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Fracture of disordered solids in compression as a critical phenomenon.
[11. Analysis of the localization transition
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The propertiesof the Hamiltoniandevelopedn Paperll arestudiedshowingthatat a particularstrainlevel
a “localization” phasetransition occurscharacterizedoy the emegenceof conjugatebandsof coherently
oriented cracks. The functional integrationthat yields the partition function is then performedanalytically
using an approximationthat employsonly a subsetof statesin the functional neighborhoodsurroundingthe
most probablestates.Suchintegrationestablisheshe free enegy of the system,and upontaking the deriva-
tivesof the free enepy, thelocalizationtransitionis shownto be continuousandto be distinctfrom peakstress.
When the bulk modulusof the grain materialis large, localization always occursin the softeningregime
following peakstresswhile for sufficiently small bulk moduli and at sufficiently low confining pressurethe
localizationoccursin the hardeningegimeprior to peakstressin theapproactho localization,the stress-strain
relationfor the whole rock remainsanalytic,asis observedoothin experimentadataandin simplermodels.
The correlationfunction of the crackfieldsis alsoobtained It hasa correlationlengthcharacterizinghe aspect

ratio of the crackclustersthat divergesas é~ (e.— £) 2 at localization.
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I. INTRODUCTION

In Paperll of this series,we obtainedthe Hamiltonian
E;(e,&y) of apopulationof interactingcrackswhich is the
enegy necessaryo leada mesovolumef a disordered-solid
systemfrom uncrackedandunstrainednitial conditions,to a
final crack statej at a maximumimposedstrain ,, that is
possibly different than the actualstrain € if the systemhas
been subsequentlyunloaded. Using this Hamiltonian, we
proveherethatat a well-definedstrain e, , the systemunder
goes a phase transition to bands of coherently oriented
cracks.

To studythe natureof this localizationtransition,we must
evaluatethe partition function Z from which all physical
propertiesdependingon the crack distribution are obtained
throughdifferentiation.In Paperl, it was establishedhat Z
takesa standardorm

Z(&,&m,T)=2, e EileemlT, (1)
]

despitethe fact thatit derivesfrom theinitial quenchedlis-
order in the grain-contactstrengthsand has nothing to do
with fluctuationsthroughtime. The possiblecrackstateg for
a mesovolumeare definedby a local order parameterp(x)
distributedat eachcell x of aregularsquarenetworkof iden-
tical cells. The amplitudeof ¢(x) correspondgo the length
of a local crack (alwayslessthan cell dimensiong and its
signindicatesits orientation( = 45° relativeto the principal-
stressaxis).
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Our approachfor performingthe sum over statesbegins
by determiningwhich fields ¢ maximize the Hamiltonian.
Becausethe temperaturan strain-controlledexperimentss
negative,suchmaximizing statesare the dominanttermsin
Eqg. (1). Any changein the natureof the maximizing crack
fields or in the natureof the Hamiltonianin their neighbor
hood(e.g.,thevanishingof a secondderivative corresponds
to a phasetransition.

In Sec.ll, the localizationtransitionis identified and the
geometricalnature of the crack fields in the “‘functional
neighborhood’ surroundingthe maximizing statesdefined.
In Sec.lll, we sum only over this subsetof all statesto
obtainan analyticalapproximationof Z. In Sec.lV, the free
enegy F=—TIn Z is differentiatedwith respectto £ and T
to determineboth the sustainedstressr, the enegy U, and
theentropyS. In theapproacho localization,no singularities
arepresentin eitherF or anyof its derivativeswith respecto
strain or temperaturewhich demonstratesamong other
things, that the stress/strairrelation is analytic up to (and
including) localization.In Sec.V, anexternalfield J is intro-
ducedthat couplesto ¢ permitting an autocorrelatiorfunc-
tion to be obtained All singularitiesat localizationarein the
second(and highen derivativesof F with respectto J with
the conseqzuencehat the correlation length diverges as ¢
~(g,—€)"“.

[I. PRINCIPLE OF THE TRANSITION

A. Extrema of the Hamiltonian

We now determinethe most probablestatesby maximiz-
ing the Hamiltonian E;(¢,e,) alongthe load path £= g,
From the summaryof Paperll, we have

Ej=E%em) +(1—a{E(en)[e]+EM(enle]},
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neglectedand E™ is the enegy due to crack interactions.
The parameterq derivesfrom the quenched-disordedistri-
bution andis boundedas 1/2<q<1.

That the Hamiltonian must be maximizedand not mini-
mized comesfrom the temperaturgparametebeingnegative
aswas quantitativelyestablishedn Sec.IV of Paperl. Be-
causewe assumehe systemis intactbeforestrainis applied,
it is a fact of our model that the intact stateis alwaysthe
mostprobable For this to hold true, the temperaturenustbe
negativein strain-controlledexperimentdecausehe arrival
of cracksat constantstrain alwaysreducesthe enegy in a
mesovolume.

1. Mean-field terms

A mean-fieldsimplification of the modelbuilt in Paperll
would reducethe Hamiltonianto the soleterm

1
EO+(1—q)EaV=§[aA2+(1— a) 'yz]

—(1- Q) eyl kA2 + K3y,

whereA is the straindilatation, y the shearstrain,and« and
k; are combinationsof the elastic moduli all as definedin
Paperll. The secondtermis strictly negativeandrepresents
the weakeningof the rock dueto the crackporositywhich is

proportionalto E the volume averageof the positive field
= |¢|. Therefore this mean-fieldHamiltonianis maximum
when =0, which uniquely correspondgo the uniform in-
tactstateyy= ¢=0.

