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Fracture of disordered solids in compression as a critical phenomenon.
[I. Model Hamiltonian for a population of interacting cracks

RenaudToussairit and StevenR. Pride’
Geosciences Rennes, Universite de Rennes 1, 35042 Rennes Cedex, France
(Receivedl4 November2001; revisedmanuscriptreceived13 June2002; published27 Septembe2002

To obtainthe probability distribution of two-dimensionakrack patternsin mesoscopigegionsof a disor
deredsolid, the formalism of Paperl requiresthat a functionalform associatinghe crack patterns(or state$
to their formation enegy be developedThe crack statesare heredefinedby an order parameteffield repre-
sentingboth the presenceand orientationof cracksat eachsite on a discretesquarenetwork. The associated
Hamiltonianrepresentshe total work requiredto lead an uncrackedmesovolumento that stateas averaged
overtheinitial quenchedlisorder The effect of cracksis to createmesovolumes$avinginternalheterogeneity
in their elasticmoduli. To modelthe Hamiltonian,the effective elasticmoduli correspondingo a given crack
distributionare determinedhatincludescrack-to-cracknteractions The interactiontermsareentirely respon-
sible for the localization transition analyzedin Paperlll. The crack-openingenegies are relatedto these

effective moduli via Griffith’s criterion as establishedn Paperl.
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I. INTRODUCTION

In triaxial-stressexperimentson rocks in the brittle re-
gime, the onsetof a macroscopidocalizationof deformation
is usuallyobservedaroundpeakstresgc.f. Besuelle[1] for a
review]. Suchdeparturérom a macroscopicallyuniform de-
formationregimeis intrinsically beyondthe capacitiesof a
mean-fieldtheory andso a specificmodelis developechere
that takesthe orientationalnatureof crack-to-crackinterac-
tionsinto account.

This is the secondpaperin a seriesof threededicatedo
exploring how the physical propertiesof disorderedsolids
evolve asthey are led to failure in a stateof compression.
The goal of this paperis to obtaina reasonabldorm for the
HamiltonianE; (&, &,,) which is definedasthe averagework
requiredto lead an intact region at zero deformationto the
crackstatedenotedby j whenthe maximumappliedstrainis
£, andwherethe final strain £ is possiblydifferentthan g,
dueto afinal unloading.This Hamiltonianmustbe expressed
in termsof the spatialdistribution of the local order param-
eterthatis the variableusedto characterizehe populationof
cracksin eachmesovolumeof a hugedisordered-solicksys-
tem.

Most existinglattice modelsexplorethe dynamicsof sca-
lar order parametersither representinghe breakdownof
elasticspringor beamnetworksundertensilestresq 2], oro f
fusenetworks[3]. The analogiesbetweersuchscalarmodels
andfractureof disorderedmediahasbeenwidely discussed
[4]. Oneadvantageof our approachis the ability to explore
interactionsbasedon a fully tensorial descriptionof the
stressperturbationsproducedby eachcrack. Another is its
ability to yield analyticalratherthan only numericalresults.
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Using E; in the partition function establishedn Paper, it is
possibleto explore the crack patternsthat emege in com-
pressivesettingsfor which isolatedcracksappearin an in-
trinsically stable mannerno matter their size [5], and for
which macroscopidocalizationis a collective phenomenon
dueto the enepetic organizationof small cracksasopposed
to an instability associatedwvith the largestdefects.In the
presenpaper we retainthe leading-ordeeffectsof oriented-
crack populationsinteractingin two-dimension(2D). The
overriding importanceof the long-rangeelasticinteractions
leaveshopethat 3D generalizationsvould not yield qualita-
tively differentcritical behavior

Il. PRINCIPLES OF THE MODEL
A. Order-parameter definition

We now elaborateon the crackmodelintroducedin Paper
I. Eachmesovolumeof a hugerock systemis discretizednto
a squarenetwork of diamond-shapedells of size A (grain
sizeg andonly a single crackis potentially presentin each
cell. A crackis locatedat the centerof the cell and hasa
lengthd somewherewithin the support[0,d,,], whered,, is
the maximumcracklength(a fixed parametenf the system
requiredto satisfyd,,<A. In the perturbativetreatmentof
the crack interactions developedherein, e=(d,/A)P is
takento be a smallnumber whereD is the numberof space
dimensions(in the presentmodel, D=2). The local order
parameterp(X) associatedvith eachcell x is takento have
anamplitudey=|¢|=(d/d,,)P andhasa signthatindicates
whetherthe crackis orientedat +45° or —45° relativeto
the principal stressdirection (the so-called ‘“‘axial direc-
tion”). The modelis summarizedn Fig. 1

