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Fracture of disordered solids in compression as a critical phenomenon.
|. Statistical mechanics formalism
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Thisis thefirst of a seriesof threearticlesthattreatsfracturelocalizationasa critical phenomenonThis first
article establishes statisticalmechanicdasedon ensembleaveragesvhenfluctuationsthroughtime play no
role in definingthe ensembleEnsemblesre obtainedby dividing a hugerock sampleinto many mesoscopic
volumes.Becauseaocks are a disorderedcollection of grainsin cohesivecontact,we expectthat onceshear
strainis appliedandcracksbeginto arrivein the systemthe mesoscopicolumeswill havea wide distribution
of different crack states.Thesemesoscopio/olumesare the membersof our ensemblesWe determinethe
probability of observinga mesoscopiazolumeto be in a given crack stateby maximizing Shannors measure
of the emepgent-crackdisordersubjectto constraintscoming from the enegy balanceof brittle fracture.The
laws of thermodynamicsthe partition function, and the quantificationof temperatureare obtainedfor such

crackingsystems.

DOI: 10.1103/PhysReVE.66.036135

I. INTRODUCTION

When rocks and other disordered-solidnaterialsare in
compressionand then have an additional deviatoric strain
applied to them, small stable cracksirreversibly appearat
random throughoutthe material. Each time the deviatoric
strainis increasedmore cracksappear In the softeningre-
gimefollowing peakstressa samplewill unstablyfail along
a planelocalizedat an anglerelative to the principal-stress
direction. We have accumulatedevidence suggestingthat
suchlocalizationis a continuousphasetransition.

This is the first of threearticlesthat developsa statistical
mechanicsthat allows the possible phasetransitionsin a
cracking solid to be investigated.Many studies have as-
sumedthat, fracture is a thermally-activatedprocessand
haveuseda statisticalmechanicdasedon thermalfluctua-
tions[1-5]. However our interesthereis with “‘brittle frac-
ture” in which cracksappeaiirreversiblyandin which ther
mal fluctuationsplay no role. For this problem,the statistics
of the fractureprocesss entirely dueto the initial quenched
disorderin the system.

A considerableliterature has developedfor so-called
“breakdown’ phenomenan systemshavingquenchedlisor
der and zero temperaturd 6—23]. In particular the burned-
fuse[6—8], spring-networ 9—11] andfiber-bundle[12—-17]
analogmodelsfor fracturehaveall beenshownto yield vari-
ous types of scaling laws prior to the point of breakdown
[18—23]. Our work is differentin that we directly treatthe
fracture problem (not an analogmodel of it) assumingthat
all of the statisticss dueto quenchedlisorder We obtainthe
probability of emegentdamagestatesby maximizing Shan-
non’s entropy subjectto appropriateconstraints.This ap-
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proachhasrecentlybeenprovenexactin the specialcaseof
fiber bundles[24].

The principal conclusionof our presentheoryis thatat a
critical-strain point, there is a continuousphasetransition
from stateswhere cracksare uniformly distributedto states
wherecoherentlyorientedcracksare groupedinto conjugate
bands.Severalfacts justify classifyingsuchbandformation
asa critical phenomenon.

First, the localization of the cracksinto bandsspontane-
ously breaksboththe rotationalandtranslationasymmetries
of the material even though our model Hamiltonian pre-
servesthesesamesymmetries.The entropy of the material
remainscontinuousand the ensembleof the most probable
statesbecomeglegeneratat the localizationtransition;i.e.,
prior to localization, the most probablestate is the intact
state,while right at the transition, certainbandedstatesac-
quire the same probability as the intact state. Further an
autocorrelatiorlengthassociatedavith the aspectratio of the
emegent-crackbandsdivergesin the approactto the critical
point. Unfortunately quantitative laboratory measurements
of how the bandsof crackscoalesceand evolvein size and
shapeprior to the final localization point do not presently
exist. We speculatdn the third article of this serieson how
suchmeasurementsiight be performed.

Our explanationof localization basedon the physicsof
interactingcracksis distinct from the bifurcationanalysisof
Rudnicki and Rice [25] in which localizationis a conse-
quence of a proposedphenomenologicalelasto-plasticity
law. Our work providesa methodfor obtainingsucha plas-
ticity law from the underlyingphysics.

II. THE PROBABILISTIC NATURE OF THE FRACTURE
PROBLEM

Rocks are a disorderedcollection of grainsin cohesive
contact.The grainshavevarying shapesandsizeswith typi-
cal grain sizesin the rangeof 10-100 um but sometimes
considerablyarger. The contactdbetweerthe grainsaregen-
erally weakerthanthe grainsthemselvesaind havestrengths
andgeometrieghatvary from onecontactto the next. When
deviatoric(i.e., sheayJ strainis appliedto a rock, grain con-
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tactsbeginto break.In whatfollows, a brokengrain contact
will be calleda *‘crack.” Sucha breakis a stress-activated
irreversibleprocessOncea grain contactis broken,thereis
no significant healing that occurs. Cracks are not arriving
anddisappearinglueto thermalfluctuationsThis fact makes
our definition of statistical ensemblegyuite different from
thatin the usualapplicationof statisticalmechanicgo mo-
lecular systemsaswe now go on to discuss.