2. Interaction term

Theinterestingtermis the interactionenegy E™. As de-
fined in the summaryof Paperll (the readershouldconsult
this summaryfor the definitions of all the termsin what
follows), E™ is a sum over wave numbersk of orthogonal
guadraticformsinvolving R, andl,, which arevectorscon-
taining the k-spaceFourier modesof the orderparameter
fields ¢ and . Thesignof theseformsis determinecdby the
sign of the two eigenvaluesof the symmetricmatricesP, .
For anyk, at leastone of the eigenvaluess positive, since
[1,0)- Pe-[1,0]"=L=A%k2(1—au?)>0, where 1/2<a
<1 anduy is a cosine.To determinethe sign of the second
eigenvalue,it is sufficient to take the determinantof P,.
Usingu+vg=1, it is straightforwardto showthat

delP|=A%}(1— a)[cv+ ©]? 2
This is strictly positivefor everyk, exceptwhen
Uk=sin(20k)=—w/C, (3)

in which casethe determinantand secondeigenvalueare
zero.Thevanishingof the determinants thusindependendf
the norm of k, and takesplace at either of two conjugate
angles o;r:arcsin(—w/c)lz or 6, =m/2—arcsint-w/c)/2,
where 6, representsthe angle betweenk and the crack-
orientationvectore;. The directionsin k spaceat which the
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determinanwanisheswill be denotedby the unit vectorsk™.

Thus, the matricesP, are positive definite; i.e., they have
two strictly positive eigenvaluesexceptfor thoseparticular
wavevectorslying alongoneof thetwo directionsfor which
they becomepositive degenerateThe eigenvectonof P, as-
sociatedwith the zero eigenvaluess easily computedto be
[1,—M/L " _

The positive-definitequadraticforms of E™ are multi-
plied by a negativeconstanwhich impliesthatthe maximum
of EM occurswhen g, = i,= 0 for everynonzerok with the
exceptionof thosek satisfyingEq. (3). At thesedegenerate
anglesthe Fouriermodesof ¢ and s arerelatedas

o= M—klﬁk- (4)

Now, the definition of the auxiliary field ,=|¢,| imposesa
seriesof constraintsbetweeng, and . The simplestis
obtainedby notingthatthe spacentegralsof ¢ andy? must
be the samewhich is equivalentto

Ek (Pt —k— P —1) =0. (5)

For a crack-statemaximizing E™, this condition further re-
quiresthat

(e5-vo)+ 2

It will be seenmomentarilythatalongthe directionsk™, the
factors1—M ikr/LiRr are equal,andthat this quantityis an
increasing function of the sheasstrain parameter o
=(k3v)/(Ak,), startingat a strictly negativevalue when
=0 (nosheardeformationyet applied, andreaching0 at a
particularvaluew. . Foreverywavevector oo =|[¢l? is
trivially positive, and the definition of ¢ also requiresthat

@32—y5=<0 for any crack state.From Eq. (6), we can con-
cludethat for w<w,, the only crack-statesnaximizingthe

interactionterm E™ mustsatisfyboth 3= 42 and,for every

nonzerok, ¢,=1=0. Sucha maximumthus corresponds
to a spatially uniform crackfield.

At the degenerateoint w= w., the set of maximizing
crackstategyoesthrougha drasticchangeAny nonzerd~ou-
rier mode of ¢ and ¢ along the directions k* no longer
modifies E™ so long as ¢2=7473; i.e., so long as the crack
field hasthe samesign over the entire mesovolume.This
degeneracyf E™ at w=w, is at the origin of the localiza-
tion phasetransition.

The critical value o, andthe correspondingvave vec-
tors k for which nonzeroFourier modesof ¢ and ¢ do not
contributeto E™, are determinedrom the two conditions

det(P,)=0, (7)

LZ-M2=0. (8)
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Using the solutionof Eq. (7) givenby Eg. (3) in the defini-
tionsof L, andM, givenin the summaryof Paperll, Eq.(8)
thenbecomesan equationfor w.,

[w2—(c?—1)] w?+ @cz ~o0. 9)

From the definitions of Paperll, we havec>1 while 1/2
<a<1. Thus,Egs.(7)—(8) canonly be satisfiedby

w=wci=i\/cz—l, (10
sin(20k)=—(\/c2—l)/c. (11

With a radial confining pressuremaintainedconstantanda
positive shearstressrayia™ Tradial» the strain componentof
the rock satisfy &gia<eradgia aNd €.ix<0 so that w
= (k3! k1) (& axiar™ Eradia)/ (Eaxiart €radia) 1S @ positive and
monotonicallyincreasingfunction of the axial stress,until
the rock possibly exhibits some positive volumetric strain
(we will later showthatthis doesnot occurprior to localiza-
tion), wherethis quantity divegesto +<« andincreasedur-
ther startingfrom —co. All of this establisheghat Egs. (7)
and (8) have no solution until the first solution w=wc+ is
reached.At this particular strain value, nonzero Fourier
modesof ¢ and ¢ having any wave vector lying in one of
the two directionsdefinedby Eq. (11) can be addedto a
mesovolumewith no changein the interactioneneny.
For quartzasthe rock mineral,

ﬂw+ _ ( Eaxial ™~ Sradiao ~12
K3 €axialt €radia c

so that we find (& ayiai/ € radia) c= — 1.2 at the transition. Our
modelthuspredictsthelocalizationtransitionto occuraftera
sign reversalof &4y bUt prior to the point where A =g,
+ &adias Changessign. Theseresultsare consistenivith what
is observedin usual triaxial mechanicalexperiments(e.g.,
[1-3]).

It cannow be algebraicallyverified using the definitions
of L, andM, givenin Paperll, thatl1—M E&t“-i&t doesnot

dependonthe normk nor on which of the two directionsk™
is selectedFurther it increasesnonotonicallyfrom a nega-
tive valueto reachzerowhenw=w_ (factsusedin obtain-
ing the aboveresults.

B. Structure at the localization transition

The goal hereis to define the geometricnature of the
statesmaximizingE™ at the strainpoint .. Necessargon-
ditions on the structureof the degeneratestateswere just
given and theseare easily madeinto sufficient conditions.
First, the degeneratstatesmustcorrespondo crackfields of
constantsign. They thus satisfy everywherey=¢ or =
— ¢ or, equivalently = ¢y Or .= — ¢,. Consideringthis
togetherwith the necessanconditionsof Egs. (4) and (7),
requiresthat the degeneratestatesbe one of two types: (1)
¢>0 everywhereand the only possible nonzero Fourier
modesof ¢ havewave vectordirectionsthat satisfy N, /M,
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FIG. 1. A part of the conjugatebandsemeping at the critical
strain. The bandsperpendiculato k* are exclusivelycomposecbf

right-inclined cracks,while thoseperpendiculato k~ containonly
left-inclined cracks.