The restrictionthat cracksare either at =45° and have
lengthslessthan the grain dimensionsis of coursea great
simplificationcomparedo whatis foundinsideof realrocks.
However we only needto characterizeéhe essentiafeatures
of a crackpopulationthat contributeto localizationphenom-
ena and, to this extent, it appearsoverly complicatedto
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¢=+d/d,)

FIG. 1. Partof the diamondnetwork of cells that comprisea
mesovolume Each cell has the linear dimensionA and is only
allowedto containone crack.The maximumlengthof any crackis
d,, and this length is assumedto be sufficiently small that
(d,/A)P<1. Theamplitudeof the orderparameteis by definition
=|e|=(d/d,)P, whered is the length of the crackfound in the
cell, while the sign of ¢ indicatesthe orientationof the crack as
shown.

modelthe amazingvariety of crackgeometriessncountered
in realrocks[6,7]. Thelocalizationtransitioninvolvesspon-
taneousbreakingof symmetriesboth undertranslationand
parity (inversionof the minor stressaxis) asis seenfrom the
structureof the shearbandsemenging in the post-peak-stress
regime[8]. The essentiafeatureof any proposedorder pa-
rameteris that it must reflect and quantify the amount of
local symmetrybreakingand our simple model with cracks
at either = 45° doesjust this.

Furthermore, there is evidence both from acoustic-
emissionsmonitoring [9] and from direct observationafter
unloading[10], thatcracksdevelopingprior to peakstressdo
not exceedan extentof a few grainsdiametersThis is prin-
cipally becausethe grain contactsthat break are much
weakerthanthe grainsandhavea finite lengthsothatcracks
arriving in compressiordo so stably[5]. Crack coalescence
is not explicitly allowed for. However since severalneigh-
boringcellsin aline mayall containcracksof the samesign,
the long-rangeelastic effect of long (coalesced cracksis
effectively allowedfor. Our picture of the final shearbands
experimentallyobservedin the post-peak-stressegime is
that they were createdby unstablesliding along a band
weakenedn the pre-peak-stresegimeby a concentratiorof
coherently oriented cracks [8]. Our model allows small
cracks to stably concentrateen echelon along conjugate
bandsrelative to the principal-stresgdirection; however it
doesnot modelthefinal unstablerupturealonga givenband.

B. Formation energy of a crack pattern

It has beenestablishedn Paperl that to a reasonable
approximation,the work requiredto form a crack state,as
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averagedover the initial disorder separatesnto one part
representinghe work requiredto breakthe grain contacts,
anda secondpartrepresentinghe elasticenegy storedin the
crackedsolid. This wasexpressedh Eqgs.(26)—(28) of Paper
| as

q 1
Ejzzgm:(CO—Cj):sm-i- Es:Cj (E.

(1)
Thefirsttermof Eq. (1) is theenegy spentin theirreversible
formationof the crackstatej averagedver quenchedlisor
der and was obtainedthrough an application of Griffith’s
principle. The parameterq derives from the quenched-
disorderdistribution and lies in the range[ 1/2,1] (seeSec.
Ill B 2 of Paperl). The secondterm is the reversibly-stored
elasticenegy with C; being the elastic-stifnesstensor of
statej.

Our principal task is thereforeto model the way that
cracksand collective crack-statesaffect the overall elastic
moduli of a mesovolumeThis requiresdetailedknowledge
of the stress(or strain field throughoutthe mesovolumen
the presencef arbitrary crackpopulationsandwe treatthis
need using the following approximations.First, since the
cracksin the modelareisolatedoneto eachcell, their main
effect regardingthe far-field stressis to changethe elastic
moduli of their embeddingcell. Sucha changeis modeled
assuminghe cracksto be penny-shapeellipsoidal cavities.
We ignore how suchellipseschangeshapewhenthe applied
stressis unloaded/reloadedincelinear elasticity alone cap-
turesthe principle effect of how the rock becomesweaker
dueto strategicplacementof cracksin cells. Sincea crack
occupiesa limited extentof a cell, the modification of the
moduli is small comparedo the moduli of the intactcell so
that the resultingfar-field stressfield canbe developedasa
Born series.It is in the third term of this developmenthat
crack-to-cracknteractionsarefirst allowedfor. Higherorder
interactions(three crackssimultaneouslyinteractingand so
on) arenegligibleto the extentthat e= (d,,/A)P canbe con-
sideredsmall.

