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LIST OF COMMONLY USED SYMBOLS

cross-sectional area normal to the flow: inverse of
von K&rman constant; area of ripple in streamwise
profile

constant in analysis of bed-form shape

constant of integration in analysis of the law of the wall
for smooth flow: constant in analysis of bed-form shape

coefficient in analysis of incipient movement

coefficient in analysis of incipient movement

constant term in law of wall for smooth flow:; Bingham number

constant term in law of wall for fully rough flow

distance between clefts along gravity-flow head

fractional volume concentration of grains in a £luid;
Chézy coefficient; cohesion; speed of sound

drag coefficient

1ift coefficient

celerity of surface gravity waves

constant of integration; coefficient in analysis of
incipient movement

constant of integration: coefficient in analysis of
incipient movement

diameter

nominal diameter

dimensionless sediment diameter

fiow depth :

dimensionless flow depth

energy

energy per unit weight of fluid

shear stress exerted by flow on saltation carpet or
traction carpet

Froude number

Froude number based on reduced gravity g’

drag force

gravity force

lift force

resistance force

function symbol; friction factor

friction factor associated with lower surface of density
current

friction factor associated with upper surface of density
current

acceleration due to gravity

reduced gravity, g' = d{eg=p)/p or g' = gleg-p)/psl

mean height of grain rise in saltation; height of bed forms

specific head

dimensionless ripple height

head loss

elevation above datum; elevation head; thickness of
gravity-flow head

elevation of channel bottom

elevation of water surface

height to overhang of turbidity-current head

moment of inertia




constant in analysis of bed-form shape

constant in analysis of incipient movement : porosity
correction factor in sediment conservation equation,
Ky = 1/(1-2)

constant in analysis of incipient movement ; constant in
analysis of bed-form shape

constant in analysis of bed-form shape

equivalent sand roughness

length dimension: characteristic length scale; bed-form
spacing; dimensionless sediment concentration, L = p/g

dimensionless bed-form spacing

mass dimension

mass

dimensionless number of grains in motion per unit area and
unit time

number of grains in motion per unit area and unit time

wetted perimeter; flow power: normal stress transmitted by
grain collisions

fluid pPressure; pore pressure

discharge

discharge per unit width

volumetric bed-form transport rate per unit width

volumetric sediment transport rate per unit width

volumetric bed-load transport rate per unit width

derivative of sediment transport rate with respect to bed
elevation, R = dgg/dh

Reynolds number

boundary Reynolds number, Rex = usxD/v

hydraulic radius

slope, 8 = tang; average spacing of particles

Corey Shape Factor

time dimension: period of bursts; shear stress transmitted by
grain collisions

passage time for a bed form past a station

shear stress transmitted by both grain collisions and fluid

thickness of traction carpet

flow velocity averaged over a cross section, U = Q/A

bed-form velocity

grain velocity

dimensionless flow velocity

maximum or surface velocity

surface velocity in open channel flow

instantaneous fluid velocity in the x direction

time-average fluid velocity in the x direction

instantaneous deviation from U, u' = u - 1

shear velocity, ux = (to/p)172

value of ux at threshold of sediment movement

fluid velocity, used in various ways; characteristic
velocity scale

instantaneous fluid velocity in the y direction

time-average fluid velocity in the y direction

instantaneous deviation from V, vl = v - F

work

submerged weight of saltating grains per unit area of bed
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settling velocity (fall velocity): instantaneous fluid
velocity in the z direction

time-average fluid velocity in the z direction

instantaneous deviation from W, w' = w - W

streamwise coordinate direction

cross-stream coordinate direction normal to boundary

roughness length

displacement length

dimensionless distance from boundary

cross-stream coordinate parallel to boundary:
Rouse number, z = w/8xux

angle of internal friction; angle of imbrication: ripple
slip-face angle

Shields parameter; coefficient relating eg and e, eg = Be

value of Shields parameter at threshold of sediment movement

weight per unit volume (specific weight) of fluid, Yy = pg

weight per unit volume (specific weight) of solid, yg = pg9
downchannel component of ¥
submerged weight per unit volume of solid, y' = yg-vy

thickness of boundary layer

thickness of viscous sublayer

eddy diffusion coefficient (kinematic eddy viscosity)

eddy diffusion coefficient for sediment

eddy viscosity

von Kiarmdn constant

porosity

dynamic viscosity of fluid

viscosity of sediment-fluid mixture

kinematic viscosity, v = u/p

fluid density

solid density

standard deviation; normal stress

shear stress

boundary shear stress

critical or threshold boundary shear stress; yield stress
for granular medium

shear stress at upper surface of density current

angle of inclination

Wadell sphericity

maximum projection sphericity




CHAPTER 1. BEHAVIOR OF FLUIDS

INTRODUCTION

Some knowledge of fluid dynamics is essential to an adequate
understanding of sediment movement. We're not assuming any
previous knowledge on your part. Chapters 1, 3, and 5 present a
very selective treatment of some of the topics in fluid dynamics
that are important in the study of sediment movement. This
material is not a substitute for a more substantial background in
fluid flow, but it allows a level of discussion of many . of the
important ideas in the mechanics of sediment transport that would

not otherwise be possible.

Fluids are substances that deform continuously and
permanently when subjected to forces that vary in magnitude or
direction from point to point. The nature of the relationship
between the deforming forces and the geometry of deformation
varies from fluid to fluid; as discussed in this chapter, the
relationship is a simple linear one for air and water, the two
fluids most important in sedimentology.

Liquids and gases differ greatly in their structure on the
molecular scale. How is it that the macroscopic motions of these
two kinds of fluid need not be considered separately? The answer
is that fluids can be treated as if they were continua--as if
their constituent matter, which is actually distributed
discontinuously as atoms and molecules, were smeared uniformly
throughout space. The justification for this approach is that it
works extremely well for fluid flows on scales that are much
larger than the intermolecular spacing. This includes most
problems in sediment movement down to the range of colloidal sizes
(fractions of a micrometer).

In this chapter we'll develop some ideas in fluid mechanics by
looking at three kinds of flow: shearing of fluid between
parallel plates, flow past a sphere, and flow down an inclined
plane. The last two are of direct importance to sedimentology,
and we'll build upon the results in later chapters.

SHEARING A FLUID BETWEEN PARALLEL PLATES

For a first look at how fluids behave when they are deformed,
make a pencil-and-paper experiment. Imagine two parallel plates,
spaced a distance L apart, with a fluid at rest between them
(Figure 1.1). The upper plate is rapidly accelerated to a
constant velocity parallel to itself by applying a force per unit
area F over its entire surface, while the lower plate is held
fixed by applying to it an equal and opposite force per unit area.
This kind of flow is called Couette flow. (Never mind that in
real life this would be a difficult experiment because of loss of
fluid around the edges.) The fluid is set in motion by friction
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from the moving plate. How will the fluid move? More
gpecifically, how will velocity in the fluid vary along a line
normal to the plates? After an initial transient period of
adjustment during which progressively lower layers of the fluid
are brought into motion, the velocity would vary linearly from
zero at the stationary plate to V at the moving plate (Figure
1.2).
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Figure 1.1 Hypothetical experimental arrangement for
shearing a fluid between two parallel plates.
Cross-sectional view shows the two plates, spaced a
distance L apart and extending indefinitely in all
directions, with equal and opposite forces per unit area
F exerted uniformly over the outer surfaces of the

plates.

Note that the fluid in contact with each of the plates has
exactly the same velocity as the plates themselves. This is a
manifestation of what is known as the no-slip condition:
fluid in contact with a solid boundary has exactly the same
velocity as that boundary. This is a fact of observation,
although it can be justified by considerations on intermolecular
forces.

To see why the velocity distribution between the plates is
linear, pass an imaginary plane, parallel to the plates, anywhere
through the fluid. Since the fluid contained between this plane
and either plate is not being accelerated after the steady state
is attained, the fluid on either side of this plane must exert on
the fluid on the other side of the plane the same force per unit
area F as that on the plates themselves. Since the imaginary
plane can be located anywhere between the two plates, the shear
force per unit area across all such planes in the fluid, called
the shear stress T, must be the same. And because the fluid must
be expected to shear or deform at the same rate for the same
applied shearing force, the rate of change of velocity normal to
the plates must be constant; assuming the y axis to be normal to
the plates, du/dy = k. So the velocity itself must vary linearly:
taking y = 0 at the lower plate,
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Figure 1.2 Development of velocity distribution in the fluid
between the plates after the upper plate is rapidly
accelerated to a constant velocity V. 1In each picture
the succession of fluid velocities along the arrows
represents the continuous distribution of fluid
velocities along the line shown normal to the plates.

u =[kdy = ky + ¢

Evaluating the constant of integration using the no-slip
condition that u = 0 at y = 0, we find ¢ = 0, so



u = ky (1.1)

What determines the value of F needed to produce a given
difference in velocity between the two plates? For many fluids,
including air and water, the ratio of F to the quantity V/L would
be found to be the same for all values of F: F/(V/L) = const. It
was shown above that the shear stress is exactly F everywhere in

the fluid, and since du/dy is the same everywhere it must Dbe equal
to V/L, the average velocity gradient. So :

L = = (1.2)
Ju/dy const H

This constant ratio u is called the viscosity of the fluid,
and is the property that characterizes the resistance of the fluid
to deformation. And it's indeed an intrinsic property of the
£luid, in that it does not depend on the state of motion but only
on the nature of the fluid jtself. Different fluids have
different viscosities, and for a given fluid the viscosity is a
function of temperature. Equation (1.2) tells you that the
velocity gradient at every point in the f£1uid is proportional to
the ratio of the shear stress to the viscosity.