A. Creating a statistical ensemble

We imagine dividing a huge (formally infinite) system
into mesoscopicvolumes that will be called “‘mesovol-
umes.” Becausethe materialsof interesthere have a wide
rangeof grain-scalalisorder manydifferentcrackstateswill
emege in the various mesovolumesonce enegy hasbeen
putinto the systemandcrackingbegins.Thesevariousmeso-
volumesand the crack statesthey containcomprisethe en-
semblesn our theory

In orderto be specificwith our ideas,we now introducea
simple model of the initial disorder and emepgent-crack
statesThe purposeof this specialmodelin the presenpaper
is to motivate how ensemblesare formed; however the
modelHamiltoniandevelopedn Paperl will be basedupon
it.

In themodel,eachmesovolumes dividedinto N identical
cells,wherea cell hasdimension®n the orderof agrainsize
andwhereN is a large numbersuchas10°® or morewith D
the systems$ dimension.In eachcell, only a single grain
contactis allowedto break.The local order parameter(ex-
plicitly definedin Paperll) characterizeboththe orientation
andthe lengthof sucha brokengrain contact.In the present
paper an orderparameterdescriptionis not yet necessary
Prior to breaking,all cells are assumedo have the same
elasticmoduli.

The quenchedlisorderis in how the grain-contacbreak-
ing enegy &£(x) isdistributedin the cellsx of amesovolume.
We assumehat only a fraction of the nominal grain-contact
areais actually cementedtogethey and that the degreeof
cementatiorfrom one contactto the next is random.Thus,
the breaking enepies £(x) are random variablesindepen-
dently sampledfrom a distribution (&) having supporton
[0,/'d® 1] wherel is the surface-engyy densityof the min-
eral,d is thenominallinear dimensionof a graincontactand
d® ! is the grain-contactarea in D dimensions. The
guenched-disordedistribution 77(£) canhaveany assumed
form.

We now definean infinite collection of distinct mesovol-
umesby allowing for every conceivablewvay that £(x) may
be distributedin a mesovolume Putting this collection to-
getherforms the infinite rock masswhosepropertieswe are
interestedn determining.Eachmesovolumeso definedis a
deterministic systemand upon slowly applying the same
straintensore to all the mesovolumesegachwill undego a
deterministiccrackingscenaricandendup in a well-defined
crack state.We denoteeachof the possiblefinal crack states
with anindex|. A principal goal of the presentpaperis to
obtainthe occupationprobabilitiesp; of thesevariouscrack
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stateshat are simply the fraction of the mesovolumesn the
systemthatarein the statej.

We can understanchow the various crack statesemege
by appealingo a form of Griffith’s[26] criterion.A cell will
breakonly if thechangen theelasticenegy dueto the break
is greaterthanor equalto the bond-breakingnegy £(x). If
C, is the effective elastic-stifnesstensorof the entiremeso-
volume that holds after the break occursand if C, is the
stiffnesstensorthat held beforethe break,Griffith’ s criterion
canbe stated,

€Pe:(C,—C,):el2>E, (1)

where € is the straintensorcharacterizinghe entire meso-
volume at the momentof the breakand ¢° is the volume of

amesovolumeThis particularstatements anapproximation
basedon anassumedinear elasticityandabsencef residual
strainafterunloading but a generaktatemenwill bederived
in Sec.lll B. Sincethe mesovolumewith an extra crackis

more compliantthanwithout it, the weakestcells will begin
to breakevenafter the slightestof appliedstrain.

Yet an emepgent-crackstateis not just a trivial conse-
quenceof the £(x) distribution in a mesovolume.Cracks
aligned along bandsconcentratestressallowing evenlarge
barriers&(x) to be overtakenalongthe band.In the present
model, this meansthat placing cracksalongbandsproduces
alargerchangen the elasticmoduli of the mesovolumehan
placing cracks in more random positions. Thus, at least
abovesomeappliedstrainlevel, we expectthe bandedstates
to emepe asthe onesthat are significantly presentin a rock
system Nonbandedtatesat large strainaremuchmore spe-
cial. They can comeonly from mesovolumesn which the
weak cells making up the stateare all surroundedy strong
cells.

A key ideahereis thateachmesovolumembeddedn the
system experienceshe same global strain tensor and, as
such, has a crack state statistically independentfrom the
other mesovolumesThis is only valid so long asthe emer
gentbandsof organizedcrackshavea dimensioné¢ that is
small relative to the size £ of the mesovolume Screening
effectsdueto destructivestraininteractionsbetweerincoher
ently orientedcrackscausethe far-field strainfrom a local
crack structureto fall off with distancer evenmore rapidly
thanthe (£/r)P fall off in an uncrackedmaterial.But evenin
thethermodynamidimit of infinite systemsizestherequired
statisticalindependencef the mesovolumesbreaksdown
right at the critical strain where divergent bandsof cracks
become important. The conclusion is that although our
ensemble-basestatisticsis valid in the approactto localiza-
tion, it is incapable of describing the post-localization
physics.

B. Macroscopic observables

In the laboratory experimentsto which we apply our
theory asampleis immersedn areservoirfrom which either
uniform stressor strainconditionscanbe appliedto the sam-
ple’s exteriorsurfaced ). The macroscopistraintensore is
definedin termsof the displacementi at pointson 9{) as
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FIG. 1. Stress-straindata courtesyof David Lockner of the
USGSMenlo Park. The slope measuredupon loading a sampleis
definedby D while that measurediponunloadingand/orreloading
the sampleis definedby C.
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wheren is the outwardnormal to the samples surfaceand
LP is the volume of the samplein D dimensionsThis defi-

nition of deformationthus correspondgo the volume aver

ageof thelocal deformationtensorVu(x) definedat interior

pointsx of the samplelt will soonbe shownto be conjugate
to the macroscopicstresstensor s in the expressiorfor the
work carriedout on the sample.lf strain(ratherthanstres$

is the control variable,the displacementsat points x of the
externalsurfaced() aregivenby u=x: .