1. ELASTIC ENERGY

The goal of this sectionis to determinethe elasticenegy
EJ-el storedin a mesovolumenccupingthe region{) andcon-
taining the crack statej (which denotesthe spatialdistribu-
tion of ¢(x) at all pointsx of (1) whena displacementor-
respondingto a uniform straintensore(®) is appliedon the
externalsurfaced() of the mesovolume.

A. Elastic energy of a weakly heterogeneous solid

The effect of the crackfield ¢(x) is to perturbthe stiff-
nesstensorof eachcell asC(x)=C°%+ 8c[ ¢(x)], whereC®
denotesthe moduli of an uncrackedcell (assumeduniform
for all cells), andwhere 5c(x) is a small perturbationdueto
the possiblepresencef a crackascharacterizedy ¢(x). It
is establishedn the Appendixthat the nonzerocomponents
of &c are typically smallerthan thoseof C° by a factor e
=(d,/A)P<1. Our problemis to resolve an elasticity
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boundary-valugroblemin a region{) containinga weakly
heterogeneoustiffnesstensorC(x).
The displacemenboundaryconditionsare given as

VxedQ, u(x)=¢0.x, 2

wherex denoteglistancefrom the centerof the mesovolume.

Elastostaticequilibrium requiresthat
9571 = Clia 90Uy + 91 8¢ jja Ay 1=0 ()

throughout(), where summationover repeatedindices is
assumedbothhereandthroughoutDueto thelinearity of the
problem,we usethe elastostaticGreentensorG = G;;x;X; for
a uniform materialwhich is a solution of

Co 3G im(x.X ) + 8imd°(x—x') =0, (4)

Vxedf), Gijj(x,x")=0. (5)
The componentsG;;(x,x’) definethe ith componentof the
displacemenat x inducedby a unit point force actingalong
thej axisatx’. Here, §;; is the Kroneckersymbol,and &P is
the D-dimensionalDirac distribution.

The solution for the displacementavhen no cracksare
presents simply u(®(x) = £(9). x throughoutall of Q. Thus,
it is a straightforwardexcerciseo demonstratehat the total
displacementu in the presenceof the cracks satisfiesthe
following integral equation:

ui(x)=uO(x) + fQGij(XrX,)ﬂk’[écjklmal Um](x")dPx’,
(6)

whered;, denoteshe partial derivativerelative to the coor
dinatex; . Using e asthe argumentof a seriesexpansionye
write the displacements as u=u©@+u®+...yM
+0(e" ), whereeachu™ is O(e™). Collectingtermsat
eachorderof € in Eq. (6) givesthe following recursionre-
lation:

ui(””)(x):JQG”(x,x')ak,[acmma.,usT?)](x')de'.
@)

The boundaryconditionsusedto defineG guaranteehatfor
all n>0, the displacementsi" are zero on the boundary
).

The quantitywe arespecificallyseekingto establishs the

elastic enegy density E®'=¢ Pf 1 #(x):£(x)dPx, where

we recall that € is the linear dimensionof a mesovolume.

The definitions of the strain ;= (9, uj+d;u;) and stress
T = (C”k|+5c,]k|)sk| give |mmed|atelythe followmg rela-
tions:

(“’— > (9 u{™+g;u(™), €)

() C|1k|8k| +5C|1k|8|(<| D, (9)
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E(n)_
2¢P a=o Jo

A" £AdPx, (10

with the conventione~Y=0. In thelastexpressionthe fact
that u®=0 on the boundaryfor all a>0 guaranteeghat
afterintegratingby parts,

f %”*a):s(a)de=f An-a):yy@gPy
0 Q

= J n. 7=, y@gP-1x=0,
o0

wherewe usedthe facts that the stresstensoris symmetric
and solenoidal. The nth term of the total elastic enegy is
then

1—
EM :54“% £0), (11

wherethe upperbar denotesa volume averageover ().