You can see now the significance of k in the linear velocity
distribution in Equation (1.1). Combining Equation (1.2) with the
condition that du/dy = X,

du

3 (1.3)

= k =

T:I-—s

and integrating as before (and remembering that T isn't a function
of y in this special flow),

T
T - 104
u Y ( )

The parallel-plate experiment is a specialized case of
shearing in a fluid. In a more general flow, the deformation of
the fluid in any tiny volume can be visualized in the same way,
but both the rate of shearing and the orientation of the shear
planes are likely to vary from point to point. A relationship
like Equation (1.2) holds at every point in a sheared fluid, no
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matter how much the rate and orientation of the shearing vary from
place to place:

= U, T=u§~9- (1.5)

T
du/dy dy

where 1 is the shear stress exerted across the shearing surfaces
at some point in the fluid, and du/dy is the rate of change of the
local fluid velocity u in the direction y normal to the shearing
surfaces at the point (Figure 1.3).
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F = X

A= dv/dy

Figure 1.3 How shear stress and viscosity in the
parallel-plate experiment generalize to shear stress and
viscosity at a point in any sheared region of the
fluid.

FLOW PAST A SPHERE: AN INTRODUCTION TO DIMENSIONAL ANALYSIS

Iintroduction

. Flow past a sphere is of obvious importance in sedimentology.
Rounded sediment particles settling through still fluid see almost
exactly the same flow. And what's just as important, it's a good
guide to the forces and motions involved in flow over particles at
rest on the bed of a flowing fluid. We'll make a start on the
drag exerted by flow past a sphere here--just enough to show how
the problem can best be approached--and then consider the physical
effects more closely in Chapters 2 and 4. Another motivation for
this section is to convince you, by example, of the importance and
utility of careful dimensional reasoning about fluid-flow
problems. :

Just from considerations of space and motion, it's clear that
the approaching fluid must both move faster and be displaced
laterally as it flows past the sphere. On the other hand, the
no-slip condition requires that the fluid velocity go to zero
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everywhere at the surface of the sphere; this implies the
existence of velocity gradients, very sharp under some conditions,
at and near the surface of the sphere. These velocity gradients
produce a shear stress on the surface of the sphere: see

Equation (1.5). When summed over the surface, the shear stress
exerted by the fluid on the sphere represents the part of the
total drag force on the sphere called the viscous drag. Your
intuition probably tells you (correctly in this case) that the
pressure of the fluid, the normal force per unit area, is greater
on the front of the sphere than on the back. The sum of the
pressure over the entire surface of the gsphere represents the
other part of the drag force, called the pressure drag or form
drag. You'll see 1ater that the relative importance of viscous
drag and pressure drag, as well as the qualitative flow patterns
and the distance out into the fluid the sphere makes its presence
felt, are greatly different in Aifferent ranges of flow. Even in
such a seemingly simple flow there's a great variation in flow
phenomena. This should put you on your guard against facile
theorizing in sediment transport, for there are few kinds of
sediment~transporting flows without an even greater degree of
variety and complexity.

1t does not make much difference whether the sphere. is held
motionless relative to moving fluid, or is towed through still
fluid, or settles under its own weight; what's important is the
movement of the sphere reiative to the fluid. The differences
among these three situations is explored in a little more detail
in Chapter 2. For the sake of definiteness we'll assume here that
the sphere is being towed or pushed through still fluid (Figure
1.4). All that's said here about the flow is then with reference
to a point fixed relative to the moving sphere.

a7

i; U

Figure 1.4 pefinition sketch for variables involved in the
motion of a sphere through still fluid.

which Variables Are Important?

Think first about the resultant drag force Fp exerted on the
sphere by the fluid. To account fully for the value assumed by Fp
for a given sphere in a given fluid, we have to specify the values
of certain other variables. (This carefully phrased sentence
should not be interpreted as implying that Fp is necessarily the
"dependent variable" in the problem: for a sphere settling under
its own weight, it's more natural to think of Fp as an independent
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variable and settling velocity as the dependent variable. What's
important here is that there is a one-to-one correspondence
between the value of Fp and the values of those other variables,
irrespective of their dependence oOr independence. That said,
however, for convenience we'll refer to such variables as
independent variables.) The velocity U of the sphere relative to
the fluid is important because it affects the shear in the fluid
near the surface of the sphere, and therefore by Equation (1.5)
the shear stress. Sphere diameter D is important for the same
reason. Viscosity u is important because it determines the shear
force associated with a given rate of shear. Fluid density p must
also be included, because the forces associated with the
accelerations in the fluid depend upon p. If the sphere is in
steady motion far from solid walls or a free surface, you can
assume that no other variables are important. 3o

FD = f(UrDcOrU) (106)

where f is some function with one or more terms involving the four
independent variables. (We'll often use the same symbol £ for
unrelated functions. In Chapter 5, f will also be used for a
gquantity called the friction factor.)

You might reasonably ask why neither sphere density nor
acceleration of gravity are on the list. These are relevant only
if the sphere settles under its own weight, and then only because
they determine the weight of the sphere, to which Fp is then
equal. Variables that enter the problem only by their effect on
other variables already on the list and not because of some
separate effect need not be included in the analysis. And there's
no reason to think that either of these has any such
significance.

1f we're lucky in problems like this, we can use theory to
derive an analytical form for the function in Equation (1.6) that
agrees well with observation. If not, we must rely solely on
experiment. For flow past a sphere there is indeed an analytical
solution, described in Chapter 2, that agrees beautifully with
experimental data, but it holds over only a limited range of the
independent variables; over the rest of the range we have to
obtain the function by experiment, as is commonly the case in
problems of sediment movement. with flow past the sphere as an
example, we need to consider how we can best go about organizing
both data and thought by resorting to dimensional reasoning.

Some Dimensional Reasoning, and Its Conseguences

Like every physically correct equation, Egquation (1.6) must
represent equality not only of magnitudes but also of dimensions.
In most mechanical systems three basic dimensions are needed to
express forces, motions, and system properties; these are usually
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taken to be mass, length, and time. So whatever the form of the
term or terms on the right side of Equation (1.6), the variables
U, D, p, and u must combine in such a way that each term has the
dimensions of force, because the left side has the dimensions of
force. The following list gives the dimensions of each of the
five variables involved in flow past a sphere, in terms of mass M,
length L, and time T:

Fp -——-- ML/T2
U - L/T
D =—= L

o —-mm M/L3

U oe=-— M/LT

The only variable here whose dimensions are not straightforward is
u: the dimensions M/LT are obtained by use of Equation (1.5), by
which u 18 defined. -

It's advantageous to rewrite equations like Equation (1.6) i
dimensionless form. To do this, first make the left side -
dimensionless by dividing Fp by some product of independent
variables that itself has the dimensions of force. Using the list
of dimensions above, you can verify that pU2D?2 has the dimensions
of force:

pU2D2 —me  (M/L3)(L/T)2(L)2 = ML/T2

So dividing the left side of Equation (1.6) by pU2D2 makes the
left side of the equation dimensionless. The result, Fp/pU2D2,
can be viewed as a dimensionless form of Fp. That leaves the
right side of Equation (1.6) to be made dimensionless. There is
one and only one way the four variables U, D, p, and u can be
combined into a dimensionless variable, namely pUD/y:

pUD 3 dimensionless
0 (M/L7) (L/T) (L) / (M/LT) (M,L,T all cancel)

{That statement is not strictly true--but all the other
possibilities are just pUD/u raised to some power, and they're not
independent of pUD/u.) So whatever the form of the function £,
the right side of the dimensionless form of Equation (1.6) can be
written using just one dimensionless variable:
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(L.7)
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Equation (1.7) is an equivalent but dimensionless form of
Equation (1.6). The great advantage of the dimensionless equation
is that it involves only two variables--a dependent dimensionless
variable Fp/pU2D2 and an independent dimensionless variable
pUD/p~~instead of the original five. Think of the enormous saving
in effort this implies for an experimental program to characterize
the drag force. If you had to measure Fp as a function of each one
of the four variables while holding the other three constant, you'd
generate mountains of data and graphs. But Eguation (1.7} tells
you that U, D, p, and p need only be varied so as to make pUD/u
vary. All of the experimental points for Fp/pU2D2 obtained by
varying pUD/u should plot as a curve in a two-dimensional graph
with these two variables along the axes. Whatever the value of U,
D, p, and u, all possible realizations of flow past a sphere are
expressed by ijust one curve. This curve is shown in Figure 1.5
together with some of the experimental points that have been used
to define it. The physics behind the curve is discussed in
Chapters 2 and 4. And you could find the curve by varying only one
of the four variables U, D, p, and u=--although you may not be able
to get a very wide range of values of pUD/u by varying only one of
the variables. A fairly small number of experiments involving
values of the original independent variables that combined to span
a wide range of pUD/u would suffice to characterize all other
possible combinations of the independent variables. This is
because each peint in the dimensionless graph represents a great
many different p0351ble combinations of the original variables~-an
infinity of these, in fact. You thus gain a far-reaching
predictive capability on the basis of relatively little
observational effort.