As shownin Fig. 1, a typical compressionexperiment
startswith the samplein a purehydrostaticpressurestateand
then systematicallyincreasesthe deformationin the axial
direction, keepingthe radial “‘confining” pressurep. con-
stant. Otherways of controlling the radial stressduring the
experimentare to keep a constantratio betweenaxial and
radial stress,or to imposea constantradial deformation.So
long asthe confiningpressuraloesnot becomesolarge asto
induce a brittle-to-ductile transition[28], thesevarious ex-
perimentsall resultin the sametype of localizedstructureat
large axial strains.When axial strain is monotonicallyin-
creasedcracksarrive at eachstrainincrementandthe defor
mationand stresschangesare relatedas

dr= 7 de=D:d 3
7= ge de=D:de, (3

wherethefourth-ordertensorD is calledthetangent-stifness
tensor This tensordefinesthe slopesbetweenthe various
stressand strain componentsas the sampleis beingloaded
andis an experimentabbservable.

If at somepointin the stresshistory the axial pressurés
reduced,we follow a different deformationpath as seenin
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thefiguredueto thefactthatno newcracksarecreatedSuch
an unloadingexperimentdefinesthe elastic(or secant stiff-
nesstensorC,

dr=C:de. (4)

We model the unloading/reloadingpaths as being entirely
reversibleandin sodoing neglectthe small hysteresisiueto
friction alongthe openedcracks.

In orderto distinguishloadingpaths(with crackcreation
from unloadingpaths(without crackcreation, all properties
are explicitly taken to dependon two strain variables;
namely the maximum strain &,, having beenappliedto a
sample,and the currentstrain ¢ that is different than the
maximum only if the sample has been subsequentlyun-
loaded.Note that evenif £ and g, are written as tensors,
they eachcorrespondo only one scalardegreeof freedom
along the loading/unloadingpaths, since the radial compo-
nentscanalwaysbe expressedn termsof the axial compo-
nents via the type of radial control employed (e.g., p.
=constin a standardriaxial tesb.

The stresstensors correspondso the volume averageof
the local stresstensorT (x) thatsatisfiesV - T(x) =0 at inte-
rior pointsx; i.e., 7=L P [, T(x)dV andis afunctionof the
currentandmaximumstrains== #( €, &,) as shownin Fig. 1.
By averagingthe elastostatiadentity V- (Tx)=T over the
mesovolumeve further havethat 7=L =P [ ,on- TxdS.

The work density dU performedon the samplewhen
thereis anincrementin strainde is in both casesf loading
and unloading

1
dU=—f n-T-dudS (5
L Q)

=r7:.de. (6)

To obtain Eq. (6) from (5), we havewritten the controlled
displacementsn a samples surfaceasdu=x- de wherethe
strain incrementde is uniform over 9€). Thus, dU corre-
spondsto the volume averageof the local work density
T(X):dVu(x).

Thetotal enegy U perunit samplevolumethat goesinto
the sampleduring the loadingup to a maximumstraintensor
gy is then

U(sm)=f£mﬁ£’,s’):d£’, 7
£y

where g, is the strain associatedwvith the initial isotropic
stresslf afterloadingto g,,, the sampleis unloadedcbackto
a currentstrainof &, we havethe generalexpression

U(E,Em)ZU(Sm)-i‘fE7(8’,£m):d£'. (8)

If the sampleis unloadedback to the initial stress,corre-
spondingto a possibly nonzeroresidual strain £ a last
experimentalobservableis the enegy Q(e,,)=U(£"5¢y,)
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(per unit samplevolume that wentinto crack creationand
thatis lost during the loading process

C. Ergodic hypothesis

We haveshownabovethatthe experimentallymeasurable
variablesof enegy density U, deformatione, and applied
stressr correspondo volumeaverage®f eachfield through-
out a system.Our ergodic hypothesisamountsto assuming
thatthe systemswe work with aresufficientlylarge thatsuch
volume averagesan be replacedby ensembleaverages

Here, E; is the averagework per unit mesovolumerequired
to take an initially uncrackedmesovolumerom zero strain
to the straintensore; . A similar definition holdsfor ;. In
both the definition of E; and 7;=dE;/de;, the averageis
overtheinitial quenched-disordatistribution.

So long as eachmesovolumecontainscrack statesthat
have no significantinfluence on the neighboringmesovol-
umes(formally valid only in the thermodynamidimit), the
sum over the collection of mesovolumegensembleaverag-
ing) is equivalento avolumeintegraloverthe entiresystem.
In practice,we will only everconsiderensembleshat have
by definition ;= &; however we could equivantlyimmerse
eachmesovolumein a uniform stress-tensoreservoirand
allow g; to vary from stateto state.