=M, /L,=—1; or (2) <0 everywhereandthe wave vec-
tor directionssatisfyN, /M, =M, /L, = + 1. Usingagainthe
definitionsof L, ,M,Ny givenin the summaryof Paperll,

the first type of degeneratenode correspondg$o wave vec-
tors satisfying sin(26,) = — \/c>— 1/c and cos(%,) = —1/c,

while the secondtype of mode hasthe samesine require-
ment, but an oppositevaluefor the cosine.Using k™ to rep-
resentthe wave vector direction correspondingo the first

condition,and k™~ the wave vector direction for the second
condition, we concludethat the emegent degeneraterack
statesconsisteitherof right-inclinedcrackswith spatialfluc-

tuations forming bands perpendicularto k*, or of left-

inclined cracksforming bandsperpendiculato k~. Suchge-
ometryis sketchedn Fig. 1.

Thesetwo sets of crack modesare conjugateto each
other; i.e., symmetricto eachother underinversion of the
radial axis. Since they becomestatistically importantas o
— w;, Whereaghe intact stateor uniform statesarethe im-
portantstatesprior to ., the systemspontaneouslyreaks
its symmetryat the transition, which is characteristicof a
continuousphasetransition.

Further the angle formed by these bandsis at 45°
—| 6| from the axial direction.Using Eq. (11) andthe defi-
nitions of «; and «, in termsof the Lame parametersit is
found that this angleis typically betweenl15° and 35° de-
pendingon the rock mineral[4] consideredvhich is consis-
tentwith laboratoryexperiments.

~Finally, we notethat thesespecialcrack bandsthat leave
E™ unchangedmakea negativecontributionto the Hamil-
tonianthroughthe mean-fieldenegy E?" thatis proportional

to . Due to the r P rangeof elasticinteractions,E™ is
independentf the norm of k (it dependsonly on its orien-
tation). Thus,the spatialvariationof the bandsperpendicular
to their lateralextenthasno influenceon E™:; it only affects
E?®" throughthe numberof crackspresentFor large systems

and a narrow band of only a few cell widths, E=A€/€2
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=A/¢, whereA and{ arethelinearsizeof acell (grain and
of amesovolumeThus,sucha thin bandmakesa negligible

contribution to Z for large systems,and is enepgetically
equivalentto the intact state. However stateswith numerous
and/orwide bandscanmakea non-negligiblecontributionto

¢ andare, therefore Jessprobable.So this transitionindeed
correspondso “localized” structuresOnly thosestateswith
a smallnumberof smallwidth bandsalongthe specialdirec-
tions are the statistically emegent onesas is observedin
actualexperimentson rocks.

[11. OBTAINING THE PARTITION FUNCTION

The sumover crack statesin Eq. (1) is equivalentto the
functionalintegration

Z:J H dQDX efE[qo,s,sm]/T_
xe)

12

Sinceour Hamiltonianis expressedn termsof the Fourier

modesgy, it is shownin standardtextbooks[5,6] that Z
further transformsto

z= J ol?pokl'[Y (dofdpl)e ElexeenlT (13

where e and ¢}, arethe realandimaginarypartof ¢, and
Y is a half spaceof the setof the wave vectorscorrespond-
ing to the nonzeromodes;i.e., correspondingn two dimen-
sionsto the discreteset (kq,k;)=(27€/ny,27€/n,) with
(ny,n,) e Z2. Thereis a small-wavelengthcutoff given by
max(ny;|ny)<€/A that ensuresthat ¢ does not vary on
scalessmallerthanthat of a cell, and thereis the arbitrary
criterionk,>0 madeto divide this spaceinto two symmetri-
cal parts.Equation(13) is valid up to a multiplicative con-
stantthat hasno physicalimportancesincethe propertiesof
a systemcorrespondo the derivativesof the free enegy F
=-TInZ

An analyticapproximationfor Z is obtainedby perform-
ing the functionalintegrationover a properly chosensubset
of all the possiblecrackstatesThe definition of this subseis
basedonwhatwaslearnedn the preceedingection;namely
that amongthe stateshaving a given nonzerocrack occupa-

tion ¢, the most probableare the uniform states,and pre-
cisely at the phasetransition, certain bandedstatesmay ar-
rive at almostno enegy cost,andtheseemepentstatesalso
havethe samesign over space.Thus, the geometricalchar
acteristicof all suchstatesin the ‘“functional neighborhood’
of the minimizing stateis that in eachone, all cracksare
orientedin the samedirection(eitherleft or right). This prop-
erty justifiesmakinga so-called ‘constant-sigri’ (or “‘mean-
phase’) approximationfor the partition function in which
only thosestatesin which the sign doesnot changein space
will be consideredThis still includesa hugerangeof states
in which ¢ spatially varies. The excludedstatesin this ap-
proximationare guaranteedo havelower probabilitiesthan
the included ones and, as such, should have a negligible
influence on the physical propertiesof the system.In this
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aproximation the Fouriermodesof the auxiliary ¢ field are
trivially relatedto thoseof ¢ aseither g,= ¢, for the posi-

tive statesor J,= — ¢, for the negativestates.

