaped discs having an as-
pect ratio € = 1072 and volume concentration of vo = 0.03. The frame moduli of
the embedded spheres were determined using the modified Walton theory of Equa-
tion (9.53). These compressible disks of phase 2 are embedded in a consolidated
sandstone (phase 1) modeled using Equation (9.54) with ¢; = 0.15 and ¢ = 4. The
permeabilities of the two phases are taken as k; = 1074 m? and ky, = 107!2 m?.
The invariant peak near 10® Hz is that caused by the Biot loss (fluid equilibration
at the scale of the seismic wavelength) while the principal peak that changes with
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Figure 9.5: Attenuation and dispersion predicted by the double-porosity model (the solid
curves) as compared to the data of Sams et al. (1997) [rectangular boxes]. The number of
Q™' estimates determined by Sams et al. (1997) falling within each rectangular box are: 40
VSP, 69 crosswell, 854 sonic log and 46 ultrasonic core measurements. A similar number of
velocity measurements were made.

P, is that caused by mesoscopic-scale equilibration. This example demonstrates
that the degree of attenuation in the model is controlled principally by the contrast
of compressibilities between the two porous phases; the greater the contrast, the
greater the mesoscopic fluid-pressure gradient and the greater the mesoscopic flow
and attenuation.

In Figure 9.5, we compare the double-porosity model to the data of Sams et
al. (1997), who used different seismic measurements (VSP, crosswell, sonic log,
and ultrasonic lab) to determine @ ! and P-wave velocity over a wide band of
frequencies at their test site in England. The variance of the measurements falling
within each rectangular box result from the various rock layers present at this site.
Data collection was between four wells that are a few hundred meters deep. The
geology at the site is a sequence of layered limestones, sandstones, siltstones, and
mudstones. In this example, phase 2 is modeled as unconsolidated penny-shaped
inclusions in which @ = 5 e¢m (inclusion radius), e = 6 x 1073, v = 1.2 %, k; = 80
mD, V/S = 1.25 cm, and L; = 1.45 cm. The phase 1 host is taken to be a
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Figure 9.6: The permeability and frequency dependence of the P-wave attenuation in the
double-porosity model. The smaller ridge in the attenuation surface between 0.1 and 1
MHz corresponds to the Biot losses. The dominant ridge that has the opposite permeability
dependence is the result of mesoscopic flow.

well-consolidated sandstone (¢ = 0.20 and ¢ = 1).

In Figure 9.6, we allow the permeability k; of the host to vary while keeping all
other properties fixed (with P, = 1 MPa). The peak value of Q! is independent of
k1, while the critical frequency at which Q! is maximum is directly proportional
to k1. Thus the slope Q' /0w in the approach to peak attenuation is inversely
proportional to k;. Field measurements of Q~!(w) over a range of frequencies
could potentially yield information about k;.

9.5.2 PATCHY SATURATION

All natural hydrological processes by which one fluid non-miscibly invades a region
initially occupied by another result in a patchy distribution of the two fluids. The
patch sizes are distributed across the entire range of mesoscopic length scales and
for many invasion scenarios are expected to be fractal. As a compressional wave
squeezes such a material, the patches occupied by the less-compressible fluid will
respond with a greater fluid-pressure change than the patches occupied by the
more-compressible fluid. The two fluids will then equilibrate by the same type of
mesoscopic flow already modeled in the double-porosity model.
Johnson (2001) provides a theory for the complex frequency-dependent undrained

bulk modulus in the patchy-saturation model. Alternatively (and equivalently),
Pride et al. (2004) provide a patchy-saturation analysis similar to that in the
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double-porosity model. This analysis leads to the same effective poroelastic moduli
given by Equations (9.70)—(9.72) but with different definitions of the a;; constants
and internal transport coefficient y(w). In the model, a single uniform porous
frame is saturated by patches of fluid 1 and fluid 2. We define porous phase 1
as those regions (patches) occupied by the less mobile fluid and phase 2 as the
patches saturated by the more mobile fluid; i.e., by definition 7; > 72. This most
often (but not necessarily) corresponds to Kz; > Ky, and to By > Bs.