A skeptic might find all this too good to be true. But the
fact is that this is how things work, and the analysis of flow past
a sphere is just one good example. A note of caution is in order,
however. It's prudent to vary as many of the variables over as
wide a range as possible; this doesn't take an enormous number of
observations, and it's a check on the correctness of your analysis.
You'll see below in more detail that if there's a larger number of
important variables than you think, your data points would form a
scattered band rather than a single curve. If you varied jJjust one
variable to try to find the curve, you'd indeed get a curve, but it
wouldn't be the curve you were after; you'd be missing the scatter
that would manifest itself if you varied the other variables as
well.

Several notes are in order here:

(1) Variables of the form pUD/u are called Reynolds numbers,
usually denoted by Re or bold-faced R. Whenever both density and
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Figure 1.5 Plot of dimensionless drag force against pUD/u
for steady motion of a sphere through a viscous fluid.
Instead of Fp/pU?D2, an equivalent variable Fp/(oU2/2)A
is plotted on the vertical axis, where A is the
cross-sectional area of the sphere; see text.
Experimental points are from several sources, and are
somewhat generalized. Some of the experiments involve
settling of a sphere through a still fluid, and others
involve flow past 2 sphere held at rest. For a more
detailed plot, see Schiller (1932).

viscosity are important in a problem and both a length variable
and a velocity are involved, a Reynolds number can be formed and
used. There are thus many different Reynolds numbers, with
different length and velocity variables depending on the
particular problem. You'll encounter others later in the notes.

(2) For the steady flow we've assumed, the variables U, B, p,
and p characterize not only everything about the distributions of
shear stress and pressure over the entire surface of the sphere,
which add up to Fp, but also the distributions of shear stress,
pressure, and fluid velocity at every point in the surrounding
fluid. Since pUD/y replaces these four variables on the right
side of Equation (1.7), the same can be said of the Reynolds
number. Anything about forces and motions you might want to
consider can be viewed as being specified completely by the
Reynolds number.

10
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{(3) There's a further important consequence of the fact that
each point on the curve of Fp/eU2D% vs. pUD/u represents an
infinity of combinations of U, D, p, and u. Suppose you wanted to
find the drag force exerted by a certain flow on a sphere that's
too large to fit into your laboratory. You could work with a much
smaller sphere by adjusting the values of U, p, and u so that
pUD/u is the same as in the flow in question past the large
sphere. Then from the curve in Figure 1.5 the value of Fp/pU2D2
is also the same, and from it you could find the drag force Fp on
the large sphere by substituting the corresponding values of U, D,
and p. Or, on the other hand, you could study the flow around a
very small sphere by use of a much larger sphere, with the same
complete confidence in the results; an example is worked out in
Appendix I. This is the essence of scale modeling. Viewed in
this way, each point on the curve of Fp/pU?D? vs. pUD/u represents
an infinite number of possible experiments, each of which is a
scale model of all the others.

{4) In Figure 1.5 the dimensionless drag force is written in
a conventional form that is slightly different from that derived
above: Fp/(pU?/2)A, where A is the cross-sectional area of the
sphere, equal to wD?/4. This differs from Fp/pU2D2 by the factor
7/8, but its dimensions are exactly the same. It's usually called
a drag coefficient, denoted by Cp: you can see why by writing

2
Fp=2C, 5 4

where the factor (pU?/2)A on the right side has dimensions of
force. The functional relationship between dimensionless drag
force and Reynolds number in Equation (1.7) can be written in an
entirely equivalent form using Cp:

¢ = —D_. £ (22) (1.9)

(5) There are alternative versions of the dependent
dimensionless variable. Dividing by pU2D? isn't the only way to
nondimensionalize Fp. You can check for yourself that Fp/uUD,
pFp/u?, and F/uU are other possibilities, obtained by combining F
with the four variables p, u, U, and D taken three at a time.
(You'll see in a minute how to derive such variables.) Sometimes,
as in the last two cases, one of the variables drops out; this
happens when M or L or T appears in only one of the four variables
chosen. Any of these three alternative dependent dimensionless
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variables would serve just as well as F/pU2D2 to represent the

data. You'll see below, however, that sometimes one is more
revealing than the others.

How to Construct Dimensionless Variables

You may be wondering about how you could have constructed the
dimensionless variable pUD/p on your own instead of having it
presented to you. Start with a very general product payubpcud,

The exponents a through d have to be adjusted so that the M, L,
and T dimensions of the product cancel out. One of the exponents
can be chosen arbitrarily, say 4 = 1, but then a, b, and c have to
be adjusted by solving three equations, one each for M, L, and T,
expressing the condition that the product be dimensionless. Using
length as an example, you can see from the list of dimensions
above that length enters into p to the power -3, into U to the
power +1, into D to the power +1, and into u to the power -1. So
for L to cancel out of p2UPDCu, the following condition must be
met: =-3a + b + ¢ -1 = 0. {Remember that we've already chosen 4
to be 1.) Two more conditions, one for M and one for T, give
three linear equations in the three unknowns a,b,c:

-3a +b +c -1 0 {for L)

a +1 = 0 { for M)
-b -1 =0 {(for T)
The solution is a2 = -1, b = -1, ¢ = -1, so the product takes the
form u/pUD. This is the inverse of the Reynolds number introduced

above. If d had been taken as ~1 at the outset, the result would
have been the Reynolds number itself.

What If You Choose the Wrong Variables?

What would be the consequences of including an irrelevant
variable in analyzing the dimensional structure of a problem like
that of flow past a sphere? Suppose, just for the sake of
discussion, that viscosity is not important in determining Fp.
Then the functional relationship for Fp would be

As before, you can start to make this eguation dimensionless
by forming the same dimensionless drag force Fp/pU?D? on the
left~hand side. But how about the right-hand side? The three
variables U, D, and p can't be combined to form a dimensionless
variable, because there isn't enough freedom to adjust exponents
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to make a product U2DPpC dimensionless: this should be clear from
the formal procedure outlined above for obtaining pUD/u. Then
what takes the place of the Reynolds number on the right side?

The answer is that the right side must be a numerical constant;:
there is no independent dimensionless variable. So if u were not
important in flow past a sphere, the dimensionless force Fp/pU2D?
would be a constant rather than a function of the Reynolds number.
To generalize: if one original variable is eliminated from the
problem, one dimensionless variable must be eliminated as well.

In a graph of Cp vs. Re the experimental points would fall along a
straight line parallel to the Re axis, as shown schematically in
Figure 1.6. Now look back at the actual graph of Cp vs. Re in
Figure 1.5. Over a wide range of Reynolds numbers from about 103
to greater than 10%, Cp is nearly independent of the Reynolds
number. Since u is the only variable that appears in the Reynolds
number but not in Cp, this tells you that y is indeed not
important in determining Fp at high Re. The reasons for this will
be discussed in Chapter 4.
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Figure 1.6. Sketch of what a graph of Cp vs. Re would look
like for flow past a sphere if the drag force on the
sphere did not depend on viscosity u.

Now you can see why there's some practical advantage to using
F/pU2D2 as the dependent dimensionless variable. The other three
mentioned above contain u, and so in a plot of any one of them
against pUD/u the segment of the curve for which u is not
important would plot as a sloping line rather than as a horizontal
line, and the unimportance of u would be harder to spot.

You should also consider the consequences of omitting an
important variable from consideration. For example, if you had
not been careful to keep the sphere well away from the wall of the
vessel containing the fluid, you would find that the experimental
points plot in a scattered band around the curve of Cp vs. Re in
Figure 1.5, as shown in Figure 1.7. This tells you that some
other variable is important in determining Fp and that you've
inadvertently let it vary--assuming, of course, that your
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measurements are free of errors in the first place. The obvious
culprit is y, the distance of the center of the sphere from the
wall (Figure 1.8). (This curve would differ somewhat depending on
whether it's the sphere or the fluid that's moving relative to the
wall, because of the inevitable development of a boundary layer at
the wall in the latter case; more on boundary layers in Chapter
5.) With y included in the analysis, the functional relationship
for Fp is of the form

FD = f(UaDr D:UrY) (1.10)
F
A
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Figure 1.7 Sketch of what a graph of Cp vs. Re would look
like for flow past a sphere if the sphere is located a
short and experimentally uncontrolled distance from the
wall of the vessel.

eV
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Figure 1.8 A sphere moving through fluid near a solid
boundary.

In nondimensionalizing Equation (1.10}) you should again
expect to have a dimensionless drag force on the left and the
Reynolds number on the right. But what happens to the new
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variable y? You can use it to form one more independent
dimensionless variable, in the same way you formed the Reynolds
number. There has to be at least one other such variable, because
y has to appear somewhere on the right side of the
nondimensionalized version of Equation (1.10). A natural choice
for this new variable is y/D (or D/y). You could instead form
another Reynolds number, pUy/u. But only two of the three
variables pUD/u, pUy/u, and y/D are independent of each other,
(For example, you can arrive at this second Reynolds number by
multiplying the first by the new dimensionless variable y/D. fThis
is an illustration of the principle that you can always replace a
dimensionless variable in a set of dimensionless variables by
anocther one formed by multiplying or dividing it by one of the
others.) So addition of one new independent variable to the
problem adds only one new independent dimensionless variable. 1In
dimensionless form Equation (1.10) is then

F
b _ . f(e_U_D, L) (1.11)
pU2D2 n D

The function in Equation (1.11) would plot as a curved
surface in a three-~dimensional graph with Cp, Re, and y/D along
the axes (Figure 1.9). The two planes perpendicular to the y/D
axis in Figure 1.9 show the range over which y/D varied in your
experiments without your realizing it's important. The projection
of the segment of the surface between these two planes onto the
Cp~Re plane is the band in which your experimental points would
fall. The intersection of the surface with the plane y/D = 0,
also shown on the projection, represents the curve yvou would have
gotten if you had always kept the sphere very far away from the
wall; it's the same as the curve in Figure 1.7.