1. THERMODYNAMICS OF CRACK POPULATIONS
A. Fundamental postulate

The fracture-mechanicgroblem of counting how many
of theinitial mesovolumesanbe led to the samecrackstate
appeargo be hopelesslyintractable.Fortunately it also ap-
pears to be unnecessaryfor systems containing initial
guenchedlisorder Uponputtingdeviatoricstrainenegy into
sucha system,the emegent-crackstatesj will, on the one
hand,attemptto mirror this quenchedlisorderwith weakest
cells breakingfirst; however due to the enegetics of the
crack interactions,many different types of initial mesovol-
umesmay be led to the samecrack statewhich resultsin
nonuniformcrack-stateprobabilitiesp; evenif thequenched-
disorderdistributionis uniform.

We stateour fundamentapostulateasfollows: The prob-
ability p; of observing a mesovolume to be in crack state |
can be determined by maximizing Shannon’s [ 27] measure of
disorder

subject to constraints involving the macroscopic observables
that derive from the energetics of the fracture mechanics.
That entropyis to be maximizedcan be expectedsincethe
guenchedlisorderallows all statesto be presentin a suffi-
ciently large system.In recentwork [24], we have demon-

PHYSICAL REVIEW E 66, 036135 (2002

Cy=C;

)
TN(SN-I’

R

T(€)
Co

7/
0
Q
N

T(€)

1 & €

[

FIG. 2. The heavyline is the actual path followed during the
steadyapplicationof axial strain. Eachvertical drop in stresscor
responddgo the arrival of a crack.

stratedthat this postulateyields exactresultsfor the special
caseof fiber bundleswith global-loadsharing.

The constraintsare what give the dimensionlesgunction
S definedby Eq. (10) all the thermodynamicinformation
aboutour cracking systemand must explicitly involve the
independentwariablesof S Suchindependenvariablesare
determinedby establishingthe first law of thermodynamics
for a systemcrackingin compressiveshear

B. The work of creating a crack state

To obtainthe first law, it is first necessaryo definethe
detailedenegy balancefor eachcrack stateand to under
standhow the work E; requiredto createstatej dependson
boththe actualstrain € andon the maximum-achievedtrain
€.

1. Griffith’s criterion and crack-state energy

Considera given mesovolumewith a deterministicdistri-
bution of breakingenepies £(x) assignedo eachcell x of
the mesovolumeStartingfrom a stateof isotropicstrain g,
we slowly apply an additionalaxial deformationand monitor
how onecrackafter anotherentersthe mesovolumeuntil the
final straintensore andfinal crackstatej arearrivedat. Lets
saythatthis statej hasatotal of A/ cracksassociatedvith it.

Figure 2 detailsthe history of how the stress(and, there-
fore, work) might evolvein the mesovolumeasstrainis ap-
plied and cracksarrive. Initially, the mesovolumewill elas-
tically deformaccordingto the stiffnesstensorC, (no cracks
yet present until the first crackarrivesat the straintensore,
with anassociatedirop in the mesovolumes stressL ets say
the bond-breakingenepgy of this first crack was &£;. The
mesovolumewill now havea differentoverall stiffnessten-
sor C; and will elastically deform with thesenew moduli
until the secondcrack arrivesand so on until all N cracks
haveenteredandthe mesovolumehasattainedits final stiff-
nesstensorof C;=C,,. Thefinal tensorC; dependsn both
the location and orientationof these/ cracksin additionto
their number

At someintermediatestagehaving n cracks,the stress
tensorz,(€) is definedby integratingd==C,(&'):de’ from
£°°t0 &, whereg[** is the “residual’ deformationobserved
upon unloadingthe samplebackto zero stressas shownin
the figure. We have
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T(E)= f oCnide’. (12)

n

The elasticenegy densitycorrespondingdo this stateat de-
formation € is similarly

Ecl(e)=E*+ Lresfn( €').de’, (12

n

whereE[*° representshe residualelasticenegy thatremains
in the systemwhen the statewith n cracksis unloadedto
zeroappliedstressTheseresidual(zerostres$ quantitiesare
presentwheneverplastic deformationoccurswithin a grain
contact.After a sampleelastically returnsto zero applied
stress,such plastic deformationremainsand, accordingly
thereis an elasticstresdfield surroundingany crackthat ex-
periencedplastic deformation.The strain enegy associated
with suchlocal residualstresds whatconstitutegheresidual
enegy E;°.

Whenthe nth crackarrivesin a strain-controlledexperi-
ment,thereis no changen the straine, andthusno external
work performed However thereis a changen stiffness(and
possiblyresidualstrain resultingin anassociatedtressdrop
A7,=7,_1(£,)— m(g,), andadropin the storedelasticen-
ergy density AES=E® | (&,)—E%(e,). Enegy conserva-
tion requiresthe elastlcenegy reductionto exactly balance
the work performedin openingthe crackso that

Ent Ky

—AES+ 1 o =0, (13

where &, is the bond-breakingvork performedat the grain
contactof the nth crack, K,, is the enegy that went into
acousticemissionswhen the crack arrived and/orexpended
in anymodell frictional sliding or plasticdeformationat the
grain contact(K,, is a positive “loss” term), and, as earlieg

¢P is the volume of a mesovolumeBecauseK, is positive,
we canrewrite Eq. (13) asan inequality
K, ¢
=AEf— —=0, (14)
® ¢P

which is a generalstatementof Griffith’s criterion. Upon
appealingto linear elasticity (elasticstiffnessesndependent
of strainlevel) and putting the residualdeformationto zero
(no plasticity inside the cracks, we arrive at the convenient
statementPe,:(C,_,—C,): £,/2=&, given earlier