Thefirst termof the elasticenegy is independentf the ¢
field, and correspondgo the physically unimportantamount
of enegy

E(O):%S(O): C0): £0) (12)
storedin the intact state.
For the higherordersn=1, 7" is expressedy Eq. (9),

and the sameargumentas aboveusing the fact that u™ =0
on 9Q) eliminatesa term:

£ = 7100000+ D ;0= 117 5 00,
(13
The secondterm of the developement,
E(l):%gmmw), (14)

represent®nly a local dependancen Sc (andthereforeon
thecrackfield) sinceit doesnotinvolve nestedntegralsover
two differentpositions.It will be shownto represenbnly the
contributionof the averagecrack porosityto the stiffnessof
therock.

The third term of the developments wherethe desired
crack-to-crackinteractionsarrive. Using the symmetryof sc
undertheinversionof its two first or lastindices,andEq. (7)
to havean integralform of u®, Eq. (13) transformsto

2¢PE®) = f ApUH(X) € pca(x) e Y dPx

:f fsgzi)écabcd(x)abeaj(x:x,)

X Jyr 8Cm(x") & dPxdPx’ (15)
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This term accountsfor the way that a crack presentat x’
enegetically interactswith a differentcrackat x. Thisis the
nonlocal interactionterm that is ultimately responsiblefor
the localizationtransition. The highertermsof the Born de-
velopmentcan be neglectedor our purposes.

B. Elastic energy as explicit function of the crack field

To establishthe terms of the Born-approximatecelastic
enegy asexplicit functionsof boththe crackstatee andthe
imposedstrain £(©), a few definitionsarefirst introduced.

The principal axesof £© are along (€ .agian, axia) S de-
notedin Fig. 1. Our squarenetworkof cellsis rotated+ 45°
from this orthonormabasis We work herein the coordinates

(e;,8,) of thesquarenetworksothatthe applied-strairtakes

the form
S(O)ZE(A 7)’

2\y A (16
whereA = g giart € axial ANd Y= — (&radia— € axia) aretheim-
poseddilatationand shearstrain.

For conveniencewe assumehe intact materialto beiso-
tropic. Taking \ + 2 asthe stressunit, where(\, ) arethe
Lameparametersf the material,andusingthe usualtensor
to-matrix mapping of the indices (11)—1; (22)
—2; (12)—3, thefourth-orderstiffnesstensorof theintact
materialtakesthe form

1 20 1
Ccl=| 2a-1 1 o |, (17
0 0 -«
where
AN
a_)\+2,u (18

is a material-dependertonstantin the range[0.5,1].

The deviation dc of this tensordueto the possiblepres-
enceof a crackin a cell separatemto anisotropiccontribu-
tion independenbdf the crack’s orientation,andinto an an-

isotropic  orientation-dependent contribution. In  the
Appendix,we demonstrateéhat
8c(x) = e[ Ap(x)+Ble(x)|], (19
72— M 0 0
A= 0 m—n2 O, (20
0 0 0
R/ —(2a=1)n; 0
B=| —(2a=1)n; - 0 ;
0 0 —(1-a) 7
(21

where (71, 72,73) are positive constantsexpressedn the
Appendixin termsof the Lame parameters.
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Making the necessarycontractionsover the indices, we
easily obtainthe trivial (crackindependentenegy E© us-
ing Egs.(12), (16), and (17). For later conveniencethis re-
sultis bestwritten in matrix form as

EO=2(8,)-Mo- (A, (22
_(af 0 )
Mo= 0 1-al (23
Using the auxiliary field
P(x)=|e(x)| (24)

denotingthe amplitudeof eachcrack, one similarly obtains
[usingEgs. (14) and (19)—(21)]

E(l)zg[s(o):A: £+ £0):B: £y

1
:E(AI’Y)MI(A17)T1 (25)
with
15 o)
MJ_:_EI/I y (26)
0 K3
2a—1
Kzz%"‘ az 72, (27)
k3=(1—a)n;3. (28)

Theterm proportionalto @ hasalgebraicallycanceleddueto
the symmetryof the problemunderparity; inversionof the
minor axis é,adia| flips the orientationof cracks,andtherefore
changeghe sign of Z, while the enegy remainsnecessarily
unchangedThe surviving term is negativeand proportional

to ¢, andaccountdor the softeningof the mesovolumedue
to the presencef cracks.This dependencen the total num-
ber of cracksis the only orderparametedependengffect to
first order

Last, the crack-interactionterm of principal interestcan
be readily expressedrom Egs.(15) and(19) as