A possible concern in the analysis is whether capillary effects at the local
interface separating the two phases need to be allowed for. Tserkovnyak and
Johnson (2003) have recently addressed that question in detail. Pride et al. (2004)
have demonstrated that the condition for the neglect of surface tension o on the
meniscii separating the two fluids is

oV
RES S
where S is again the area of the surface separating the two phases in each volume
V of composite, k, is the permeability, and K is the drained bulk modulus taken
to be a constant everywhere throughout each sample. As this dimensionless group
of terms becomes much larger than one, the meniscii become stiff, and little or no
fluid equilibration occurs between the two phases. Accordingly, the attenuation
and dispersion vanishes in the limit of very large surface tension. When this
inequality is satisfied, the fluids equilibrate under the usual condition that the
fluid-pressure changes are continuous across the interface of separation, and there is
a correspondingly large amount of attenuation and dispersion. Using the common
sandstone values of k = 100 mD, K = 10 GPa, and o ~ 10~2 Pa m, one finds that
V/S should be smaller than roughly 10~! m in order to neglect surface tension
and capillary effects. This can be considered the more normal situtation in the
earth and will be the only situation treated here.
The a;; constants in the patchy saturation model are given by (Pride et al.,
2004)

1 (9.91)

an = 1/K (9.92)
azx = (—B+wv/B1)a/K (9.93)
a3 = (—=f+uv2/Bs)a/K (9.94)
a2 = —-va/K (9.95)
a3 = —-wna/K (9.96)
a3 = Pa/K (9.97)

where « is the Biot-Willis constant for the material (always independent of fluid
type), K is again the drained modulus for the material (also independent of fluid
type), and the B; are the Skempton’s coefficients of each patch (all fluid depen-
dence arrives through these terms). Under the assumption that the shear modulus
of the material is independent of the fluid type and, accordingly, uniform through-
out the patchy-saturation composite, the parameter 3 is given by

_fw v\ a= (1= K/Ku)/(v1Bi+vsBs)
ﬁ — fl)1'1)2<_3#12 + B—21)|:a — (1 — K/K;(Ul/lBll-i_ ’U22/_B22) .

(9.98)
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Figure 9.7: The undrained bulk modulus Ky in the limits of low and high frequencies as a
function of liquid saturation. The liquid is taken to be water and the gas is air. The properties
of the rock correspond to a lightly consolidated sandstone.

The modulus K is called the Hill modulus and corresponds to the undrained
bulk modulus in the high-frequency limit where no fluid-pressure equilibration has
a chance to occur between the two phases [it would also be the undrained bulk
modulus at any frequency in the limit of infinite surface tension as defined by the
dimensionless group in Equation (9.91)]. It is given by (c.f., Hill, 1963)

L ___ 4 + 2 (9.99)
Ky +4G/3  K/(1—aB;)+4G/3  K/(1—aB:)+4G/3 '
where the v; are again the volume fractions of each phase.
The internal transfer coefficients are given by
un k
Yo = r[l+00m/m)] (9.100)
Miq

2
KB k,(11V/S)? n2Ba
Wo = 144/ — . 9.101
mo Li mBy ( )

When the mobility ratio 72/m1 can be considered small, the definition of L
is again given by Equations (9.86) and (9.89). If phase 2 (the more mobile
fluid) is modeled as a sphere of radius a embedded within each larger sphere
R of the patchy-saturation composite, then v = (a/R)3, V/S = av2/3, and
L? = (v, 21342 /14)(1 — 71);/ 3 /6). These expressions are particularly appropriate
when vy < vy. For other scenarios of the patchy fluid distributions, see Pride et
al. (2004) for modeling suggestions.

In the quasi-static limit w/w, — 0, the effective Skempton’s coefficient B
reduces exactly to 1/B = v;/B; + v2/Bs. For a Gassmann material (uniform



Seismic Properties 247

isotropic grains) this is equivalent to using an effective fluid modulus given by
1/Ky = vi/Kf1 + v2/ Ky in the Gassmann fluid-substitution relations of Equa-
tions (9.43) and (9.44). So in the quasi-static limit, the effective moduli have
absolutely no dependence on the geometrical nature of the fluid patches; they de-
pend only on the volume fractions (saturation) of the patches. As already stated,
in the opposite limit of very high frequencies, the undrained bulk modulus be-
comes Ky, which is also independent of the specific shape of the fluid patches.
All dependence on the geometry of the patches is restricted to the value of the
relaxation frequency separating the high-frequency regime from the low-frequency
regime. The relaxation frequency can reside anywhere within the seismic band of
frequencies depending on the permeability of the material and the effective patch
size. The liquid saturation dependence of the undrained bulk modulus Ky in both
the low-frequency and high-frequency limits is shown in Figure 9.7.