Finally, you could carry the analysis one step further by
moving the sphere horizontally just beneath the free surface of a
liquid at rest in a gravitational field (Figure 1.10). oOf
importance now is not only the distance y of the sphere below the
free surface but also the acceleration of gravity g: if the
movement of the sphere distorts the free surface, unbalanced
gravity forces will tend to flatten the surface again, and surface
gravity waves may be generated. Then

Fp = £(U,D,p,u.vy.,g) {(1.12)

This adds still another independent dimensionless variable,
and that variable must include g. There are five possibilities:
ug/pU®, 02gD3/u2, p2gy3/u2, U2/gD, and U2/gy, plus obvious
variants obtained by inversion and exponentiation. (You could try
constructing these by combining U, p, u, D, and Y three at a time
with g and going through the procedure described above for Re.
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Figure 1.9 A. Schematic plot of Cp vs. Re and y/D for a
sphere moving through still fluid near a planar wall.
The two planes perpendicular to the Y/D axis bracket the
range of y/D values for which the hypothetical
experimental points in Figure 1.7 were obtained. B.
Plot of Cp vs. Re from Figure 1.7 obtained by projection
of the function surface between the two y/D = const
planes onto a plane of Cp vs. Re.

Figure 1.10 Definition sketch for flow past a sphere moving
horizontally just below the free surface of a liquiag.

You would also get y/D again in the process.) Any one of these
five would suffice to express the effect of g on the drag force.
Again only one is independent, because the others can all be
obtained by combining that one (whichever you choose} with either
pUD/u or y/D. 1It's worth noting here that the square root of a
variable like UZ/gy or U2/gD, with a velocity, a length variable,
and g, is called a Froude number, usually denoted by ¥r or
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bold-faced F. It's natural, although not essential, to use U2/gD

here because then each of the four dimensionless variables in the

functional relationship can be viewed as being formed by combining
Fp, u, ¥, and g in turn with the three variables p, U, and D; see

the following paragraph for details.

Fg > = £ i my) (1.13)
H gy" D )
pU™D

The function would plot as a four-dimensional "surface" in a graph
of Cp vs. Re, Fr, and y/D. 1It's difficult for human beings to
visualize such a graph. A good substitute would be to plot a
three~dimensional graph for each of a series of values of one of
the independent dimensionless variables. The trouble is that
there's an infinite number of these three~dimensional graphs.

Suppose you had realized at the outset that all seven
variables in Equation (1.12) were important in the problem. The
systematic way of obtaining four dimensionless variables all at
once is .just an extension of the method described in an earlier
section for obtaining the Reynolds number. Form four products by
choosing three of the seven variables (the "repeating” variables)
to be those raised to the exponents a, b, and ¢ and using each of
the remaining four variables in turn as the one that's raised to
the exponent 1 (or any other fixed exponent, for that matter) .

You can verify for yourself that if you choose p, U, and D as the
three repeating variables, the four products anchFD, pdubpcy,,
anbDCy, and anchg would produce the four dimensionless
variables in Equation (1.13), except that U2/gD appears instead of
U2/gy. It turns out that for this procedure to work, the
constraints on the choice of the three repeating variables are
that (i) among them they include all three dimensions M, L, T, and
{(ii) they be dimensionally independent of each other, in the

sense that you can't obtain the dimensions of any one by
multiplying together the dimensions of the other two after raising
them to some exponents. These constraints just ensure that you
get solvable sets of simultaneous equations.

Conclusion

Most kinds of fluid flow that are important in natural
environments don't lend themselves to analytical solutions, even
when no sediment is moved, so one has to rely on experiment and
observation to learn something about them. We've expatiated upon
dimensionless variables and their use in expressing experimental
results because this sort of analysis, usually called dimensional
analysis, is so useful in dealing with problems of fluld flow and
sediment movement. Dimensional analysis is a way of getting some
useful information about a problem when you can't obtain an
analytical solution and may not even know anything about the form
of the solution, but you have some ideas about important physical
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effects or variables. You'll encounter many examples of its usge
in later chapters.

Suppose that you're dealing with a fluid-flow Problem that ca,
be simplifieqg somehow, perhaps in geometry or in time variability
to be anageable but gtji]}] representative. yge your experience
and physical intuition to identify the important variables. Form
a set of dimensionlesg variables by which the Observational

This approach was first Systematizeqd by Buckingham (1914,
1915) in two pPapers that are stilj Very readable. The number of
dimensionless variables equivalent to i given set of original

Some physical problem is equal to n-m, where m is the number of

application to flow past a sphere. More detailed dlscussions_of
dimensional analysis are given by Langhaar (1951), sedov (1960),
and Kline (1965), as well as most textbooks in fluiqg mechanics,

flow is the same at all Cross—-sections down the flow. Tt won't be
until Chapter 5 that we deal with the Problem of what the slope of
the plane must be to produce uniform flow in the first Place.)

The freely deformable UPPer surface of the liquid, calleq the free
surface, ig open to the air. We'll neglect the minor forceg
exerted by the overlying air on the moving liguid. This king of
flow is called o en-channel flow. The plane has No sidewalls, but

Again by the no-slip condition, the velocity at the very
bottom of the flow ig 2ero, so the velocity must increase upward
in the flow. You might alge guess that the flow is everywhere
directeq straight down the plane. fThis must certainly be true on
the average, but you need to keep in mind the Possibility of
random fluctuations in velocity caused by Passage of the swirls

flow conditions, You'l]l eventually see in Chapters 3 ang 5 that
turbulence develops in the flow at sufficiently high values of a
Reynolds number based on the flow depth ang the mean or ma ximum
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velocity. A sedimentologist from a low~Reynolds-number planet
would have the surprise of its life when it encountered the
complexities of high-Reynolds-number flow, because the phenomena
are difficult even to account for when observed, much less to
predict.

Before trying to derive the velocity distribution in the flow
from first principles, let's make a dimensional analysis, as for
flow past a sphere. Taking the x direction down the plane and the
y direction normal to the plane, let the flow velocity a distance
Yy above the plane be the dependent variable u, let the flow depth
be d, and let the downslope component of the weight per unit
volume y of the fluid, which is the driving force for the flow, be
Yx = Ysin¢, where ¢ is the angle of inclination of the plane
(Figure 1.11).

‘“mﬂﬁhdg

ow
b4

L,

Figure 1.11 Uniform flow of liquid down an inclined plane.

Upon which variables does u depend? Obviously vy is important
because it's responsible for the flow in the first place. Both
flow depth d and viscosity p are important because they affect the
shear in the fluid, and the height y above the bottom is important
because from the no-slip condition you should expect u to vary
with distance above the bottom. Finally, p must also be included
if fluid accelerations are present, and you've already seen that
this is the case in some ranges of flow. So u = flp,urvg,.d,y),
and by the Pi theorem you can write this functional relationship
in a dimensionless form with three dimensionless variables, one
dependent and two independent.

There are five possibilities for the dependent variable,
cbtained by combining three of the four variables p, u, ¥x, d, and
y with u in a product that is adjusted to be dimensionless.
Disregarding two that contain Y, these are:



02 l/2u pud uu
T~ r ’ —"'—'2
UYx H de

(Note that the second is a Reynolds number.) None of these is
inherently better than the others. As discussed in the last
section, if you suspect that one of the original independent
variables becomes unimportant in some range of conditions, use the
dimensionless variable from which that independent variable is
absent, because that best reveals the effect when the function is
plotted. The best one here is thus nu/yxd?, because under some
conditions there are no accelerations in the flow, and p is then
irrelevant.

The two independent dimensionless variables involve p, We Yxo
d, and y; one is naturally y/d or d/y, and the other is a
dimensionless combination of p, u: Yy, and either 4 or y. You can
check that this comes out to be pyxd§/u2. So

2 ' d

B ( Py L) (1.14)
u=f .
13

(You could have derived the three dimensionless variables in
Equation (1.14) by choosing u, d, and yx as repeating variables,
except that pyyd3/u? comes out to the one-third power.) You can
use this to express the results of theory or experiment by
plotting a three-dimensional graph of dimensionless velocity
against y/d and pyy4d3/u2. The entire range of the phenomenon can
be characterized by a well-defined surface in a three-dimensional
graph, or (what's the same) by the way a two~dimensional graph of,
say, uu/yxd2 vs. y/d changes as pyxd3/u? is varied.

Writing Newton's second law for the balance of forces on a
suitably chosen element of fluid in the £low and using Equation
(1.2) for the relationship between shear stress and velocity
gradient, we can obtain analytical solutions for the variation of
both shear stress and velocity in the flow, provided only that u
is everywhere in the x direction and is independent of x as well
as of time. Think about the forces acting on the fluid contained
at a given instant in the rectangular volume formed by the free
surface, the bottom boundary, and two pairs of imaginary planes
normal to the bottom and with unit spacing, one pair parallel to
the flow and spaced a distance B apart, and the other normal to
the flow and spaced a distance L apart (Figure 1.12).