We now rescalethe temperatureas T=APT’/¢P. From
the definition T=0U/dS and the fact that U is an enegy
densityindependenof ¢ while S is extensiveand thus in-
creasesas ¢, we havethat T scalesas ¢ . In taking the
thermodynamiclimit in what follows, it is convenientto
work with the purelyintensiveparametefl’ (thatis indepen-
dentof €). Our partition function within the constant-sign
approximationthentakesthe form

—¢P %0 al?
Z=| Dgpex d+el —|+ wh (k)| —
L ¢ p{ADT’ o) &Y 0w
—¢P %0
+ | Dpex d+el —
f, ¢ p{ADT’{ (eD
'(; 2
+ > W (k)| ] (14
keY a

whereDe is a compactnotationfor the functional measure
doollcy(deRdel), andwhere [, and f_ represeninte-

grationoverthe subsetof ¢ fieldsthatareeverywhereeither

positive or negative The quantitiesd,e, andw™ aredefined
in the summaryof Paperll as

d=;[aA2+(1—a)72], (15
o= S[ko(A2- A2 + ko(P-arR)], (19
2
W)=~ oy (L= 2Mic N )
—q(LxE2M+ Ny (&m) ]. (17)

Recallthatthe valuesof the actualstraine interveningin the
probability distributionandin the partitionfunctionarethose
alongthe load curvefor which e= g,,. Their formal distinc-
tion only plays a role when partial derivativesof the free
enegy aretakento definestressWe notethenthatthe value
of w* at e=g, is w =—(1—-q)e’[1,£1]-P(k)-[1,
+1]"/(1- «) andsincewe haveshownthatP is a positive-
definite matrix, and that the temperaturel’ is negative,we
havethatw™/T’ in Eq. (14) is strictly positive.

The symmetryof the problemunderthe parity transfor
mation (inversion of the radial axis guaranteeghat both
integralsin Eq. (14) are equal. Accordingly, only the first
integral over positive crack stateswill be treated.This inte-
gral separatesnto productsof Gaussianintegralswith the
only remainingcoupling betweenthe Fouriermodescoming
from the complicatedconstraintson the integrationdomain
boundarieghat are what guaranteep to havethe samesign
everywherein real space,and ¢ to lie within [0,1]. But in
orderto studyany singularbehaviorof the free enegy F in
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thevicinity of localization,Z is determinedn the thermody-
namiclimit in which both the systemsize and mesovolume
size ¢ aretakento be infinite. In this limit, the complicated
integrationboundsin k-spaceare not relevant.The integra-

tion canbe carriedout entirelyon R* for ¢,/¢°, andR for

eachof the variablesef/¢P, ¢,/€¢P without changingthe

resultbecausehe contributionto theseintegralsin the ther

modynamiclimit comesfrom the immediateneighborhood
of @o/€P=0 andg, /€°=0.

A technicalproof of this canbe obtainedasfollows: using
R* and R as the integration domains producesan upper
boundfor Z sincethis includesevery positive crackfield. A
lower bound can be obtainedby reducing the integration
domainto a subsetof the setof all positive crackfields in
which 0<go<¢® and =y v (| ¢l +[ekl) <min[eo/y2, (£°
—¢0)/\/2]. Integratingmode by mode over this polyhedra,
the result can be shownto be asymptoticallyequivalentto
the resultof the upperboundin the limit where€® becomes
infinite. This exerciseis left to the attentionof the reader

Thus,no couplingbetweerthe k modesexistsin the ther
modynamic limit, and our approximationof the partition
function takesthe convenientform

z=2z2, ] [2(k7], (18)
keY
wherezy=e~ "¥A°T" and
21=J dxe ("e/AT (19)
xe Rt
2(k) = f dx e ("W (xZAPT" (20)
xeR
In the limit £ — + o, thesetwo integralsbecome
2,~APT'/(£Pe), (21
2(K)~ o APT' [ €Pw' (k)]. (22

Using Eq. (18), one then obtainsthe free-enegy densityin

the thermodynamidimit
APT’ £Pw (k)
o] ).

F=-T'(InZ)AP/¢P~d+
Key APT’
(23

The contributionz; hasvanishedn this limit dueto the fact
thatx In x—0 as x— 0. Thisis atechnicalconsequencef the
fact that for statescomposedf a few single bands,y van-
ishesin the thermodynamidimit, ascommentediponin the
previoussection.

IV. SYSTEM PROPERTIES AT LOCALIZATION

The remainingtaskis to link this free enegy to the ob-
servablef the systemby taking the partial derivativesof F
in the limit aslocalizationis approached.
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The two partial derivativesof primary interestare those
that give the dimensionles@ntropydensitys= APS/¢P and
the stressz. From Paperl, we have

_&F

—s=— and 7= —
! T e

T &
£,&, m

Thefreeenegy of Eq. (23) is rewrittenby replacingthe sum
over the wave vectors 2.y Wwith a continuousintegral
¢P1(2m)P[2™ A dk [ Td 6. After performingthe trivial inte-
grationover dk we have
ADT/
|—alIn| — /D

|=fm2 In(—w")de.

— /2

’

F=d+?

: (24)

wherel is the integral
(25)

Theintegrandw™ is a temperature-independestrain func-
tion sothat — dF/oT' gives

o - APT’ o6
S——§+E +In| — fD , ( )
while from F=U—-T's
o
U=d+ET'. (27)

Since d representghe linear elastic responseof an intact
rock,andT’ decreasefom zeroto negativevaluesasdam-
ageaccumulatesthis expressiorshowsthat the averageen-
emgy decreaseslue to the presenceof cracksand is thus
consistentwith the negative curvature of the strain/stress
load curve observedexperimentally

Before addressinghow s and F (and their derivatives
behaveat localization,we first establishthe stressand tem-
peraturebehaviorat localization.

A. Mechanical behavior at localization

Considerthe stresscomponentso= —2JF/dy and p=
—2dF/9A, whereo (shearstres$ andp (pressurgareboth
positiveandrelatedto the axial andradial stresscomponents
as

—o=T7,—7, and —p=71,t7. (29
In standardaboratoryexperimentsthe axial stressr, varies
while the radial stresst, = — p, is kept constant.The strain
componentsy (shearstrain andA (dilatation) are similarly
relatedto the axial andradial strainas

vy=g,—&,, andA=g,+¢,. (29
Using the definition of w* [Eq. (17)] alongwith the defini-
tionsof L, M, andN, givenin the summaryof Paperll,
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we differentiatethe integrall with respecto the actualstrain
variables, evaluate along the load path (A,=A and yg,
=), usethe definition o= w3y/A with the new constant
w3= k3/ k4, and makethe changeof integrationvariablesz
=tan"14 to obtainexactly

w
Il=—" g |

A T=qa ! 40

N 2mr—wd,l), (31

1
S (1-q)A

where g=1-1/(k+2) is the constantassociatedvith the
exponenk=0 of the quenchedlisorderdistribution,andthe
integrald, | is defined

J‘+°€ d,g dz
a,l= — ,
= 0 1+72

(32

with g(w,z) given by
9(®,2)=[1-a—2(1-a)c+(1—a)c®+w?]Z*
+[4aw+4(1—a)cw]2+[2+2a+2(1— a)c?