—2¢PE@= s {6{)) AuhcaAiji fainy
+ 2528(c%) Sf<(|)) AabcdBijkiJaibj

0) . (0)

+ €%y £ AabcdBijiiNaibj » (29

wherethefourth-ordertensord,g,h arefunctionalsof ¢ and
definedas

faibj:f dDXf dDX’Gai(X,X’)ab(P&jr(P, (30)

gaibj:f dDXf d®X’ Gyaiy(X,X') o1 i, (31)
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haibj = j dDXf dDX,Gai(X,X,)abl/lﬁjrlp. (32)
In the secondterm, the reciprocity of the Greenfunction
Gai(X,X")=G,(x',x) is usedaswell asthe notation Gy,
=(Gait+Gia)/2.

The Greentensorneedecheresatisfiesthe Dirichlet con-
ditions of Eqg. (5) andcanbe obtained,in principle, from the
infinite-spaceGreentensorvia the imagemethod.However
this transformsE(®) into aninfinite series(onetermfor each
image, and makesthe functional integrationsof Paperlll
analytically hopeless.To remedy this problem, the Green
function with a periodicinsteadof zero boundarycondition
is usedas ersatz.Since u™ is only affected close to the
boundariesby this replacementthis approximationwill be
cc()zn)sideredvalid for the evaluationof the volume integral
E'“.

The double integralsof Egs. (30)—(32) are most easily
expressedising the 2D finite-Fouriertransform

ﬁ(k)=deDxF(x)e—ik'X, (33
Foo=— 3 Elgek (34
(X)_eD > (k)e™™,

where the sum over the wave vectors k is over {k
=2mn/€e; VYi,n e Z} with an upper cutoff given by
maxn;>€/A that reflects the fact that the order parameter
cannotvary on scalessmallerthan cell sizesA. Sincethe
Greenfunction usedis definedwith periodicboundarycon-
ditions, it satisfiesG,;(x,x") = G,i(x—x"). Its Fouriertrans-
form is easily establishedand uponrecallingthat (A +2u)
is adoptedasthe stressunit, reads

- 1 "
Gl = ———5(1—akk),

(1-a)
e k
IV
wherel is the identity tensor This is real and symmetric,as
is G(x) itself. Since ¢ and ¢ are real fields, one has ¢
(—K)=¢*(k) and ¥(—k)="4* (k). Using theserelations,
togetherwith the identity [,dPxe'**=¢Ps,, the integrals
of Egs.(30)—(32) becomethe following sums

(39

(36)

1 - o A A
faii = 5 go [o(K) |2k ko ( 80— akiky) (37)
1 o o~ o o
Gaibi =5 go R o (k) §* (K) Tkkp( 8ia— akiky), (38)

1 - on & o
haivi =5 go [d(K)|?kikp( Sia— akiky), (39
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where Re denotesthe real part of a complex quantity and

wherek; denotesthe ith componentof k=k/||k||. With the
following definitionsassociatedvith the orientationof k:

b= (&1,K), (40)
uy=cog 26,) = cos O — sirt 6, =k3— k3, (412)
vi=SIN(26)) = 2 cosb; Sin = 2k k5, (42

the remainingcontractionin Eq. (29) over the eightindices
(abcdijkl) is performed.The calculationis a bit long but
without surpriseandfinally produces

1
E@=2(A,7) Mz (4,7, (43)
M —e (a ° (44)
2 (1—a)e®\b ¢’
wherethe components, b, andc aredefined,
a=2 a; b=2 Db c=2 ¢, (45
K£0 k£0 k+0

2= (1— au) k@i *+ 2(1— @) ugs k2 RE @)
+(1= ) k3|2,
b= — auwirirs RE(pdit ) +(1— a)vrors| i,
cie=(1— av) <3,

with k5, k3 definedin Egs.(27), (28) and x, a newmaterial-
dependentonstant,

~M— 72
K1= 2 .