Because the fluid is not accelerating, the downslope

component yyxBLd of the weight of the fiuid in the volume must be
balanced by the frictional force 1oBL exerted by the bottom
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Fa = Joub\slolbc. componeuT” of find wWelghT = (;\(-)J/ea sing
F' = boTTow fricTional force per umt arsa = (B0 (Y

Figure 1.12 Balance of streamwise-oriented forces exerted on
a body or "block" of fluid in the flow (with imaginary
side boundaries) down the inclined plane.

boundary on the fluid in the volume, where 15, called the boundary
shear stress, is the shear stress (with dimensions of force per
unit area) acting at the bottom boundary:

(There are also pressure forces that act parallel to the flow
direction on the upstream and downstream boundaries of the volume.
But since by our assumption of uniformity the vertical
distribution of these pressure forces is the same at every

Cross section, they cause no net force on the fluid in the body.)
Since vy = ysin¢, Equation {1.15) can also be written

To = vd sing (1.18)

The slope S = tan¢, but for very small ¢ (the usual case), the
approximation sin¢ = tan¢ is a good one, and Equation (1.16) is
often written

Ty = Yd4S (L.17)

Equations (1.16) and (1.17) can easily be generalized for a
straight channel with arbitrary cross-sectional shape. Let the
cross~sectional area be A and the wetted perimeter be P (Figure
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1.13). Then corresponding to Equation {1.15) the balance of
forces is ToP = yyA. Defining the hydraulic radius Ry to be A/P,
this becomes ,

To = YxRH (1.18)

Equation (1.18) or its equivalent, 1o = YRysiné, is the basic
resistance equation for steady uniform flow in open channels. Not
many useful results in fluid mechanics are so easily derived.

It's applicable not just to flows that are strictly steady and
uniform at all points, but also to flows that are steady and
uniform in a timew-average sense but show turbulent fluctuations in
velocity, because nothing was assumed about the internal details
of the flow in deriving the equation. Equation {(1.18) thus gives
the time-average bottom shear stress; the instantaneous bottom
shear stress would fluctuate turbulently with time.

Figure 1.13 Definition sketch for resistance equation
for open-channel flow in a channel of arbitrary
cross section.

To see what the flow is like away from the boundary, you can
apply this same force-~balancing procedure to a body of fluid
similar to that used above but with its lower face formed by an
imaginary plane a variable distance y above the bottom and
parallel to it (Figure 1.14). The shear stress 1 across the plane
is given directly by the force balance:

T = Yx{d”Y) (1-19)

Using Equation (1.15) to eliminate yy from Equation (1.19), we can
write t in terms of the boundary shear stress 145:

0~
3]




(1.20)

Equation {1.20) shows that 1 varies linearly from a maximum of Yxd
at the bottom to zero at the surface (Figure 1.15).

Figure 1.14 Use of a differently defined body of fluid to
aid in solving for velocity distribution in flow down an

inclined plane.

Figure 1.15 Distributions of (A) velocity and (B) shear
stress in steady uniform laminar flow down an inclined

plane.

Eliminating 1 from Equation (1.19) by use of Equation (1.35)
gives an expression for the velocity gradient du/dy:

23
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@3=3—’5~(d» ¥) (1.21)

A simple integration with respect to y then gives the vertical
distribution of fluid velocity:

Y Y 2

u = f%% dy = ﬁﬁ-f(d-y)dy = EE-(yd ~~%—) + ¢ (1.22)

The constant of integration ¢ is found to be zero by using the
no~slip condition that u = 0 at y = 0, so Equation (1.22) becomes

Yy 2
U“'ﬂ"""(yd'%’) (1.23)

For given values of vy, u, and 4, the velocity u thus varies
parabolically from zero at the bottom boundary to a maximum at the
surface (Figure 1.15A). On the other hand, from Equation (1.21)
the velocity gradient du/dy varies linearly from a maximum at the
bottom to zero at the free surface, since it's directly
proportional to the shear stress (Figure 1.15B).

Does Equation (1.23) represent real flows, at least in some
limited range of conditions? If we experimented with a uniform
flow of liquid down an inclined plane we would find that for
combinations of shallow depths, low velocities, and high
viscosities the velocity distribution predicted by Equation (1.23)
would correspond very closely to the experimental results. A good
example of this kind of flow in nature is the runoff of water in
thin sheets over an even ground surface after a heavy rain. But
if the flow is too deep or too fast, or the viscosity too small,
we would find a markedly different velocity distribution
(Figure 1.16). If we could also observe patterns of motion within
the flow in the two cases, we would find that in the former the
fluid glides along regular linear paths characteristic of laminar
flow, whereas in the second the fluid moves in irregular and
ginuous paths characteristic of turbulent flow, with the velocity
changing unpredictably from time to time at any point. The nature
of turbulence and turbulent flow, and in particular the
complicated picture of velocity distribution in turbulent flow,
are discussed in more detail in. Chapters 3 and 5. Here we only
make some initial comments on why Equation (1.23) breaks down for
turbulent flow. The simplest answer, although not the most
fundamental, is that we can no longer assume that the shear stress
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Figure 1.16 Comparison of velocity profiles in laminar and
turbulent flow down an inclined plane. The profiles are
drawn so that they represent about the same total
discharge, or volume rate of flow, per unit width of the
plane (that is, the areas under the two curves are about
the same). There is a certain range of flow conditions
for which the flow could be either laminar or turbulent
depending on experimental conditions (although the slope
needed for uniform flow would then be different in the
two cases). :

across planes in the flow parallel to the bottom boundary is given
by Equation (1.5}, and so we can no longer eliminate t and perform
the integration as in Equation (1.21). Because of the
irregularity of the fluid motion in the turbulent case, the
surfaces of local shear are oriented differently at each point on
such a plane, and the rate or intensity of shear varies as well.

If BEquation (1.23) is a correct eguation it must have the
dimensions of velocity on the right side as well as on the left.
Dividing both sides by yxd2/y,

(}'_)2 (1.24)

This is the analytical relationship for velocity distribution
written in dimensionless form: it's plotted in Figure 1.17. If
you compare this with Equation (1.14), the functional relationship
for u derived by dimensional analysis, you see two differences:
the function is now specific rather than general (it's a
polynomial in y/d), and the independent dimensionless variable
pyYxd3/u? doesn't appear on the right side. The reason for the
latter difference is that p does not enter independently into
Equation (1.21).
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Figure 1.17 Plot of dimensionless velocity uu/v,d? vs. y/d
from Equation (1.22), the dimensionless analytical
solution for velocity distribution in laminar flow down
an inclined plane.

So density p must be taken into account explicitly in steady
uniform turbulent flow down a plane but not in steady uniform
laminar flow down a plane. In the turbulent flow, small masses of
fluid experience accelerations as they follow their irregular
paths. Forces on accelerating fluid elements depend not only on
the acceleration but also on the magss of the fluid, so p must be
treated as a separate variable. In the laminar flow, on the other
hand, there are no accelerations because the fluid moves in
straight paths and the velocity profile does not vary either with
time or in the flow direction; p is then of no importance outside
of its effect on the specific weight of the fluid. But keep in
mind that p is important in laminar flows that are nonuniform,
because then there are accelerations in the fluid. Flow past a
sphere is a good example.

Recall that by Equation (1.14) all the velocity profiles
observed in steady uniform flow down a plane, laminar or
turbulent, can be plotted in a three-dimensional graph. The best
way to do this is to plot graphs of dimensionless velocity pu/yxd?
vs. y/d for a series of values of pyxd3/u?, as shown in Figure
1.18. PFrom Figure 1.18 you can picture the general shape of the
three-dimensional surface that represents the function. The
curves of uu/yyd? vs. y/d change progessively in shape as pyxd3/u2
is varied. 1In laminar flow, for which p ig not a variable of
independent significance, pyxd3/u? is irrelevant and has no effect
on the shape of the curve of wu/yxd? vs. y/d. The curves in the
left-hand part of Figure 1.18, for pyxd3/u? less than a certain
value, are therefore all the same, and project or collapse upon
one another to give the curve already shown in Figure 1.17. At a
certain value of pyxd3/u? the profile changes its shape
drastically and abruptly in the change from laminar flow to
turbulent flow. Beyond that point the profile continues to change
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Figure 1.18 Schematic three-dimensional plot of
dimensionless velocity uu/vyxd? against pyyxd3/u? and y/d
for steady uniform flow down an inclined plane. The
plot is shown in the form of a number of sections or
two-dimensional graphs normal to the axis of pyxd3/u2.
For small values of pyxd3/u? the flow is laminar, and
for large values, turbulent.

with pyxd3/u2, but not greatly. We'll return to this last point
in Chapter 5 in the course of a more extended discussion of
velocity profiles in turbulent flow.

SIGNIFICANCE OF REYNOLDS NUMBERS AND FROUDE NUMBERS

We can gain some further insight into the significance of
Reynolds numbers and Froude numbers Dby showing that dimensionless
variables of this form always arise in problems involving viscous
forces and gravity forces. Think about the balance of forces on
some small element of fluid in any fluid-flow problem (for
example, that of a sphere moving near a free surface) that
involves fluid shear forces and also gravity forces that are not
simply balanced out by hydrostatic pressure. Whatever the exact
nature of the problem, Newton's second law must hold for this
small element of fluid, so we can write for it a general
egquation of motion in words:

viscous force + gravity force + any other
(1.25)
forces = rate of change of momentum
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All the terms in this equation have the same dimensions, so we can
divide all the terms by any one of them to obtain an equation with
all terms dimensionless. Dividing by the term on the right,

viscous force + gravity force
R.0.C. of momentum R.0.C. of momentum

any other forces -1 (1.26)

R.0.C. of momentum

What will be the form of the first two dimensionless terms on
the left, in terms of representative variables that might be
involved in any given flow problem? Assuming that there is some
characteristic length variable L in the problem like a sphere size
or flow depth, and some characteristic velocity V like the
approach velocity in flow past a sphere or the mean velocity or
surface velocity in flow down a plane, then the rate of change of
momentum, which has dimensions of momentum divided by a

characteristic time T, can be written pL3V/T. (Remember that the
mass can be expressed as density times volume and the volume as
the cube of a length.) And this can further be written pL2v2,

because velocity has the dimensions L/T. The viscous force is the
product of the viscous shear stress and the area over which it
acts. Since area is proportional to the sgquare of the
characteristic length, and by Equation (1.5) the shear stress is
proportional to the viscosity and the velocity gradient, viscous
force is proportional to uVL. The first term in Equation (1.26)
is then proportional to wVL/pL2V2, or u/pLV. This is simply the
inverse of a Reynolds number. The Reynolds number in any fluid
problem is therefore inversely proportional to the ratio of a
viscous force and a quantity with the dimensions of a force, the
rate of change of momentum, which is usually viewed as an
“inertial force."