The work performedbetweenthe arrival of the nth and
the (n+1)th crackis defined,

fn+1 AN el el
W,= m(€'): €' =E(&,,1) —Ep(en). (15
&n

Thus,thetotal work requiredto reachthefinal straine is the
sum (cf. Fig. 2)

/\/

EP= 2 W, (16
m=0
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where by conventionW,, is the work performedafter the
arrival of thelastcrackto getto thefinal deformatione. The
superscripp on Ejp is simply indicatingthatthis is the work
for one particularrealizationof the quenchedlisorder Re-
writing the sumby introducingEgs.(15) and(13), thengives

N
EP=Ef((e)—E§ (eo)+2 AE®

N

EntK
ngl ngD - _E8|<80)1

=Ef(e)+ (17)

where Eg'(so) is the small and physically unimportant
amountof enegy thatis storedin the initial isotropic strain
field. Equation(17) is the natural statementthat the work
performedin creatingstatej at strain € is the sum of the
elasticenegy densitystoredin the materialin the final state
plus the enegy irreversibly expendeduring the openingof
eachcrack.

Both thelossterm K, andthe residualenegies E;** (con-
tainedin Ee') are potentlallyafunctlon of the point |n strain
history at WhICh a grain contactactually breaks;e.g., most
modelsone might proposefor plasticdeformationat a grain
contactare dependenbn the appliedstresslevel. However
modelingsuchplastic processeseemsuncertainat best.We
thus assumethat at leastfor thosecrack statessignificantly
contributing to any phase transition (stateswith lots of
cracks, the stress-historydependencef K,, is, on average,
negligible.Further sincethe residualstrainin brittle-fracture
experimentds nevermore than a few percentof the peak-
stressdeformationand sincethe essencef the localization
processdoesnot seemto lie in E;*°, we assumethat E;**
<3,&,. With theseapproximationsthe work density E]p
dependsonly on the final statej, the final strain £ (through
Ef'), andthe breakingenegiesé&, .

The enegy densityE; neededaterin our probability law
is obtainedby further averagingover the quenchedlisorder
in the breakingenepgies &, to give

)+ (e ) el
E]_Ej(€)+71(8m)€D Eo(&o). (18)

Here, ;=\ is thetotal numberof cracksin statej andy; is
the averageenepgy requiredto breaka single grain contact
wherethe averageis over all cells throughoutall mesovol-
umesled to statej. This y; canbedifferentfor differentfinal
crack states.It will also be greaterat greatervaluesof the
maximumstrain g, becauseaccordingto Griffith, the cells
comprisingj can break at higher enepy levels when the
strainis greater Thefirst termin Eq. (18) correspondso the
purely reversibleelasticenegy and thereforedependsonly
on the actualstrain statee.

2. Specific expression for E;

To facilitate the developmenin Paperll andto be more
specific, we now use Griffith’s criterion to developan ex-
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pressionfor E; thatis basedon linear elasticity When the
nth crack arrives, the linearelastic variant of the Griffith
criterion givesthat

E,<tPg,:(C,_1—C,):&,/2 (19

<€Pg,:(Cho1—Cp)ign/2, (20)
whereasearlierg, is the strainpointon the load curvewhere
the nth crack arriveswhile &, is the final maximum strain
level of the experiment.The secondinequality follows from
thefirst sincean extracrackalwaysreduceghe stiffnessof a
mesovolumeFor any particularmesovolumen statej, the
averageenegy requiredto breaka contactylP thus satisfies

1 N ¢°

where the right-hand side comesfrom summingEg. (20).
Since this inequality is independentof the history every
mesovolumehatis led to state] mustsatisfyit. We maythus
write y; in the form

€D

7j:f12—Nj (22)

€ni(Co—Cj)igm,

wherethefraction f; is boundedas0<f;<1. We nextdem-
onstratethatthe variationof f; from onestateto the nextis
so small asto be neglectedaltogether

A tighter lower boundfor f; is obtainedby considering
crack statesj having N, noninteractingcracks. Since the
cracksdo notinteractto concentratestressall of the NV; cells
that broke had their breaking enegies somewherein the
range0<E< SE=¢Pe,,: 5C: £,/2, where 5C is the change
in the stiffnesstensordueto the arrival of a single noninter
acting crack and SE is the associatecchangein the elastic
enegy. Sincethe breakingenegiesareindependentandom
variablestakenfrom the distribution w(&), we obtain

SE
f em(e)de
0

YiT T
f m(e)de
0

for noninteractingcrack states.

We now appealto a specificform for the probability dis-
tribution r(&). Initially, our rocks are intact and it is ex-
pected that more grain contacts are entirely bonded (£
=I"d® 1) thanentirelyunbonded £=0). We thusassumea
monotonicdistribution £ with k>0 satisfyingthe normal-

ization [19° " m(e)de=1 so that

k
£
— k
W) =cé&~.

(23

we)= S+

rdo-1 24

Usingthis 7, the averageenepgy requiredto breaka contact
in a noninteractingcrack stateis
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—k+15E—q€D :5C:
YiTk+2°57 2" Em-O%-Ems

(25
wherewe havedefinedq=(k+1)/(k+2). All dependence
on the underlying quenched-disordedistribution in our
theoryis confinedto the constantg which for anyk>0 isin
therange[0.5,1].