9.5.3 SQUIRT FLOW

Laboratory samples of consolidated rock often have broken grain contacts and/or
microcracks in the grains. Much of this damage occurs as the rock is brought from
depth to the surface. Since diagenetic processes in a sedimentary basin tend to
cement microcracks and grain contacts, it is uncertain whether in situ rocks have
significant numbers of open microcracks. Nonetheless, if such grain-scale damage
is present, as it always is in laboratory rock samples at ambient pressures, the
fluid-pressure response in the microcracks will be greater than in the principal
pore space when the rock is compressed by a P wave. The resulting flow from
crack to pore is called “squirt flow,” and Dvorkin et al. (1995) have obtained a
quantitative model for fully-saturated rocks.

In the squirt model of Dvorkin et al. (1995), the grains of a porous material
are themselves allowed to have porosity in the form of microcracks. The effect
of each broken grain contact is implicitly taken to be equivalent to a microcrack
in a grain. The number of such microcracks per grain is thus limited by the
coordination number of the packing and so the total porosity contribution coming
from the grains is negligible compared to the porosity of the main pore space.

Pride et al. (2004) have shown that the Dvorkin et al. (1995) squirt model can
be analyzed using the double-porosity framework of the previous sections. Phase
1 is now defined to be the pure fluid within the main pore space of a sample and is
characterized elastically by the single modulus K¢ (fluid bulk modulus). Phase 2 is
taken to be the porous (i.e., cracked) grains and characterized by the poroelastic
constants Ko (the drained modulus of an isolated porous grain), as (the Biot-
Willis constant of an isolated grain), and B, (Skempton’s coefficient of an isolated
grain) as well as by a permeability k>. The overall composite of porous grains
(phase 2) packed together within the fluid (phase 1) has two distinct properties
of its own that must be specified: an overall drained modulus K and an overall
permeability k associated with flow through the main pore space. The fraction
of each averaging volume occupied by phase 1 is defined to be the “porosity” of
the sample v; = ¢, whereas the volume fraction occupied by the cracked grains is
vy = 1—¢ (i.e., the porosity within the grains does not contribute to this definition
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of ¢).
The a;; constants are given exactly by (Pride et al., 2004)
Qg9 = 1/K—(1+¢)/K2+¢/Kf (9103)
(1-9¢)ay
= X __r/e .104
ass By K, (9.104)
aia = —1/K+ ]./Kz (9105)
ajz = —a2/K2 (9106)
azs = ¢az/Ks (9.107)
while the internal transfer coefficients are given by
(1—9)ks
ByKs ks (1 —¢)V/S\?
= —= . 1
Wo oy I ( 5 (9.109)

To make predictions, one must propose models for the phase 2 (porous grain)
parameters.

If the grains are modeled as spheres of radius R, the fluid-pressure gradient
length within the grains can be estimated as L = R/+/15 and the volume to surface
ratio as V/S = R/[3(1 — ¢)]. The grain porosity is assumed to be in the form of
microcracks, so it is natural to define an effective aperture h for these cracks. If
the cracks have an average effective radius of R/Ngp where Npg is roughly 2 or 3
and if there are on average N, cracks per grain where NV, is also roughly 2 or 3
then the permeability and porsity of the grains is reasonably modeled as

_3N.h

J— — 2
= 4N122R and k2 ¢2h /].2 (9.110)

b2

The dimensionless parameters k2 /L? and (1 — ¢)(V/S)/L required in the expres-
sions for v, and w, are given by

k2 15N, (h\° 1-V/S\* 5

The normalized fracture aperture h/R is the key parameter in the squirt model.
Pride et al. (2004) have argued that the elastic moduli of the porous grains are
reasonably modeled as

Ky = K,(1-bso) (9.112)
Q2 = ].—K2/Ks (9113)