How about the second term in Equation (1.26)? The gravity
force is the weight of the fluid element, which is proportional to
pgL®. The second term is then proportional to pgL3/pL2V2, or
gL/V2. This is the square of the inverse of a Froude number. The
square of the Froude number is therefore proportional to the ratio
of a gravity force and a rate of change of momentum or an
"inertial force."

This probably strikes you as not a very rigorous exercise.
It's intended only to give you an initial feel for the
significance of Reynolds numbers and Froude numbers. If we had
more space we would derive the general differential equation of
motion for flow of a viscous fluid and then make it dimensionless
by introducing the same characteristic length and characteristic
velocity, and a reference pressure as well. You'd see that the
Reynolds number and the Froude number then emerge as coefficients
. of the dimensionless viscous-force term and gravity-force term,
respectively. This is done especially lucidly by Tritton (1977,
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p. 75-77}. The value of such an exercise is that then the
magnitudes of the Reynolds number and Froude number tell you
whether the viscous-force term or the gravity-force term in the
equation of motion can be neglected relative to the
mass-times~acceleration term. This is a productive way of
simplifying the equation of motion to gain some insight into the
physics of the flow.

When you're deciding which set of dimensionless variables to
work with in problems like those of flow past a sphere or flow
down a plane, introduced above, it makes sense to use
dimensionless variables that have their own physical significance,
like Reynolds numbers and Froude numbers. In later chapters we'll
be introducing other dimensionless variables that represent ratios
of two forces in specific problems.
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CHAPTER 2. SETTLING OF SPHERES

INTRODUCTION

This chapter deals with some basic ideas about settling of
sediment particles through fluids. This is a good topic in
sediment transport to start with in these notes, because settling
is an important aspect of sediment transport, and Chapter 1 has
provided enough background for substantial progress. But
complexities that require greater understanding of f£fluid flow will
soon arise, and Chapter 3 is therefore devoted to several
important topics in fluid flow. Chapter 4 is a continuation of
material on settling.

If placed in suspension in a viscous fluid, a sediment
particle will settle toward the lower boundary of the fluid,
provided that the weight of the particle is not much smaller than
the random forces exerted on the particle by bombardment by the
fluid molecules in thermal motion. All mineral particles larger
than colloidal sizes of hundredths of a micrometer are in this
category. When such a particle is released from rest in a still
fluid, it accelerates in response to the force of gravity, but as
its velocity increases, the oppositely directed drag force exerted
by the fluid grows until it equals the weight of the particle,
When the weight and the drag are in balance the particle no longer
accelerates but falls at its terminal velocity, called the fall
velocity or settling velocity. Particles of sand size and smaller
attain terminal velocity over very short times and distances.

With respect to natural sedimentary environments, the
settling of a sphere in a still fluid is obviously a great
oversimplification with respect both to particle shape and to the
state of motion of the fluid, but it will lead to development of
some important ideas and point the way toward consideration of
nonspherical particles and flowing fluids.

TOWING VS. SETTLING

In Chapter 1 we used the example of the drag force on a
sphere moved or towed at constant velocity through a still fluid
as an illustration of dimensional analysis, and we showed a graph
of dimensionless drag force, or drag coefficient, as a function of
a Reynolds number (Figure 1.5) without saying much about the
nature or significance of the curve. It should make sense that
towing a sphere at velocity U through a still fluid by exerting a
force Fp on it is equivalent to passing a steady and uniform
stream of fluid at velocity U.around a sphere that is held fixed
by exerting a force Fp on it. This is largely true, but there are
two complications. First, if the sphere is held fixed and the
flow passes by it, the drag force can be influenced by even weak
turbulence in the approaching flow, whereas if .the sphere is towed
through still fluid there can be no such effect. Second, in some
ranges of relative velocity, eddies can form behind the sphere and
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break away irregularly; if the sphere is fixed and the fluid is
flowing by, this causes the force to fluctuate about sOme average
value but does not affect the relative velocity, whereas if the
sphere is towed, either the velocity fluctuates along with the
force or (if by definition we tow with a constant force)} the
velocity fluctuates but the force is steady.

Settling of a sphere through still fluid under its own weight
is exactly like towing the sphere vertically downward: the weight
of the sphere, which is simply the Earth's gravitational
attractive force on the sphere, is constant and totally
independent of the state of motion,’and the sphere responds by
settling downward at some velocity through the fluid. (As noted
above, this velocity may fluctuate slightly with time.) For
spheres the differences between the fixed-sphere case and the
settling~sphere case are usually assumed to be minor. 1In fact,
some of the data in Figure 1.5 for dimensionless drag force as a
function of Reynolds number are from settling experiments and some
are from wind-tunnel experiments with fixed spheres, and it can be
seen that there is very little scatter of the combined
experimental curve. But we'll see in Chapter 4 that for
nonspherical particles this effect can be very significant.

SETTLING SPHERES: FLOW AND FORCES

Flow lines relative to the falling sphere should be expected
to look about as shown in Figure 2.1. They are straight and
uniform in the free stream well ahead of the sphere, but as they
pass around the sphere they become more closely spaced, and then
they return to the straight and uniform pattern behind the sphere.
Velocity varies not only in direction but also in magnitude in the
neighborhood of the sphere. Think of the space between two
adjacent flow lines as a conduit: the smaller the conduit
becomes, the faster the fluid must move in order to maintain the
same volume rate of flow. Around the midsection of the sphere,
velocity relative to the sphere is therefore substantially greater
than the free-stream velocity.

In describing the flow pattern shown in Figure 2.1 we've
largely appealed to your intuition: we haven't given you much
basis for thinking about why the pattern looks the way it does.
It turns out that the flow actually does look like this in the
limiting case of very low Reynolds numbers pUD/u but gradually
becomes different as the Reynolds number is increased, and at high
Reynolds numbers the pattern is grossly different, with important
consequences. The picture at low Reynolds numbers is considered
at some length later in this chapter, and the progressive changes
in flow pattern with increasing Reynolds number are discussed in
more detail in Chapters 3 and 4.
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Figure 2.1 (A) Streamlines of flow of real £fluid around a
sphere at very low Reynolds numbers (in the Stokes
range), and distribution of (B) pressure p (relative to
free-stream pressure) and (C) viscous shear stress To On
the surface of the sphere.

At every point on the surface of the sphere there is a
definite value of fluid pressure (normal force per unit area) and
of viscous shear stress (tangential force per unit area). Figure
2.1 gives an idea of the distribution of these forces. It is easy
to see why the viscous shear stress should be greatest around the
midsection and least on the front and back surfaces of the sphere;
the distribution of pressure (more on this later) is not so
obvious. You can imagine adding up both pressures and viscous
shear stresses over the entire surface, remembering that both
magnitude and direction must be taken into account, to obtain a
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resultant pressure force and a resultant viscous force on the
sphere. Because of the symmetry of the flow, both of these
resultant forces are directed downstream. You can then add them
together to obtain a grand resultant, the total drag force Fp.

SETTLING SPHERES: DIMENSIONAL ANALYSIS

To obtain an experimental curve for settling velocity we can
simply transform the curve in Figure 1.5 for drag coefficient vs.
Reynolds number for towed spheres into a curve based on settling
velocity. 1In fact, much of this curve, especially for low
Reynolds numbers, was obtained by settling experiments in the
first place, with the experimental results recast into the form of
drag coefficients. When a sphere falls at terminal velocity the
drag force Fp is equal to the submerged weight of the particle,
(1/6)nD3y', where y' is the submerged weight per unit volume of
the particle, equal to yg~y or g{pg-p). Substituting this for Fp
in the definition of the drag coefficient Cp in Equation {1.8),
using settling velocity w in place of U, and then solving for Cp,

This expression for Cp, which can be viewed as the settling drag
coefficient, can be used in the relationship for dimensionless

drag force as a function of Reynolds number (Equation 1.9) for

spheres moving through a viscous fluid:

t:l

Ll - f(pWD) (2.1)
ow

where the factor 4/3 has been absorbed into the function, just for
convenience. Figure 2.2, which is the same as Figure 1.5 with
axes relabeled and adjusted in scale to take account of the factor
4/3, is the corresponding graph of this function. No data points
are shown, because the curve is exactly the same as in Figure 1.5.
Figure 2.2 gives settling velocity w as an implicit function of [
v, D, and y',.