(46)

IV. SURFACE FORMATION ENERGY

Next, we mustaccountfor the enegy E} thatirreversibly
went into creatingthe cracksof a given crack statej at a
maximumdeformatione,,. In Paperl, this contributionwas
obtainedusing Griffith’s criterion as

E}zge%m:(co—cj):sm, (47)
whereq derivesfrom the quenchedlisorderandis bounded
as0.5=qg< 1. Thederivationof this statementmplicitly as-
sumedthat all crackswere the samelength. In the present
treatmentcracksareallowedto haveanylengthin therange
0=<d=d,,. It is a straightforwardexerciseto demonstrate
thatif the breakingenegiesfor eachpossiblelengthd areall
sampledfrom the samequenched-disordatistribution, then
Eq. (47) againholds.We foregosucha demonstrationln the
notationof the presentpaperwe may thus statethat
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El¢]'=q(E@—E*[¢])=—aq(ED+EP)[¢], (48

whereE®) andE(® arethe termsof the Born-development
givenby Egs.(25) and(43) uponreplacingthe currentstrain
parametera andy by themaximum-achievedtrainA ,, and

Ym-

V. TEMPERATURE

Although not requiredas part of the Hamiltonianmodel,
we now give an explicit in A, v, approximateexpression
for the temperatureby using Eq. (59) of Paperl. This tem-
peraturevasderivedin Paper assumingonly a singlecrack
size. Unfortunately the result doesnot easily generalizeto
multiple crack sizesand so we simply taked=d,, to obtain
the estimate

(1-a)dRey(Am, ¥m)

In{[¢/ey(Am, ym) 1¥E D -1}
(49)

fDT(Am,ym)= -

whereeld,'?1 is how muchthe first-Born elasticenegy in a
mesovolumds reducedwhena crack of lengthd,, is intro-
duced [c.f. Egs. (25 and (26)]. The enegy density
e1(An,ym) is definedas

1
€x(Am. ym)= 5 (k2Af+ k3 ¥, (50

while ¢ is a dimensionless'fracture toughness’ parameter
definedas

r

(N 2p)dy 6

é’E

Thereis a phasetransitionwhen (¢/e,)¥®"9=2 andT di-
vergesso that all crack stateshecomeequally probable.

We now considerwhethersucha phasetransitionis ex-
pectedn laboratoryexperiment®n rocks.The orderof mag-
nitude valuesI'~10% J/in?, d,~10"°m, x,~1, and (A
+2u)~ 10'° Paareappropriateor typical grainsin rocksso
that {~10 3. When a rock fails in sheay the accumulated
strainis on the order of a percentor two, so that the maxi-
mumvalueof e, of interestis alsoon the orderof 10”4, We
thusfind that at shearfailure, {/e;~10 and so we a priori
expect the localization transition to occur prior to the
temperature-divglence transition. This is more quantita-
tively demonstratedh Paperlll.

VI. SUMMARY

Collectingtogetherboththe elasticenegy andthe surface
formation enegy, we obtain at last the Hamiltonianto be
usedin performing ensembleaveragesover crack statesin
the next paper We write this Hamiltonianin the final form

PHYSICAL REVIEW E 66, 036136 (2002

Ej(e,em) =ER(e)[¢]+E'(em) ¢],
ER(e)[¢]1=E%(A,») +E™A, nle]+E™A,v)[¢],

E'(em[¢]=—a{E™(Am, ym) @]+ E™(An, ym) o]},

where (A, y) arethe isotropic and shearstrain components
of thecurrentstraintensore, and(A,, y,) aresimilarquan-
tities referringto the maximumachievedstrain ,,. The en-
emy E° is theftrivial elasticenegy of the uncrackedstate

EO(A,'y)Z %{aAz-f-(l—a)’yz},

where « is a dimensionlesselastic constantin the range
[0.5,1] definedby Eq. (18).

The next term in the Born developmentis E¥=E®),
which dependsonly on the volume averagey, which is the
fraction of crackedcells in the crack state ¢ and is thus
entirely independentf the spatialfluctuationsof ¢. Its de-
pendenceon the strain(A, y) is

av, 1 2 21,1
EMA lel= — 5lraA"+ k3y ]ed.

We definede=(d,,/A)P to be a small parameterwhere D
=2 is the numberof spacedimensionsin the model, and
dn, A, and ¢ asrespectivelythe linear sizesof the largest
crack, a unit cell, anda mesovolumeThe three coefficients
k; are positive dimensionlessnaterial-dependentonstants
definedby Egs.(27), (28), and (46).