Since for noninteractingstatesC,— C;=.\;6C, a com-
parisonof Egs. (25 and (22) showsthat f;=q for all the
noninteractingstates For the interactingstatesthe prefactor
f; mustbe slightly greaterbecausenow stressconcentration
canallow strongercellsto break.It is thusconcludedhatfor
all statesthe f; of Eq. (22) areboundedasq=f;<1 which
whencomparedo how N variesfrom stateto statecanbe
consideredhegligible. From hereon, we simply take f;=q
for all states.

The essentiaphysicsfor the averageamountof work that
goesinto building up any given crackstatej is thuscaptured
by

Ej(£,6m) =E[(8) + Ej(&n), (26)
o 1
Ej(e)=§s:Cj:e, (27)
| q
Ej(gm)zzsm:(co_cj):gmu (28)

wherethe superscript®k andl denoterespectivelytherevers-
ible andirreversiblepart of the enegy. Theintacthydrostatic
enegy ES'(eo) hasbeenneglectedsinceit doesnot involve
cracksand,therefore cannotinfluencethe probability of the
variouscrack states.

C. The laws of our crack-based thermodynamics

Using the ergodic hypothesisdiscussedearlier the aver
age enegy density in a disordedsolid can be written U
=3p;E;. We areinterestedn how U changesvhenincre-
mentsin £ and g, are appliedto the system.

In general,a smallincrementin U canbe written as

dU=; Ejdpj+; p,dE;. (29)

The first term involving the probability changeis entirely
dueto crack creation.Somemesovolumeshat werein less
crackedstatesprior to theincrementaretransformedo state
j duringtheincrementwhile mesovolumeshatwerein state
j, are transformedto other more crackedstates.If in the
increment,the numberof mesovolumesrriving in statej is
differentthan the numberleaving, thereis a changedp; in
the occupationalprobability of that state.Such changesare
the only way to changethe disorderin the system,so that

> E;dp;=TdS (30
J
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is the work involved in changingthe systems$ disordervia
crack production.The proportionalityconstantT is formally
a temperatureandwill be treatedin detail.

Using the decompositiorE; (&, £y) = EfY(£) + E{ (&), We
canwrite the secondterm of Eq. (29) as

; pjdEj=; pjdEJR+; p;dE|. (31)

Thefirst partis dueto purely elastic(reversiblg changesn
eachmesovolumeand may be further written

> pidER=r7:de, (32)
J

where 7 is the averagestresstensoracting on the mesovol-
umes.This resultcanbe verified by appealingeitherto Eqg.
(27) or to the more generalstatemenbdf Eq. (12).

The secondpart = jpjdE} representghe averagework
performedin creatingcracksin justthefinal strainincrement
de,. Someof theinitial mesovolumesed to statej at maxi-
mum strain g, + de,, hadall their cracksin placebeforethe
final strainincrement,while othershad cracksarrive in the
final increment.We write

; p;dEj=g:dey, (33

where the tensorg has units of stressbut is quite distinct
from the stresstensorr.
The “first law” for the rock massis then

dU=r7:de+g:de,+ TdS, (34
with the formal definitions
ou ouU d T oU
T=— , g=—| , an =—
Jde e I€m|, o S e,
(35

The natural variables of the fundamentalfunction U are
(S,&,&,). Equivalentlyif S is treatedas the fundamental
function, then S=S(U, ¢,£,) which meansthat the con-
straintsplacedon the maximizationof S mustinvolve U, &,

and g, .

The “secondlaw” of this crack-basedhermodynamicss
thatdS=0 (equalto zeroonly if de,,=0 so thatno cracks
arecreated while a “‘third law” may be proposecdby simply
definingT=0 whenS=0. The systemwill havezeroemer
gentdisorderbeforecracksbeginto arrive and so our third
law statesthat the temperaturel startsat zeroandthenin-
creasesn magnitudeasthe numberof cracksin the system
increasesfrom zero. The justification for this postulate
comesa posteriori whenit is foundthatin orderto havezero
probability for a mesovolumebeingin anythingbut the un-
crackedstate(S=0), we musthavethat T=0.
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D. The probability distribution

To obtain the probability of observinga mesovolumeto
be in crack statej, we maximize S= —X;p; In p; subjectto
the constraintthat=;p; =1, andto the additionalconstraints
thate;=¢, £y,j=€n,, andZ;p;E;=U. Theseconstraintde-
fine our canonicalensembleOtherensemblesanbe defined
by consideringother constraintsinvolving €, g, and U;
however sinceall ensembleyield identicalaverageproper
tiesin the thermodynamidimit, we electto work only with
the canonicalensembledueto its analyticalconvenience.

This maximization problem is solved using Lagrange
multipliers to obtainthe Boltzmannian

efEﬂT

pj= Z

, where Z=>, e &'T, (36)
j

and where the parametefT is exactly the partial derivative
dU/dsl, . called temperature”’

E. The free energy and its derivatives

Any equilibrium physical property that dependson the
distributionof cracksthroughoutthe systemcanbe obtained
from the partition function Z given by Eg. (36).