—2(2a—1)w?]Z?+[—daw+4(l—a)cw]z+1

—a+2(1—a)c+(1—a)c?+ w?. (33

Thus, the shearstressand pressurecan be written as
=-2(1 T _ws I 34
o= ( a)’y X(l_q)aw (w)v ( )
—p=2aA+ ——F[27— wd, | (w)]. (35

(1-q)A

Theintegrald, | is solvedusingtheresiduetheoremoncethe
rootsz of the quarticg(w,z) havebeenfound.
This quarticdecomposemto the exactform

9(w,2)=[z2-{(w)][z- (o) ]u(w,2), (36)

U(w,2)=p(w)[z2—&(w)][z2- & (o)], (37

wherethe star indicatestaking the complex conjugate.The
roots {(w) and ¢* (w) both meme to the real axis in the
approachto localization w— w., while the othertwo roots
¢(w) and &* (w) remaincomplexat localization.

Therearethusthreesimplepoles{(w), é&(w), andi con-
tributing to 4,1 if theloop is closedin the upperhalf z plane
so that the residuetheoremyields

dol _— 949(0) 99(§)
T m{Gu(OI1+ 2] pI{EE- L1 N1+ €7)
9o9(1)

. 38)
[i =210 = 2* Ju(i) (

PHYSICAL REVIEW E 66, 036137 (2002

wherelm designatesaking theimaginarypart. We areinter-
estedin evaluatingthis integral (and therefore,the roots ¢
and ¢ andthe function p) only in the approachto localiza-
tion; i.e., when w= w— w. canbe consideredsmall. In this
limit, the secondand third termsof Eq. (38) (the residues
from ¢ andi) have numeratorsand denominatorghat are
bothorder0 in dw sothatit sufficesto know the behavior

fw)=§&pt+ &0, (39

p(w)=po+pi1dw. (40)
However the residuerelatedto ¢ is proportionalto dw in
both the numeratorand the denominatorwhich requires
knowledgeof this root to secondorder

{(0)={o+ {160+ (807 (41)
The variousstrain-independertonstantst;, p;, and {; are
all known groupingsof the elastic constantsderived from
Eqgs.(393), (36), and(37). Thefinal resultfor theintegralafter
an enormousalgebraicreductionis

I =1+ 6w, (42
wherethe constantd ;. and |, areexactly
Jei—-1 2—c?
le=2m—— and I,=27 (43
c

1. Stress and strain at localization
The shearstressand pressuranay be written as

t

o=oo+o™ and p=pgo+p™,
whereoy=—2(1-a)y andpy=—2aA arethe trivial lin-
earvariationsof the uncrackednaterial.We havejust shown
that at localization (6w =0), the nontrivial shearstressdue
to cracksand crackinteractionis

int:_ 277(1)3Té \C -1 0

e T 49
while the nontrivial pressurés
. 27T,
o= - (45)

—F— <0
(:l-_q)AcC2

That thesecritical valuesare both negativefollows because
T, (scaledtemperatureat localization is negativeand A
(total dilatation at localizatior) will soon be shownto be
negative.Equations(44) and (45) say that the presenceof
crackshasloweredboth shearstressand pressureelative to
an intact materialat the samestrain. This is indeedwhat is
observedn experiments.

To quantify the natureof A, we usethat the confining
pressurep, is a known positive constantin standardexperi-
mentson rocks so that
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Té[27'r—(a)c+ w3)|c]
2(1-q)A.

pr=—alA+(1-a)y.— . (46)

Togethemwith w.= w3y, /A, thisrepresentsin equationfor
A,

T2m—(wctws)lc]
(1-a)

a—(1—a) 28| A2+ p, A+
(1)3 C pr C

7

BecauseT’ varies with strain, we have that T; is also a
function of A, sothat Eq. (47) is more thana simple qua-
dratic in A;. To obtain an orderof-magnitudeestimateof
T, we usethe approximatdemperatur@xpressiorbasedn
noninteractingcracks,

1 2A%

T, dZ(1-Q)[ kot k(@) w3)2]A2

oT a/(1-q)
XIn 1.
[ (N +2u)dmA S Ko+ Ks(wc/ws)z]] ]
After putting Eq. (48) into Eq. (47), A, is numericallydeter
minedusingNewton’s method.The predictedA ;. is negative
for therangeof confiningpressure, of interestandremains
negativefor all rangesof elasticmoduli foundin rocks.The
signsof the varioustermsin Eq. (47) imply that the transi-

tion happensvhenthe temperaturénassufficiently departed
from zero, but is still negative.Typical resultsfrom the nu-

(48)

1dA 2(1—qg)(1- a)Angé-i- o3[l ¢+ (wc+ @w3) |1 ]+ A (2T [27— (we+ w3) 1 ]dT /de
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mericalevaluationare T.~ — 10" 2(\ +2u), which confirms
the rough estimategivenin Sec.V of Paperll. The typical
valuefor A. is a few percent;i.e., the order of magnitude
experimentallyobservedat peakstresq 7].

The conclusionis that at localization, both dilatation A
and shear strain y.= o A./w3 are negative while |y
>|A.|. This demonstrateshat the radial straine, =A,— v,
is positive at localization,which is also consistentwith ex-
perimentalobservations.

2. Stress, strain, and temperature derivatives at localization

We now addresshow the stressandstraincomponentsas
well as the temperatureare changingwith the negativeof
axial straine=—g,=— (A + y)/2 a localization.