The curve in Figure 2.2 is still not very convenient for
finding settling velocity. This is because both w and D appear in
the dimensionless variables along both axes. Finding w in an
actual problem would necessitate laborious trial-and-error
computation. To get around this problem the graph can be further
recast into a more convenient form in which w appears in only one
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Figure 2.2 Plot of ¥’D/Dw2 against Reynolds number pwD/u for
settling of spheres in a still fluid.

of the two dimensionless variables. Also, since usually what's
desired is w as a function of D, or vice versa, it's convenient to
arrange for D to appear only in the other variable. Remember from
Chapter 1 that if you have a set of dimensionless variables for a
problem you can multiply or divide any one of them by any others
in the set to get a new variable to replace the old cone. To get a
dimensionless variable with w but not D, invert the left-hand
variable in Equation (2.1) and multiply the result by the
right-hand variable:

To get a dimensionless variable with D but not w, square the
right-hand variable in Equation (2.1) and multiply it by the
left~hand variable:
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It's convenient, but not necessary, to take these two variables to
the one-third power, so that w and D appear to the first power:
w(r2/y'u)l/3 can be viewed as a dimensionless settling velocity,
and D(py'/u2)1/3 ag a dimensionless sphere diameter. Since these
two new variables are

equivalent to Cp and Re, the functional
relationship for Cp vs. Re can just as well be written

2,\1/3 '
(_..e_) w = f(ﬂ?

1/3
)

It's now a simple matter to £
size, and submerged specific weigh

ind w for a given fluid, sphere
a plot of dimensionle

t by use of Figure 2.3, which is
S5 setting velocity vs. dimensionless sphere
diameter. fThis curve is obtained directly from that in Figure
2.2; you can imagine taking the original data points and forming
the new dimensionless variables rather than the old ones to plot
the curve in the new coordinate axes of Figure 2.3. "This
emphasizes that these two curves are equivalent because they are
based on the same set of experimental data.
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If you are unsatisfied by the roundabout way of arriving at
the functional relationship expressed in Equation (2.2), you might

problem of settling of a sphere through a still fluid at terminal
velocity. Settling velocity w, the dependent variable, must
depend on fluid density p, fluig viscosity u, sphere diameter D,
and submerged weight per unit volume y' of the sphere. Each of
these must be included for the reasons given in Chapter 1. As
before, acceleration of gravity and sphere density do not have to
appear separately in the list of variables because they are
important only by virtue of their combined effect on y'. The five
variables w, p, u, D, and Y' should then combine into two
dimensionless variables, as in Equation (2.2) above.

SETTLING AT LOW REYNOLDS NUMBERS: STOKES' LAW

We said that fluid density p is needed as a variable to
describe the drag force on a sphere because accelerations are
produced in the fluid as the sphere moves through it. 1If these
accelerations are small enough, it's reasonable to expect that
their effect on the drag force can be neglected. Flows of this
kind are called creeping flows., The reason, which can't be
examined in detall here, is that in the differential equation of
motion for flow of an incompressible viscous fluid (nothing more
than Newton's second law F = ma written per unit volume of fluid)
the term for rate of change of momentum per unit volume, p{Du/Dt},
gets small faster than the two remaining terms for viscous forces
and pressure forces as the Reynolds number decreases. These
matters are discussed in many books in fluid dynamics; see, for
example, Tritton (1977, Chapter 8).

If you remove p from the list of important variables that
characterize the settling velocity, you're left with four
variables: w, D, v, and v'. You can form only one dimensionless
variable out of these four: uw/y'D2. so the functional
relationship for w becomes

uw

¥'D?

Solving Equation (2.3) for W,

2
W = const Iég~ (2.4)
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All you would need to do to obtain a completely determined _
expression for w in this special case of creeping flow is find the
value of the constant by experiment.

For creeping flow around a sphere it turns out that an
analytical solution can be obtained for the constant in Equation
(2.4). This solution was first obtained by Stokes in the 1840s.
The approach is to specialize the equation of motion for
low-Reynolds-number flow past a sphere by omitting the p(Du/Dt)
term, as noted above. The equation is then more tractable
mathematically; Stokes solved it to obtain the distribution of
pressure and shear stress at all points on the surface of the
sphere, shown in Figure 2.1. Then by integrating these forces
over the entire surface of the sphere he obtained

Fp = 3nDuU (2.5)

This result, called Stokes' law, is in perfect agreement with
experiment. It turns out that exactly one-third of F is due to
the pressure force and two-thirds is due to the viscous force.
Density does not appear in stokes' law because it enters the
equation of motion only in the mass-times-acceleration term, which
is neglected. The constant in Equation (2.4) can now be found
easily by setting the weight of the particle, (1/6)nD3y', equal to
the drag force given by Equation (2.5) and solving for w:

2
- 1 Dy 2.6
W= T3 ( )

Stokes' solution also gives velocity, pressure, and shear stress
at every point in the fluid away from the surface of the sphere.
(Remember that by the no-slip condition the fluid velocity is zero
at the surface of the sphere; this constitutes a boundary
condition that Stokes used in solving the equation of motion.)

The flow pattern shown in Figure 2.1 is based on these results for
velocity. We'll return to the pressure distribution around the
sphere after introducing the Bernoulli equation in the next
chapter.

Figure 2.4 is an expanded graph of the low-Reynolds~number
part of the experimentally determined curve for drag coefficient
in Figure 1.5. Superimposed on this curve is the straight line
(Equation 2.6) derived from Stokes' law. For low Reynolds
numbers, Stokes' law fits the experimental points perfectly. But
with increasing Reynolds number the experimental curve diverges
from the straight line given by Stokes' law, because the effects
of fluid acceleration gradually become toO large to ignore.
Stokes' law thus breaks down with increasing Reynolds number, but
not at any definite value. A Reynolds number of one is usually
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taken to be the upper limit of applicability.

ctokes' law. How far use of Stokes'
on the accuracy needed.

based on Stokes'
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For Re = 1 the

actual settling velocity is about 12% lower than predicted by
law can be extended depends

There have been some attempts to extend
the analytical solution by taking partial account of the.
acceleration term, but these lead to only slight improvement.
Beyond this range you have to rely entirely upon experiment.

o

1o~% 10

Figure 2.4 Plot of drag coefficient {(dimensionless drag

force) Cp against Reynolds number for settling of
spheres in a still fluid, within and slightly above the

Stokes range of settling. This is an expanded version
of the left-hand part of the plot in Figure 1.5.

You might be interested in a comparison of the diameters of
the largest quartz-density spheres that settle according to :
Stokes' law in water and in air. This can easily be done by

substituting Equation (2.6) for w as a function of y', D, and u
jaw into the condition that the Reynolds number

owD/u be equal to one (thereby eliminating w), solving for D,

. 2
D = (&ﬁy_

)1/3 (2.7)
pyY'
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and then substituting the values of p, u, and vy' for air and water
into the resulting Equation (2.7). The density of water at 20°C
is 0.998 g/cm3, the viscosity is 1.005 x 107% poise (a poise is
the unit of viscosity in the cgs system of units), and the
specific weight of quartz in water is

' = g(pg-p) = (0.98 x 103 cm/s?)(2.65 g/cnmd -

0.998 g/cm?) = 1.62 x 103 g/em2-s?

Substituting these values into Equation (2.7), D = 0.10 mm for the
conventional upper limit of Stokes'-law settling in water. The
density of air at 20°C and atmospheric pressure is

1.20 x 10-% g/cm3, the viscosity is 1.81 x 10~* poise, and the
specific weight of quartz in air is :

y' = glpg=p) = (0.98 x 103 cm/s2)(2.65 g/cm3 -

1.20 x 103 g/em3) = 2.65 x 103 g/cm?-s?

Substituting into Eguation {2.7), D = 0.06 mm for the upper limit
of Stokes'-law settling in air. The values for water and air are
not greatly dissimilar. The corresponding settling velocities,
which can be found by substituting into Equation (2.6), are not much
different either: at Re = 1 the Stokes'-law settling velocity of
~a 0.10 mm gquartz sphere in water is 1.0 cm/s, and that of a

0.06 mm quartz sphere in air is 2.6 cm/s.

We note in passing that Stokes' law can also be put into a
form involving the drag coefficient Cp as a function of Reynolds
numober, as introduced in Chapter 1. Combining the definition of
the drag coefficient (Equation 1.9) with Stokes' law (Equation
2.5) to eliminate drag force Fp and then rearranging the variables
into the form of a Reynolds number,

In Figure 2.4 the dashed straight line sloping downward to the
right is what Stokes' law in this form looks like in a graph of
drag coefficient vs. Reynolds number.
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A WORD ON HIGHER REYNOLD NUMBERS

At the much higher Reynolds numbers corresponding to the
almost horizontal part of the curve in Figure 1.5 the pattern of
flow around the sphere is radically different from that shown in
Figure 2.1. Although the flow in front of the sphere is
qualitatively similar to that at low Reynolds numbers, near the
midsection of the sphere (halfway around) the flow departs
tangentially from the sphere along a surface of very strong fluid
shear. This phenomenon, called flow separation, is an important
aspect of high-Reynolds-number flows past solid boundaries that
diverge or curve away from the mean flow direction. The
separation surface encloses behind the sphere a zone of
irregularly eddying fluid called the wake. Fluid pressure exerted
on the back surface of the sphere is very low relative to the
pressure exerted on the front surface. The very large drag force
on the sphere in this regime of flow is caused mainly by pressure
forces rather than viscous forces. After covering some more
ground in fluid mechanics in the next chapter, we'll return to
flow around spheres at high Reynolds numbers in Chapter 4.
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CHAPTER 3. FLUID FLOW

INTRODUCTION

So far we've been able to cover a lot of ground with a
minimum of material on fluid flow. At this point we need to
present some more topics in fluid dynamics before returning in the
next chapter to flow past spheres at Reynolds numbers higher than
the Stokes range. We'll look at inviscid £luid flow, the
Bernoulli equation, turbulence, boundary layers, and flow
separation. This material will also provide some of the necessary
packground for discussion of dynamics of sediment movement in

Chapter 6.