To do so, a thermodynamicpotential F called the free-
enegy densityis introducedthatis relatedto Z by

F(e,e,,T)=—TInZ(g,&,,T). (37

This potentialF is the Legendretransformwith respecto S
of the total-enegy densityU=U(e,¢,,S) as canbe seen
from

U—TS=Z ijJ-+TZ P; Ian:—TInZZ p;=F,
i ] i
(39)

wherewe usedthatIn p;=—E;/T—InZ
When (g,¢,,,T) are the independentvariables,the first
law canbe obtainedby takingthetotal derivativeof Eq. (37)

dz
dF=-T— —InzdT

dE(e,&m)

=-T> -

dT

dT
=(F—U)7+; pi[dER(e)+dE](£m)]

=—-SdT+ rde+g:dey, (39
wherewe haveusedthe definitionsthat 7= dEJ-R(s)/ de and
0;=dE|(£n)/dep,.

With 8=1/T, the variousthermodynamicfunctions are
relatedto the partial derivativesof In Z(e,€,,,,8) as

dlnz
g 3 BPmY,

(40)
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10Inz
1dInz
T B e 22 gip;=9. (42

Theseresults,alongwith S=InZ+ BU, areusedin Paperll.

IV. TEMPERATURE

The temperatureis a well-defined essentialpart of our
quenched-disordestatistics. Throughthe probability law p;
=e Ei/T/Z, the temperaturguantifiesthe enegy scalethat
separateprobablefrom improbablestatesand how this en-
ergy scaleevolveswith strain.No other meaningshouldbe
readinto T. We now demonstratdiow to exactly obtainT.

A. Evolution of temperature with strain

The only way enegy entersthe systemis by performing
work on the externalsurface.Thus, the generalrelationdU
= 7:de holdsfor eitherloadingor unloadingsituations.This
previously unusedfact providesa differential equationfor
T=1/B that permitseverythingaboutour systemto be ex-
actly known once an orderparameterbased model for
Ej(e,ey) is determinedand the functional sums defining
Z(&,&n,B)== e PEi(=em areperformed.

Thetemperatur@andentropyonly evolvealongload paths
definedby £= g, andonly suchpathsneedbe consideredn
whatfollows. Using dU = 7:dg, thefirst law [Eqg. (34)] can
thenbe rewrittenas

TdS+g:de=0. (43
Sinceit alwaysrequiresenepgy to breakcontacts,we have
thatg:de>0 andconsequenthyf dS<0. Furthermoresince
the entropy (disordej necessarilygrows during the crack-
creation process(at leastinitially), the temperatureof our
systemis negative(at leastinitially).

The load path of a standardtriaxial experimentis when
axial strain e, monotonicallyincreaseavhile the radial con-
fining stressr,= 7,= — p. remainsconstantAlong this path,
all properties evolve only as a function of &,. With
Z(&,em,B) consideredas known, the radial deformation
componentsanbe expressedn termsof the axial deforma-
tion by usingthe two equations

_&InZ _aInZ
BPc= dey B dey e —e
to obtainthe two functions
ex=f(p,e,) and Sy:fy(ﬂysz) (44)

that arevalid only alongthe load path.
We now write dU in two different ways. First, dU
=7:de is evaluatedalongthe load pathto obtain

dU=7,de,— p(df,+dfy). (45
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Secondwe usethe factthatU=U(B, ¢, &,) to obtain

due Y aga (Y, Y AL P
T BN e, Fom) T Gy T G O
+ i + | df 46
dey  demy Y (48)

Upon equatingEgs. (45) and (46) we obtain a first-order
nonlineardifferential equationfor 8

d
a(ﬁisz)d_fz""b(ﬁ’sz):on (47)

wherea andb aregiven by

du du du |\ af, Ju du | af,
pC Cc

=—+ — 4 — -
a ap dey  Jemy) IB dey  demy) IB’
(48)

) LU AU (U AUy

T2 e, ae (Pt Ge T ae | s,
NIRRT 4
Pe dey  demy) de,’ (49)

We are to use 7,=— B 19InZ/de, and U=—9InZ/3B in
theseexpressiondor a andb oncethe function Z( e, &,,,8)
hasbeendeterminedFurthermoreall partial derivativesare
to be evaluated along the load curve; i.e., at gy

=f(B.e2), Smy:fy(ﬁvsz)a andem,=¢;.

B. Initial conditions

In orderto integrateEq. (47), initial conditionsmust be
provided.The initial conditionsof our so-called*third law”
(i.e., the intact conditionsthat 8= —« wheng,=0) arenot
well-definedfor 8. Thus, Eq. (47) must be integratednot
from the intact state,but from a statethat containsat leasta
few crackssothat B# — .

Accordingly, we define*‘one-crack’ initial conditionsby
consideringthe point in strain history where on average
throughoutthe ensembleof mesovolumesthereis onecrack
in eachmesovolumelf thereare N cellsin a mesovolume,
the probability of any given cell to be brokensomewherén
the ensembleis then P;=1/N. This sameprobability can
also be obtainedfrom Griffith’s criterion by integratingthe
quenched-disordedistribution of Eq. (24) to obtain P,
=[6E,/(I'd®° 1)]**1, where SE,;=€Pe,:56C:£,/2 is the
elastic enegy changedue to a single isolated crack and
where g, is the straintensorat which on averagethereis a
single crackin eachmesovolumeThus,we haveeg,:6C: g,
=2Td°~Y/(NY&+1)¢DY that can be usedto obtain an ex-
pressionfor the initial axial straine,; at which on average
thereis one crack per mesovolume.

To obtain the inverse temperatureB; correspondingto
thisinitial strain,the exactprobability of observinga particu-
lar type of crack stateis determinedand comparedto our
temperature-dependeBoltzmannian.The particular states
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we chooseto analyzeare, for simplicity, thosehaving pre-
cisely one brokencell.