In the approachto localizationwe write A=A_.+ A, vy
=1y.+38y, and T'=T,+ 8T’ using the exact differential
equationfor temperatureo define ST’ in what follows (not
theapproximation. The conditionthatp, is constanrequires
that

T(’:[27T_(2wc+wS)Ic_(wc+w3)wc|1]
SA{ —a+ >
2(1-q)Ag
Tlwa[l o+ (we+ ws)l
+5y{1_a+ colet (oot 03 1]]
2(1-q)Ag

!

- m{ZW_(O)C‘F w3)IC}=0,

which alongwith —26e = 5A + &y gives

2de

1dy 2(1-q) AT, — 27+ (2we+ w3)l ¢+ (0t w3) el 1— A (2TL)[ 27— (0 + w3)1 ]dT’ /de

—2(1—q)AYT.+ 27— 2(we+ w3)l o — (we+ w3)?l4

: (49

2de

—2(1— QAT+ 27— 2(we+ 03)l c— (wc+ w3)? 4

. (50

To obtainan exactexpressiorfor dT'/de (within the contextof havingemployedthe mean-phaseapproximation, we usethe

formalismof Sec.IV A of Paperl to write

a

dp U+ 5

dyU+dy U+ P A+ ( g, U+d, U+

2

§Tr’y

ds '

! o

g U+a, U+ 2) J,7=0.
(51)

gaU+a, U+ g 9, A+

UsingEq. (27) for U, we havedr U= 7/2, I,U=aA=—py/2, I, U=(1—a)y=—0¢/2, dr U= 0, and&ymu =0 so thatthe

temperaturederivativeat localizationis given by

1dT"

[2Tm—wel)(l—a)+ wsl @]2(1— q)A+ wa3( 0.+ w3) (27l 1+ w3|§)Té/Ac

2 de —[2m—(wet wa)l )P+ (1—q)a] — 2(1— ) AYT+ 27— 2(we+ wg)l o— (we+ wg)?l4]

(52
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FIG. 2. The localization value of the axial tangentmodulus
do/de asa function of the radial confiningpressurep, . Thethree
curvesrepresendifferentassumedulk modulifor the mineral. The
other rock propertiesare I'=10 J/n?, d,,=10 um, u=15GPa,
andq=3/4.

This derivative is numerically calculatedto be finite and
negativefor the rangesof elasticmoduli andradial confining
pressuresof interest, thus indicating that the localization
transition always preceedsthe phasetransition where the
temperaturedivergesto —oo. Sincerocks fail immediately
after localization, the temperature-divgence transition is
not observedn rock experiments.

Last, we determinethe variationof the stresscomponents
with axial strain e at localization. Since p, is constantwe
havethatdp/de=do/de = —d7,/de. Thesederivativesde-
fine the so-called ‘tangentmodulus’ given by

1 dO'_ w3 IC dT, Téw3(|C+ (DCI]_) dA
2de 2(1-q)A; de | 2(1-qA2 de

!

dy

de’ (53

—|(1-a)+ —— Wl
Ao S gaz™

where the derivativesdA/de, dy/de, and dT'/de have
beengiven above.

In Fig. 2, we plot how do/de varieswith radial confining
pressurdor variousvaluesof the elasticconstantsThe plot
shows that for a sufficiently large ratio of bulk to shear
modulus,the axial pressurés alwaysdecreasingt localiza-
tion, which meansthat it has already passedthrough the
stressmaximum.However for sufficientlysmallbulk moduli
and at low confining pressuresl|ocalization can also occur
prior to peak stress.Thus, peak stressand localization are
distinct in our theory Localization can occurin either the
hardeningor softeningregimedependingon the bulk modu-
lus and confining pressureWhen localizationoccursin the
softeningregime(large bulk modulug, the strain/stresgurve
aroundpeakstresss necessarilyananalytic(quadratig func-
tion, whereasvhenit occursin the hardeningregime (small
bulk moduluswith small confiningpressurg the peakstress
presumablycorrespondsto a sharpervariation as micro-
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cracksstartto coalescealonga weakenedandandunstable
failure setsin. Thesepredictionsare consistentwith the ex-
perimentalobservations.

B. Entropy and its derivatives at localization

The exactresultd, | =1.+1,6w with I, andl, asgiven
by Eqg. (43) meanghattheintegrall of Eq. (25) is itself both
finite and continuousin the limit as Sw—0. Becausdt has
further beenshownthat T’ remainsfinite and continuousat
localization,Eqs. (24) and (26) thenshowthat both the free
enegy andthe entropy(andall of their derivativeswith re-
spectto strain remainfinite andcontinuousas dw— 0. This
demonstratesxactlythatthe localizationtransitionis a con-
tinuousphasetransitionandallows usto classifyit asa criti-
cal point.

V. CORRELATION FUNCTION
A. Derivation of a diverging correlation length

The qualitativestudy of Sec.ll B leadsto the conclusion
thatthe localizationtransitionis associatedavith the creation
of conjugatebandsof coherentlyorientedcracks.In thisfinal
section, the statistical correlation betweencracks will be
quantitativelyaddressed.

The autocorrelatiorfunction is definedas

G(x,y)=(e(X)(¥)) =(e(X)){e(¥)) (54)

andwill be determinedusinga standardnethodof statistical
mechanicg5,6,8]. First, the Hamiltonian E[ ¢] is general-
izedto includean additionalcouplingof the local field ¢(x)

with an aribitrary field J(x) coming from some external
source

E'[go,J]:E[cp]—fx P60 (59

The partition function becomeghen a functional of the ex-
ternalfield

ARIE XHQ (de,)e E'le T (56)

andthe averagesnvolvedin Eqg. (54) areobtainedby taking
functional derivativesof Z[J] with respectto J and then
letting the externalfield go to zero;i.e.,

T ez
<¢(x)>—J“L“O Z 3% 57
_im %2 58
<¢(X)¢(y)>—JL”"()?W' %9

Sincetheoriginal Hamiltonianis mosteasilyhandledn Fou-
rier form, the externalcouplingwill be expresseds
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—f dPx J(x) p(X)
xe )

— —|Jopo+22, Fep+22, e,
D | Yo%o g\( k Pk EY kPk

(59

wherethe superscriptR and| refer onceagainto the real
and imaginary parts of a complex quantity The functional
derivativesrelative to J(x) mustthenbe expressedy their
counterpartsn Fourierspace,