Theinteractionenegy E™=E(?) involve a quadraticma-
trix operatorP, that,for eachnonzerowavevectork, mixes
togetherthe Fouriermodesof both ¢ and

_ 2

EM(A, - _ RI-P-RA+11-Pp-l1y),
(A, 7)le] 2(1—a)€2Dk;O( k' P Rt - P 1)

Re=[Re(py); Re(¥) 17,

Le=[Im(e); Im(g) 1T,

L My
My Ng

Pk:

whereRe and Im representhe real andimaginarypart of a
complex number The componentsL,, M,, N, depend
both on the applied-strainparametergmaximum or actual
oneg, andthe wavevectork. In anticipationof Paperlll, it

is convenientto introduce

Lok
K1 A
asthe shearstrain variableandto definethe parameter

2N+ p) (N 2u0)
)\3

C=kylKk1=1

3
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wherec>1. The component®f the matrix P, arethen
Li(A,0)=A%}(1-aup),
M (A, 0)=A%kul(1- a)c— avw],

Np(A,0) =A% (1— a)c®+2(1- a)cvw
+(1- avE)wz],

whereu,=cos(%,) andv,=sin(2¢,) arefunctionsthatchar
acterizethe orientationof k throughits polar angle 6.

Note that all termscontributingto the Hamiltonianhave
beenwritten in a dimensionlesgorm in which enegy den-
sity E;j, like stressjs measuredn units of (A +2u).

APPENDIX: EFFECTIVE MODULI
OF A CRACKED CELL

A crackis modeledhereasan elongatecellipse havinga
major axis of lengthd anda minor axesof lengthw in the
limit thatw/d<1 which correspondso a so-called ‘penny-
shaped’crack.lIts long axisis by conventionorientedalong

e, if locally ¢>0, andalonge, if ¢<0. The unit cell is a

squarewhosesidesare colinearwith (é1 ; éz), andhasa size
A>d sincethe crackis takento be small. Theinterior of the
crackis supposedo be much more compliantthanthe em-
beddingmatrix and all plastic deformationwill be ignored,;
i.e., thereis no residualstressor strain allowed for in the
crackedsystemwhenit is unloadedto zeroappliedstress.

Denotingas usualthe volume averageof a quantity with
an overbar we seekto determinethe elastic-stifnesstensor
C of a cell asdefinedthroughthe relation

7ii=Cijueu - (A1)
The regioninsidethe crackis occupiedby a uniform mate-
rial of stiffnessC! while the intact matrix surroundingthe
crackis occupiedby a materialof stiffnessC*. Upon denot-
ing v the volumefraction of the crackin the cell, we obtain
directly

?ijz(l_v)ciojklg%"‘vciljm;&r (A2)
Eshelby[11] demonstratethatthe straine! insidean elliptic
inclusionis uniform while Wu [12] relatesthis strainto the
strainat infinity by a tensorT,
(A3)

- _ ©
gij=Tijkew -
With cracksconsideredas small inclusionsin their embed-

ding cell (v<1), the approximatione“z?is valid to lead-
ing orderin the above,so that
;ioj =Wijneu . (A4)

(L=0)Wijiu= (8 Sji—vTiji)- (A5)
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Using Egs.(A3) and(A4) for the averagedeformationin and
out of the inclusion, Eg. (A2) hasthe desiredlinear form of
Eqg. (A1) with an effective stiffnesstensorgiven by

Ciju= C?jkl - U(Ciojmn_ Ciljmn)TmnkI :Ciojkl - UCinmnTmnkI :

(AB)

This approximationis justified underthe hypothesighat the
materialinsidethe inclusion (air) is far more compliantthan
the hostmaterial(solid silicate). Theserelationsarevalid in
any spacedimensionD . The two-dimensionataseof inter
estto us here can be obtainedfrom the three-dimensional
Wu-Eshelbyresultsby working with a three-dimensionagl-
lipsoidal inclusion having semiaxesof linear dimensiona
=d/2; b=w/2; and c=h/2 embeddedwithin a cell of di-
mensionA X A X h in the limit thath>A. In this limit, the
three-dimensiongbroblembecomesnein two dimensions.

