1.4b Functional Design

DATA FLOW WITHIN PROCESSING CENTERS

The requirements for data flow within an ANSS processing center are very similar to those for communication among centers and from centers to users. Data requests are of two types: requests for continuous real-time data streams or discrete requests for data satisfying some criteria. Either of these request types may be for waveforms or parameters.

Data flow within a center may be within a single computer or among many different computers running different operating systems. This creates a requirement of platform independence for the system. These systems may be in the same room or geographically separated. Therefore, all data flow, whether within or between centers, should use the same interfaces, protocols, and formats where feasible. All data access functionality must be provided to data clients via a standard, well documented Application Programming Interface (API). This approach will reduce costs, and increase flexibility, scalability, and maintainability.

However, there are requirements specific to a data delivery system within a center These requirements are controlled by the processing function or functions with the most extreme demands for data volume, data delivery speed, and buffering (data persistence).

Data volume - The total data volume within any center attempting to process the entire ANSS data set would be greater than the volume of data transferred between any two nodes. The total data volume of a system is determined by waveform data, which is orders-of-magnitude greater than the volume of parametric data types. Therefor, the data transport system must be capable of handling all 24,600 channels of the ANSS system (Table x). The design should also allow for future expansion. That capacity may be achieved by dividing processing tasks among many instances of the same processing module; each handling a subset of the total data set. This modular "divide and conquer" approach, if correctly designed, can provide open-ended scalability.

Table 1: Total channels* and estimated data volume of ANSS

[image: image1.wmf]ANSS

Component

No. of

Stations

Channels

per station

Total

Channels

Data Rate

(samp/sec)

Data Volume

(MBytes/sec)

Data Volume

(GBytes/day)

USNSN

100

6

600

100

14

21

Regional Nets

1,000

6

6,000

100

144

207

Freefield SM

3,000

3

9,000

40

86

124

Structure SM

3,000

3

9,000

40

86

124

TOTAL

7,100

24,600

331

477

(* Station counts are based on Circular 1188)

Data delivery speed - The requirements of early warning and calculation of real-time location and magnitude dictate that data delivery delay (latency) be minimized. The data delivery system should add no latency to that already caused by delivery from the data source. Realistically, some additional latency will be caused by any store-and-forward approach. A data packet cannot be resent until it is fully received. Additional latency can be minimized, however, by designing data buffers to operate at memory speeds and by minimizing the number of "hops" in the data path.
Buffering - The system must buffer the data long enough for client applications to have a reasonable chance of successfully getting the data they need to do their work. Data buffering also allows out-of-order data to be unscrambled before delivery.

If data buffering is not provided within the data transport system, each application will be forced to provide its own. This makes the programmer's task more difficult and causes duplication of the data into many, application-specific buffers.

A two-level buffer approach has been successful in some existing systems. The first level is a buffer containing from seconds to minutes of data in a fast memory resident buffer. This serves real-time applications where low latency is the primary constraint. The second level is a disk-based buffer that has a greater latency but greater persistence (hours to days) and serves applications that value persistence over speed. The API can be designed so that this two-buffer implementation is hidden behind a single interface.

Application-specific buffers may be unavoidable in some exceptional cases. If they are needed, they should be implemented with a standard API with the same look-and-feel as the one used to interact with the ANSS data transport system.

Some applications, particularly those that are not time-critical, may benefit by accessing data from a distributed database rather than from the real-time transport and buffering system. The feasibility of this approach would depend on the requirements of the application and the timeliness and completeness of such a distributed database.

Other requirements
Standard API's - All interfaces, protocols and formats should be the same as those used between centers. If specialized interfaces are needed to meet special requirements of processing applications, these interfaces should be implemented as a single, simple, well-documented API.

Security and client management - The data transport system should manage clients to assure predictable behavior and guarantee service to mission critical clients. Authentication should be used to allow data service only to authorized clients.

System management - The data transfer components should be simple to configure, run and monitor. Tools should be provided to report and monitor the performance and load of the system.

System topology - The system topology should be flexible. It should be possible to distribute modular functions over multiple hosts and they should be free to move from host to host. There should be no single-point-of-failure. The system should be distributed across multiple host systems. All critical functions should be offered by redundant servers. Switching from one server to an alternate should be simple, fast and, where possible, automatic. The system should be able to handle additional data volume by adding modules or hosts. Dynamic load balancing would enhance the robustness of the system.

Stable load - Where possible, the behavior and resource consumption of the system should be steady and predictable. Seismic events, telemetry "glitches" or other events should not introduce spikes in the data flow.

Graceful degradation - Components should fail only under exceptional circumstances. When they do, they should fail gracefully, produce error analysis information and provide alarms to alert operators of problems. Priority schemes should be used to insure mission critical clients receive the most important data when bandwidth degrades.

Exception handling - Exception handling must be part of the API. The API must fix or report corrupted, out-of-order, or incomplete data. It must allow clients to specify and handle time-outs for data requests.

Late and Out-of-order Data - The data delivery system must accommodate both late and out-of-order data delivery. Data of this type includes triggered data, data retrieved via dial-up systems, and data delivered over slow or "lossy" telemetry paths.

Data Clients and the API

Data clients include components of the data distribution system, real-time processing modules, post-processing modules, quality control tasks, and transfer to the archive. Data requests to the system fall into two general categories:

· Requests for continuous real-time data streams of waveforms or parameters

· Discrete requests for data satisfying some criteria; for example, waveform segments, parameters for a given time period, channel response data, etc.

In both cases the system must allow the client to specify what type of data is to be sent. However, data servers should be stateless, that is, they should retain no memory of previous connections. Each new connection must negotiate the data stream.

The number of client modules in an operating center may be large. If data transport is achieved with point-to-point connections the data bandwidth required by the whole system will rise arithmetically. For example, given ten waveform clients (pickers, amplitude calculators, QC modules, etc) each waveform stream would cross the transport system ten times. This strain on resources tends to force designers to lump many functions into each module to minimize redundant traffic. This pressure to lump functions is contrary to the design goal of modularity and makes development and maintenance difficult and costly. It also limits the scalability of the whole system.

A possible solution to this one-to-many dilemma is to multicast the data. A multicast packet traversed the network only once but can be read by multiple hosts. They have no impact on non-listening hosts. This reduces the bandwidth requirement and can reduce latency. Only one process per host can listen to a multicast address. Therefore, to support multiple clients on a single host would require either multiple network interfaces or a common buffer on the host populated by a multicast listener. Some commercial messaging oriented middleware (MOM) products implement this second approach. Use of commercial, off-the-shelf products could accelerate the development process at the risk of binding the system to a single vendor's product.

_1050927196.xls
Sheet1

		ANSS
Component		No. of
Stations		Channels
per station		Total
Channels		Data Rate
(samp/sec)		Data Volume
(MBytes/sec)		Data Volume
(GBytes/day)

		USNSN		100		6		600		100		14		21

		Regional Nets		1,000		6		6,000		100		144		207

		Freefield SM		3,000		3		9,000		40		86		124

		Structure SM		3,000		3		9,000		40		86		124

		TOTAL		7,100				24,600				331		477

Sheet2

		

Sheet3

		