1 Ky (1-K;/K,
— 1+ gp2 (—Le 114
+¢2Kf (1—11(2/}(s (9-114)
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Figure 9.8: The squirt-flow model of P-wave attenuation when the grains are modeled as
being spherical of radius R and containing microcracks having effective apertures h. Only
the ratio h/R enters the squirt model. The overall drained modulus of the rock corresponds
to a consolidated sandstone.

where the parameter b is taken to be independent of h/R and needs to be on the
order of 102 to explain lab ultrasonic attenuation data. It is true that effective
medium theories predict that b should be inversely proportional to the aspect ratio
of true open cracks. However, as a crack closes and asperities are brought into
contact, there is naturally a decrease in ¢,, but there should also be a decrease
in b due to the fact that the remaining crack porosity becomes more spherical
as new asperities come into contact. Taking b to be constant as crack porosity
h/R decreases thus yields a conservative estimate for how the drained modulus
increases. The Gassmann fluid-substitution relations were used for as and Bs.

In Figure 9.8 we plot the P-wave attenuation predicted using the above model
when the overall drained modulus corresponds to a sandstone [¢ = 0.2 and ¢ = 15
in Equation (9.54)] having a permeability of 10 mD. For the grain properties, one
takes b = 300, Ng = 3, N, = 3, and K; = 37 GPa (quartz) as fixed constants.
The peak in Q! near 1 MHz that is invariant to h/R is that caused by the
macroscopic Biot loss (fluid-pressure equilibration at the scale of the wavelength).
The peak that shifts with the square of h/R is that caused by the squirt flow.
This figure indicates that although the squirt mechanism is probably operative and
perhaps even dominant at ultrasonic frequencies, it does not seem to be involved
in explaining the observed levels of intrinsic attenuation in exploration work.

9.6 Discussion and summary

Both equations and guidance have been given for modeling seismic wave speeds and
attenuation in isotropic porous materials. A central question that has only been
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peripherally answered so far is: Can the permeability of a region be determined if
the seismic wave speeds and/or attenuation in that region are known?

The permeability of a rock sample depends on the cross-sectional area ¢2 of the
smallest pore throat along the flow path that is dominating the fluid transport (the
so-called “percolation backbone”). It also depends on the electrical formation fac-
tor F', which is the appropriate measure of how tortuous the dominant flow paths
are compared to straightline trajectories. Indeed, Thompson et al. (1987) use per-
colation theory to obtain the law k = ¢2/(226F) and experimentally demonstrate
that this law does an excellent job of predicting rock permeabilities spanning some
seven orders of magnitude when £ is measured as the breakthrough radius in a mer-
cury porosimetry (invasion) experiment, and when F' = oqyid/0rock is Obtained by
measuring the electrical conductivity o of the rock and pore fluid. Conceptually,
one can change £ significantly by placing small amounts of solid (e.g., secondary
mineralization) at key points along the percolation backbone without significantly
affecting the elastic moduli of the rock. This is sufficient to demonstrate that
permeability and seismic velocities are not necessarily linked to each other.

If a connection exists between permeability and seismic velocities, it is related
to the case-by-case details of how a rock is built. For example, if secondary min-
eralization is uniform over the grain surfaces, one could develop a model in which
the rock stiffness goes up as the permeability goes down. However, no such model
for this presently exists in the literature, and it is known from x-ray tomography
and SEM micrographs that secondary mineralization is not uniform, which greatly
complicates any such model. As another example, consider unconsolidated sedi-
ments. It was shown earlier (Section 9.4.3.1) that grain packs having unimodal
grain-size distributions have elastic moduli that are independent of grain size and,
therefore, permeability. If smaller radius grains are introduced into the grain pack-
ing, one expects a reduction in permeability; however, whether the elastic moduli
increase depends on whether these smaller grains form stress-bridging grain-to-
grain contacts which in turn depends sensitively to where the smaller grains are
positioned in the packing. Statistics for, and even the very definition of (c.f.,
Torquato, 2000), random grain packs is an open field of research especially when
there is a range of grain sizes present.