5 —
8J(x)

SR 9 83, 4
—st —
S0 | 3300 738 T 300 L

= > (COS(k X) == —sin(k- X) ) (60)

ke YU{0}

The modifiedpartition functionwill againbe determinedus-
ing the constant-sigapproximationput now the presencef
the externalfield breaksthe symmetrybetweerthe sumover
positiveandnegativecrackfields, sothatbothtermsneedto
be kept in the generalizationof Eq. (14). This leadsto a
slightly morecomplicatedversionof Eq. (18) for the expres-
sion of Z in the thermodynamidimit

zZZo[zIkl]Y [z$<k>zﬁ<k)]+z;k1]Y [zR(k>zl<k>1],

(61)
wherez, is againthe trivial intactterm,andwhere
thzj dx e—(eeDiﬁo)x]/ADT’, (62)
xeR*
4+ _r_-3R + ’
Zﬁ(k)zf rdxe [ 235+ €Pw (k)x2]/ADT’ (63)
Xen

with z" (k) havingthe sameform aszg (k) afterreplacingd?
with jL. In the following, the forms implying derivatives
with respectto 3L areto be implicitly understoodas having

the sameforms astheir counterpartsvith respectojl'f (these
imaginarycomponentwill not be explicitly written out).
The integralsare easily performedgiving

=APT//[e€P+T,],

[ wAPT’ (65
€Pw* (k)

Thefirst derivativesof Z with respecto the externalfield are
then

(64)

L (352
zR(k)_eXp[ADeDw*(k)T'
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AT I [z(077 (k
B Zy (eP+3g)? Z [zr(K)Z" (K)]
ADTr

(eeD—J)ZZl H [zr(K)z; (k)]] (66)

) 3 £z (K
P R D CTE s T
. 238 _— .
T KeY MD—W[ r(K)z (K. (67)

Letting the externalfield go to zero, both of theseterms
disappearso that usingthe chainrule of Eq. (60), the aver
ageof thecrackvariableg atanypointx in amesovolumas
givenby Eq. (57) to be

(e(x))=0.

As expected,there is nho spontaneousymmetry breaking
prior to the transition.

Consequentlythe autocorrelatiorfunctionreducedo only
the secondderivativesof Z in Eq. (58). DifferentiatingEqgs.
(66)—(67) with respectto Jo, J andJ,,, and taking the
limit whereJ goesuniformly to zeroleadsto

Fz oz | 1 . 1 |2Zob
dIRAIY 933, [wr(k) w(k)|APePT
azz_zADT’Z
g2 ¢3Pe3
where Zy=2Z[0] is the original partition function without

external source.All the remaining cross derivativesgo to
zero,

dIRad,

9*z
JIRI3,,

7z
AN

Throughthe chain rules of Eq. (60), theseequalitiesshow
that the autocorrelatiorfunction hasthe form G(x;y) = G(x
—vy) dueto the symmetryof the problemundertranslation
for an infinite system. The Fourier transform G(X;y)

=3,G,e* N/¢P is thusgiven by

~ 1 1
Gk=2ADT{ +— 1
wh(k)  w(k)

(68)

whenk= 0. ThespecialvalueG,=2A3PT"3/e3¢3P doesnot
play anyrole in the thermodynamidimit.

In real space the autocorrelatiorfunction is obtainedby
aninverseFouriertransform:

1 2m/A 2@ .
—zf kdkj doG(k)e'k .
0

G)= 47<Jo

(69
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Using G(—k)=G(k) which is a consequencef w* being
ar-periodic functions, and working in polar coordinatesx
=(x,0,) andk=(k,#6), the angularintegralis divided into
two symmetricdomainswhich gives

2m/A kdk
G(x,ex)=f —
0

2
21 ) o,

Oyt

d6G(k, 8)cog kx cog 6— 6,)].

Sincew™ andthereforeG only depencbn the angularpartof
k, the integralover k=|k| yields

(.8, fexw G(6)
X, 0y) =
X 0= 16, 22
27 . [2@xcog 60— 6,)
X sin
Axcog 60— 6,) A

1
+————|co
x2co(6— 6y)

s( 27X cog 60— 6,) 1

A .
For x> A, this integralis dominatedby a neighborhoodof
0= 0,+ /2, of angularsize c;A/x with ¢; a constantof
order unity. The function G(#6) is almostconstantover this
small neighborhoodand this integral can be well approxi-
matedas

G(X,6y)=

G(O+72) [ x
oAz ClA

with the dimensionlessntegrall ; definedas

m 27 si2mucog 6)]
ucog 6)

|G(u)=27r2f

=0

N {co§27ucog6)]—1}
u2co( ) '
An asymptotic study of this oscillating integral for us>1

showsthat | s(u) ~c,/u, with c,, a positive constantof or-
der unity. ReformulatingEq. (68) with

h(6)=2c,T’ (70)

+
whH(8+ml2) W (0+m2)

givesthe real spaceautocorrelatiorfunctionin the form

A
G(x,ax)~h(¢9x);. (71
This establisheshatalonganydirection,the autocorrelations
decayasA/x (for two pointsseparatedby a significantnum-
ber of grains,x>A).

Concerningthe angulardependencef G, the symmetry
of the systemunder parity leadsto w™(68) =w™ (7/2— 6)
[which can also be verified directly from the definitions of
w* andthe dependenciesf L, ,M,N, on u,=cos(¥) and
v=Ssin(26) givenin paperll, togetherwith the fact thatthe
parity symmetrykeepsy constanbut changeshesignof u].
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FIG. 3. Form of anisoautocorrelatiorturvein the approachto
the localizationtransition.

This, along with the 7 periodicity of w=, showsthat G is
symmetricunderparity; i.e., G(X,7/2— 6,) = G(X, 6,).