Wu expressesis tensorT in termsof a tensorS defined
by Eshelby

1
Tiiii= when i#j, A7
Ti111 T2 Taiss
Too11 Tozoo Tooss
Tazi1 Tazoo Tasss
1-Si11 —Swmze  —Suass) !
= —Sp1i1 1-Su» —Sypss
—Sz311 —Sszz 1 Sgass
(A8)
The Eshelby[11] tensorcomponentsare defined
S1117= Qa®l 4+ Rl,, (A9)
S112= Qb?l 5o~ Rl (A10)
Q R
51212:§(az+ b?) 1 ap+ E(Ia'Hb)a (A11)

with similar expressiondor the remainingcomponentb-
tained through the permutationof a,b,c and 1,2,3. In the
notationof the presentpaper the variousparametersf Eqgs.
(A9)—(A11) aredefined

1—20'p
and R=

8m(l—op)’ (A12)

Q= 8m(1—op)

whereo,=\/2(\ + u) is the Poissors ratio of the solid ma-
terial (assumedsotropig, and

| =2map [ — Y (A13)

= a —_—,

a= T o (a®+u)D

| aa=2mab [ — (A14)
= a T e————

= “T o (a®+u)’D
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i du
| =—wabf , A15
3 0 (a2+u)(b2+u)D (AL5)
with D= \[(a?+u)(b?+u) andl =1,.=1,.=1,=0. Simi-

lar expressionsireobtainedfor I, andl ;, by replacinga and
b in the above.Theseelliptic integralsare evaluatedto the
leadingorderin the small aspectratio 6= b/a which gives

l,=478, ly=4m(1-95), (A16)
I —47725 I _am I —477(1 29)
aa 3a2 ' bb 3b2’ ab 3a2 .
(Al17)
Defining parameters andr by
4mO= 3 d redmRe 1-20,
A=4mQ= 31—, 2 TTATRE A,
(A18)
we obtainthatto the leadingorderin 1/8,
31
TlZlZZE 5 (A19)
A
1
To11= 5 (A20)
r 1+——r>
1 1
To227= . q 5 (A21)
r +§—r

All remainingcomponentf T are either O(1) and there-
fore negligible, or are unimportantfor the componentof C
relatedto directions1 and 2.

To get finally the deviation Sc of the effective elastic
moduli of the crackedcell throughEqg. (A6), we note first
that

477 abc 2w a’b wd?

= = ——=——4=

o

3 A% 3 aa 642 ewé, (A22)
wherewe recall thatd=2a is the crack’s length,w=2b its
width, and é its aspectatio. It is throughthis expressiorthat
the small parametere= (d,,/A)?<1 entersthe Born series.
Note that ¢=|¢|=(d/d,)? characterizeshe extentof the
crack.Thethird dimensionof h=2c goesto infinity in order
to obtainthe two-dimensionalimit of this three-dimensional
system.

Replacingq and r by their expressionsn terms of the
Lameparameters., u, andusingby convention(\ +2u) as
the stressunit, the crack-inducedperturbationsof the cell
moduli are

PHYSICAL REVIEW E 66, 036136 (2002

0 T Nt2u

0Co205= — 0 Co0pl 2205~ — 4 P (A23)

o 2

= — O = —— e
6C1111= —vCpypol 2017 6 €¢M(7\+2M) , (A24)
0 v

6C1125= — 0 C11991 2005~ — B¢ l/’; . (A25)

o T A
0Co211= — U Chnpl 20117 — 5 61//; , (A26)

0 0 ™
0C1217= — v (Cip1T 1210+ Ciopil 2119 = 902 )\ T

(A27)

with all othertermsbeingzeroexceptthoseobtainedby the
necessargymmetriesunderexchangeof the two first or two
lastindexes.

Using the dimensionlessonstantse definedin Eq. (18)
andintroducingthe positive dimensionlesgoefficientsy; ,

N+ u(N+2u)?
M=8 Npn+2pm)

TN+ 2u
T TN

T N+2u A28
773_1_2 >\+,LL ’ ( )

we obtainat lastthe deviationof the elasticmoduli of a cell

containinga crack with long axis orientedalong él (corre-
spondingto a positive ¢),

—2m —(2a=1)n, 0
—(2a=1)n,; —72 0

0 0 —(1—a)n,
(A29)

éc= €Y.

The expressiorfor both possibleorientationsof the cracksis

straightforward.Orienting the crack along e, insteade, is

equivalento exchanginghe oneandtwo indicesin the com-

ponentsof &c, which resultsin an exchangeof the compo-

nents 6cq417 and 8C,,,,, all remaining componentsof ¢

beingunafectedby this change Separatindboth expressions
of §c into symmetricand antisymmetricparts, and noting

that 5c=0 trivially when ¢=0 (no crack, we obtain the

generalexpressiorusedin Egs.(19)—(21).
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