The probability p; of a stateconsistingof onebrokencell
andN— 1 unbrokencells canbe written as

p;=P1(1-P)" HL[1-6P(x)], (50)

where P, is againthe probability of havinga single broken
celland(1—P;)N "1 is the probability of havingN—1 bro-
ken cells in the absenceof other cracks.Thus, the product
I1,[1- 6P(X)] is the probability that no cells broke due to
the strainperturbationsauseddy the presencef afirst bro-
ken cell, wherex representglistancefrom this first broken
cell. We define 6E,(x) as the elastic enegy changein a
mesovolumewhen a secondcell breakssolely in the per
turbed strain field emanatingfrom a first brokencell. This
enegy varies with the separationdistance|x| betweenthe
two cracksas|x| "°. We have

s _jéEz(x) toe [ FE2) e
(x)= 0 m(e)de= rqp 1 _|X|D(Tl)’

(51)

where Eq. (24) was usedfor 7 and where c, dependson
both the overall applied strain and the anglefrom the first-
crack’s orientationto the secondcrack. Since 5P is small
comparedto one (restricting to models where cracks are
smallerthanthecell size A, sincethe separatiordistance x|
alwaysexceedst), we have

ML[1—sP(X)]=1— if _ 4o (52

€PJix>a|x| P&+

and since k>0, this spatial integral over the mesovolume
canbe neglectedn the thermodynamidimit.
The conclusionis that

!
pj=Pi(1-P)N T=pog—p-=poe """, (53

wherepy=(1—P;)N is the probability of the entirely intact
state.This can be comparedto our probability law where,
from Egs. (26)—(28), we have

1-q)
Pj=Po exﬁ{ﬂl( Zq

81:60:81 . (54)

Thus, the inversetemperaturghat holdswhene=¢; is

€DN1/(k+1)|n(N_ 1)
=— . 55
B ot (55

C. Approximate approach to the temperature

The approachust takenin definingthe initial conditions
suggestsa convenientway of obtainingan approximateex-
pressionfor the temperature.

Consider*‘dilute” statesj where cracksdo not signifi-
cantly interact.In this case the probability P, that any one

PHYSICAL REVIEW E 66, 036135 (2002

cell hasbrokenwhenthe maximumstraintensoris at g, is
again  just the cumulative distribution P,
=[€Pg,:6C:e,/(2I'd° 1)1 1. In this case the probabil-
ity of observinga noninteractingstatej consistingof N
cracksis p;= Pﬁj(l— P.) N ) wherewe haveforgonethe
analysisof the preceedingsection demonstratingthat the
unbroken-cellprobabilitiesare negligibly influencedby the
strain perturbationdrom the N brokencells (at leastfor k
>0). We may write

(56)

1
P;=Po ex;{—ln(P—m—l)Nj ,

where po=(1—P,)N is the probability of the unbroken
state.

For suchdilute statesthe Hamiltonianof Eq. (26) is writ-
ten (with g,,=¢€) as

USSR C il S
Ejzzsm.co.em— Tsm.ﬁc.em/\fj (57
so that our probability law predicts
B(1—q)
pj=p0ex;{Tsm:5C:sm/\/j . (58

Uponusing1/P,,=[2I'd® /(¢ e,,: 5C: g,,)]“** andequat-

ing Egs.(58) and(56), the temperaturas identified

—2In{[2T'd°~Y/(£Pen: 6C e) ¢ 1 -1}
(1—q)&n:6C: &, '

B(em) =
(59

This expressionfor 8 hasthe expectedbehaviorthat 8=
—o when g,=0, andthat 8 is a negativeand increasing
function of &, up to the strain point P,,=1/2 where it
smoothly goesto zero. For P,>1/2, B is a positive and
increasingiunction of &,,. Our probability law with 8 nega-
tive predictsthe intact stateto havethe greatesiprobability,
while when P,>1/2 and 8 is positive, the most probable
state jumps to every cell being broken. Although such a
phasdransitionoccursin fiber bundleg24], we demonstrate
in Paperll usingthe exactdifferentialequationfor tempera-
ture, that the localization transition always occurs prior to
this divegent-temperaturéransition.

We emphasizethat Eq. (59) is an approximationto the
extentthat due to the long-rangenature of elasticinterac-
tions, one can nevertruly definea noninteractingstate.We
useit to obtain an orderof-magnitudeidea of the tempera-
ture at a given strain. But it should always be considered
preferableto obtainthe temperaturéy integratingthe exact
Eq. (47) from the first-crack (or other exac} initial condi-
tions.

V. CONCLUSIONS

The presenttheory of fracturein disorderedsolids works
from the postulatethat the probability p; of observinga
mesovolumen a givenemegent-crackstatej andat a given
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appliedstrain can be determinedby maximizing Shannors
measuref theemegent-crackdisordersubjectto constraints
that comefrom the enegy balanceof brittle fracture.These
constraintsare what allow nonuniform probability distribu-
tions to occur The validity of this postulatecan be demon-
stratedin simpler cases[24] by integratingthe probability
distribution through history, but its generalvalidity in the
caseof rockswith interactingcracksremainsan openprob-
lem. Our approachto answeringthis questionis to usethe
statisticalmechanicghatfollows from our maximal-disorder
postulateto make predictionsaboutthe physical properties
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of realsystemsandto comparesuchpredictionsto laboratory
data.
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