This discussion is meant to emphasize that although one can imagine scenar-
ios in which permeability and elastic stiffness might both vary as some control
knob (like the degree of secondary mineralization or the grain-size distribution)
is turned, any such relation depends on the details of how the rock was intially
formed and how it has evolved. Perhaps the only thing that can be said with
certainty is that no universal relation valid for all rock types can exist between
permeability and seismic velocity.

A more promising connection exists between permeability and intrinsic seismic
attenuation. It was shown in Sections 9.5.1 and 9.5.2 that mesoscopic heterogene-
ity is capable of producing the amount of seismic attenuation required to explain
the admittedly sparse amount of field data that is available (see Figure 9.5). When
a compressional wave squeezes a sample having mesoscopic heterogeneity, the dif-
ferent types of porosity respond with different changes in their fluid pressure. In
the type of double-porosity models discussed in Section 9.5, fluid pressure diffuses
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from an embedded phase into a host phase, and the permeability of the host phase
directly controls the time necessary for equilibration to take place. By observing
how @ varies with frequency, one can, in principle, obtain information about the
permeability of the host phase in these models. However, inverting seismic data
to obtain @ (w) over a broad range of frequencies using a single seismic experiment
(such as crosswell tomography) is an active point of ongoing research, with no
published results presently available.

Note that it is only the permeability of the host phase that affects the frequency
dependence of () in such double-porosity models. If the embedded phase represents
disconnected inclusions at small volume fractions, then the host-phase permeability
will be controlling both Q! /0w and the sample’s permeability. However, if the
embedded phase represents through-going connected joints or faults, then the host-
phase permeability will again be controlling Q' /0w, but may be unrelated to
the sample’s permeability, which is being controlled by the through-going joints.

The squirt mechanism presented in Section 9.5.3 has an indirect connection
to a sample’s permeability. The connection is through the effective size of the
grains, which simultaneously affects both the time necessary for the crack porosity
to equilibrate with the main pores (the grain size is thus influencing the frequency
dependence of () in the squirt model) and the permeability of the sample. However,
it was shown in Section 9.5.3 that squirt is not likely to be operative over the range
of frequencies used in seismic exploration.

Arguably the greatest opportunity for connecting permeability to seismic prop-
erties is through time-dependent pumping of the fluids in the rock. As the pore
pressure changes, Sections 9.4.4 and 9.4.5 show how both the porosity and perme-
ability are changed. The change in seismic velocity is proportional to the change
in porosity. Although the percent change in permeability will not, in general, be
the same as the percent change in porosity (they have different effective-stress
variables), one nonetheless can expect that where seismic velocities change the
most, permeability will change the most.

On account of space limitations, anisotropic porous materials were not treated
in this chapter. Most earth materials have some degree of anisotropy at the
macroscale because of fine layering and/or fracture networks. It is a reasonable
postulate that any anisotropic symmetry class determined from seismic measure-
ments must also be satisfied by the permeability tensor. However, no rigorous work
along these lines has apparently been published. In his landmark paper, Gassmann
(1951) gave the proper fluid-substitution relations that determine how the fluid
affects the elastic moduli of an anisotropic porous material. Putting anisotropy
into the double-porosity model of mesoscopic and microscopic flow greatly com-
plicates the analysis, since it couples together the response of different tensorial
orders within the constitutive laws. So the scalar increment (i,; characterizing
fluid transfer between the mesoscopic “patches” becomes coupled to the vectorial
Darcy flow, and the average fluid pressure in each patch becomes coupled to the
deviatoric (shear) tensor. These complications have not yet been worked through
in detail.

On a related note, the possible dispersive nature of the shear modulus was not
discussed here. In the presence of local anisotropy (e.g., an embedded fracture or
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other elongated local inclusion), an applied shear can result in lobes of compression
and dilation surrounding the elongated inclusion. If the material is macroscopically
isotropic (e.g., the inclusions or fractures are oriented in all directions), the average
fluid pressure will remain zero throughout a sample; however, there will be local
regions of enhanced and decreased fluid pressure that result in local fluid flow and
an associated shear dispersion and attenuation. These effects have been discussed
by Berryman and Wang (2001), and an approximate model has been proposed
by Mavko and Jizba (1991); however, no rigorous theory presently exists that
accounts for the complex frequency-dependent nature of a rock’s shear modulus.
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