The angular dependencés best shown by considering
curvesof isocorrelationgs(x, 6,) = c3, wherec; is constant
alonga curve. Suchcurvesobeyx=Ah(#6,)/c;. The direct
study of the function w* showsthat it admits quadratic
maxima along the directions #*[ ], scaling as max@™)
=w"'(#'[7])=—a(éw)?> when the transition is approached,
wherea is a positive constantThis comesfrom the fact that
E™ is degeneratexclusivelyfor the critical angles™, a
reducedstrainw, . Outsidea small neighborhoodf 6*[ 7],
w* remainsbounded The definition of h andthe exchange
under parity of w* showsthen that such an isocorrelation
curve hasfour branchegspikeg alongthe directions + 6*
+ /2, whoseextent¢ divergeto +« as

2 -2 -2
E~2A(—T )a—cg(wc—w) ~CasA(ec—g) % (72

Thefactthatw™ remainsboundedoutsideany small neigh-
borhood of 6*[ 7] also meansthat the width p of the
branchesremainsfinite; i.e., that the aspectratio of the
branchesé/p also diverges as (s.—¢) 2. This is qualita-
tively illustratedin Fig. 3. This predictioncanbeinterpreted
ascorrespondingo the formationof clustersof microcracks
having aspectratios &/p that diverge asthe cracksorganize
into long thin structuresalong which the samplewill ulti-

matelyfail to form the experimentallyobservedshearbands.

B. Experimental measurement of &

It would certainlybe desirableto havedirectexperimental
verificationof whetherthe crackbandshaveaspectatio that
diverge as1/(e.— €)?. Unfortunately thereare many practi-
cal problemsthat have preventedthe direct measuremenof
the autocorrelatiorfunction of cracksin materialslike rocks.
We commenthereon threetypesof measurementhateither
have or could be used to quantify the autocorrelation.
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First, following ideasusedby Davy and Bonnet[9] in
interpretingtheir sandboxshearexperimentspne can mea-
surethe local deformationof a large sampleby coveringthe
surfacewith pixels and monitoring the shearstrain of each
pixel. The total shearstrain of the systemis then approxi-
matedby taking the averageover the surfacepixels. If the
systemdeformationis plottedasa function of the pixel size,
it is expectedhatwhenthe pixels aresmallerthanthe emer
gentbandstructuresthe systemdeformationwill decreasas
a power law of increasingpixel size as was observedby
BonnetandDavy. However at a particularpixel sizethereis
a crossoverto a constantsystemdeformationas pixel size
increasesThe pixel size at the crossovempoint is at leastan
indirect measurementf the correlation length ¢ above
which a volume-averagediescriptionof the systemholds
with propertiesindependentf the pixel size.

Second,a direct measurementdf the autocorrelatiorbe-
tween cracks can in principle be obtained via acoustic-
emissionsmonitoring [10]. However the presentresolution
of this method (millimeters in centimeterscale specimenk
and the difficulty in determingthe mode of the individual
crackeventspreventshavinga satisfactorysamplingfor sta-
tistical analysisIt seemghatimprovementn thesepresent
limitations are possible.

Last, by analogywith the probing of spin populationsby
electromagnetievavesto studythe ferro/paramagnetitran-
sitions, it should be possibleto send plane sound waves
througha systemand measurehe scatteringcrosssectionas
the wavesscatterfrom the structureof the evolving micro-
crackpopulation We havenot yet obtainedthe rigorouscon-
nectionbetweensucha measuredarosssectionandthe Fou-
rier transformof our autocorrelatiorfunction; however such
a relation almostcertainly exists.No experimentalattempts
to measurethe correlationfunction of cracking systemsin
this mannerhasbeenattemptedo our knowledge.

V1. CONCLUSION

We now summarize the principal results that have
emegedin our study First, we havedemonstratedhat at a
well-defined strain point = w,, thin bandsof coherently
orientedcrackscan be addedto the systemat no enegetic
cost. Suchlocalizedstructuresbreakthe symmetrythat held
when w<w, and correspondo a phasetransition that we
namedthe “localizationtransition.” It wasdemonstratethat
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the free enegy F andentropyof the systemremaincontinu-
ous and finite at the localization transition which justifies
calling it a critical-point phenomenaSuch continuity also
demonstrateghat the stress/strairbehavior of the rock is

entirely analytic up to and including localization. The only

divergenceat localizationis in the secondderivativesof F

with respectto the externalfield J. The consequences that
the correlationlength (aspectratio) of the emegent-crack
clustersdivergesas (w.— w) ~2. Presumablyif the “mean-
phase’ approximationhad not beeninvoked and if order

parametercontributionsproportionalto ¢ and higher had
beenretainedin the Hamiltonianthrougha renormalization
schemethena nontrivial exponenibn this scalinglaw might

emege.

The mechanicabehaviorof the systemat localizationex-
hibits many qualities observedin actual experimentson
rocks.First, the stresscomponentst localizationarereduced
relative to their valuesif the rock had remainedintact. The
total dilatation A, remains negative at localization, even
though the radial strain is positive. With radial confining
stresskept constant,the tangentmoduli do/de are, most
normally, negativeat localization indicating that the load
curve has already gone through a smooth quadratic peak
stressprior to localization.Nonethelessfor rockswith a suf-
ficiently low bulk modulusand at sufficiently low confining
pressureshelocalizationcanoccurin the hardeningegime,
presumablyfollowed by a sharppeakstresscorrespondingo
theunstablecoalescencef cracksasthe samplefails alonga
shearband. Theseresultsare consistentwith what experi-
mentalistsobserve.

Usingthe exactdifferentialequationthatcontrolsthetem-
peraturein the theory it hasbeendemonstratethatthe tem-
peratureis becomingevenmore negativeat localizationthat
meansthat the temperatures alwaysfinite at localization.
Unfortunately the exactvalue T of thetemperaturatlocal-
izationis difficult to obtainbecauset is a resultof integrat-
ing the differential equationfrom the initial conditions.Al-
thoughthis could be donenumerically we haveinsteadused
an approximatevalue of T. basedon a noninteractingcrack
model.

By far the most important signatureof the localization
transitionis the divergenceof the aspectratio of the crack
clustersAs reportedno definitive experimentalvork hasyet
beenperformedto testthis predictionand we hopethat ex-
perimentalistdakethis asa challenge.
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