INVISCID FLOW

Over the past hundred and fifty years a vast body of
mathematical analysis has been devoted to a kind of fluid that
exists only in the imagination: an ideal or inviscid fluid, in
which no viscous forces act. This fiction allows a level of
mathematical progress not possible for viscous fluids. Although
mathematical solutions for flow of an inviscid fluid are mostly
beyond the scope of these notes, you can appreciate why they are
so much more easily attainable simply by reference to a
generalized egquation of motion written in words. For a fiow in
which the effect of gravity is unimportant, and the only forces
are viscous forces and pressure forces, Equation (1.23) becomes

viscous force + pressure force =

rate of change of momentum {3.1)

The difficulties in the equation this represents (called the
Navier-~Stokes equation) come about partly because of the presence
of the viscous-force term. If the fluid is inviscid this term is
absent and the equation becomes more tractable. The ma jor
outlines of mathematical analysis of the resulting simplified
equation were well worked out by late in the 1800s. Since then,
fluid dynamicists have been extending the results and applying or
specializing them to problems of interest in a great many fields.

The pattern of inviscid flow around a sphere is shown in
Figure 3.1. The arrangement of flow lines is qualitatively
similar to that in the viscous creeping flow shown in Fig. 2.1.
Flow lines are again symmetrical with respect to a plane through
the midsection of the sphere and normal to the overall flow
Qirection. But for inviscid flow this symmetry is present not
just for very low velocities but for all velocities. Figure 3.2
is a plot of fluid velocity along the particular flow line that
meets the sphere at its front point, passes back along the surface
of the sphere, and leaves the sphere again at the rear point. The
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velocity varies symmetrically with respect to the midsection of
the sphere: it falls to zero at the front point, accelerates to a
maximum at the midsection, falls to zero again at the rear point,
and then attains its original value again dowstream. The front
and rear points are called stagnation points, because the fluid
velocity is zero there. Note that elsewhere the velocity is not

zero on the surface of the sphere, as it is in viscous flow.

Don't let this unrealistic finite velocity on the surface of the

sphere bother you; it's a consequence of the unrealistic

assumption that viscous effects are absent, so that the no-slip

condition is not applicable.

Figure 3.1 Steady flow of inviscid fluid around a sphere}

Streamlines are shown from the standpoint of an observer

stationary relative to the sphere.

{fiow
3 o
7S TS /
[ P40 R N 4
V>
-t
-1
-ao L% 117+] 3o 340
8 (dey)

Figure 3.2 Distribution of fluid velocity on the sphere
surface in flow of inviscid fluid around a sphere.

Figure 3.3 shows the distribution of fluid pressure around

the surface of a sphere moving relative to an inviscid fluid. As
with velocity, pressure is distributed symmetrically with respect
to the midsection, and its variation is just the inverse of that
of the velocity: relative to the uniform pressure far away from
the sphere it's greatest at the stagnation points and least at the
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midsection. One seemingly ridiculous consequence of this
symmetrical distribution is that the flow exerts no net pressure
force on the sphere, and therefore, since there are no viscous
forces either, it exerts no resultant force on the sphere at alll
In contrast, the distribution of pressure on the surface of a
sphere moving very slowly relative to a viscous fluid shows a
strong front-to-back asymmetry (Figure 2.1):; it is this uneven
distribution of pressure, together with the existence of viscous
shear forces on the boundary, that gives rise to the drag force.
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Figure 3.3 Distribution of fluid pressure on the sphere
surface in flow of inviscid fluid around a sphere.

So the distributions of velocity and pressure in inviscid
flow around a sphere, and therefore of the fluid forces on the
sphere, are grossly different from the case of slow flow of
viscous fluid around the sphere, even though the pattern of flow
lines is not grossly different. Then what's the value of the
. inviscid approach? You'll see in the section on flow separation
below that at higher real-fluid velocities the boundary layer in
which viscous effects are concentrated next to the surface of the
sphere is thin, and ocutside this thin layer the flow patterns and
the distributions of both velocity and pressure are approximately
as given by the inviscid theory. Moreover, the boundary layer is
so thin for high £flow velocities that the pressure on the surface
of the sphere is approximately the same as that given by the
inviscid solution just outside the boundary layer. And since at
these high velocities the pressure forces are the main determinant
of the total drag force, the inviscid approach is useful in
dealing with forces on the sphere after all. Behind the sphere
the flow patterns given by inviscid theory are grossly different
from the real pattern menticned at the end of the last chapter
{and discussed more fully in a later section of this chapter), but
you'll see that one of the advantages of the inviscid assumption
is that it aids in a rational explanation for the existence of

this great difference.

In many kinds of flows around well streamlined bodies like
airplane wings, agreement is much better than for flow around
blunt bodies like spheres. In flow of air around an airplane
wing, viscous forces are important only in a very thin layer
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immediately adjacent to the wing, and outside this layer the
pressure and velocity are almost exactly as given by invisciad
theory (Figure 3.4). It is these inviscid solutions that allow
prediction of the lift on the airplane wing: although drag on the
wing is governed largely by viscous effects within the boundary
layer, lift is largely dependent upon the inviscid distribution of
pressure that holds just outside the boundary layer. To some
extent this is true also for flow around sediment grains resting
on the bottom: lift and drag forces on sediment grains will be
pursued in detail in Chapter 4 and 6.
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Figure 3.4 Schematic streamlines and forces in flow around
an airplane wing.

THE BERNOULLI EQUATION

In the example of inviscid flow past a sphere described
above, the pressure is high at points where the velocity is low,
and vice versa. It is not difficult to derive an equation, called
the Bernoulli equation, that aciounts for this relationship.
Because this will be useful later on, we'll show here how it comes
about.

First we have to be more specific about what we've casually
been calling flow lines. Fluid velocity is a vector quantity, and
since the fluid behaves as a continuum, a velocity vector can be
associated with every point in the flow. Continuous and smooth
curves that are everywhere tangent to these velocity vectors
(Figure 3.5) are called streamlines. One and only one streamline
passes through each point In the flow, and at any given time there
is only one such set of curves in the flow. If the flow is
steady, the streamline pattern doesn't change with time; if the
streamline pattern changes with time, the flow is unsteady. (But
note that the converse of each of these statements is not
necessarily true, because an unsteady flow can exhibit an
unchanging pattern of streamlines as velocities everywhere
increase or decrease with time.)
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Figure 3.5 A streamline.

There cbviously is an infinity of streamlines passing through
any region of flow, no matter how small; usually only a few
representative streamlines are shown in sketches and diagrams. An
important property of streamlines follows directly from their
definition: the flow can never cross streamlines. We can imagine
a tubelike surface formed by streamlines (Figure 3.6), called a
stream tube, passing through some region; this surface or set of
streamlines can be viewed as functioning as if it were a real tube
or conduit, in that there is flow through the tube but there is no
flow either inward or outward across its surface.

ﬁfﬂﬁﬂ}iﬂt‘

Figure 3.6 A stream tube.

Consider a short segment of one such tiny stream tube in a
fluid flow (Figure 3.7). Write Newton's second law for the fluid
contained at some instant in this stream-tube segment. The
cross—-sectional area of the tube is AA, and the length of the
segment is As. If the pressure at cross section 1, at the
left-hand end of the segment, is p, then the force exerted on this
end of the segment is pAA. It's not important that the area of
the cross section might be slightly different at the two ends (if




Figure 3.7 Segment of a stream tube, for derivation of the
Bernoulli equation. -

the flow is expanding or contracting), or that p might vary
slightly over the cross section, because you can make the
cross-sectional area of the stream tube as small as you please.
What is the force on the other end of the tube? The pressure at
Cross section 2 is different from that at cross section 1 by
(3p/3s)As, the rate of change of pressure in the flow direction
times the distance between the two cross sections, so the force on
the right-hand end of the tube is '

(p + gg-As)AA

The net force on the stream tube in the flow direction is then

3 _ )
phA - (p + §§)AA = §§ASAA

The pressure on the lateral surface of the tube is of no concern,
because the pressure force on it acts normal to the flow
direction. Newton's second law, F = d{mv)/dt, for the fluid in
the segment of the stream tube, where v is the velocity of the
fluid at any point, is then

P _d
--ggzlsAA = Flv(osssa)]

or
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-op . dv 3.3
. v (3.3)

where we have assumed that p is constant and 80 can be moved
outside the derivative. (In this section v is used not as the
component of velocity in the y direction but as the component of
velocity tangent to the streamline at a given point .) The
derivative on the right side of Equation (3.3) can be put into
more convenient form by use of the chain rule and a simple
"undifferentiation" of one of the resulting terms:

- ., dv
as P t
-, dydt , avas
=Pstatiat
_ A av
= P 3% A~ _ (3.4)
2
-, v o1 3(vT)
P t 2 98

This equation is strictly true only for the single streamline to
which the stream tube collapses as we let AA + 0, because only
then need we not worry about possible variation of either p or v
- Over the cross sections. Assuming further that the flow is
steady, 3v/3t = 0, and Equation (3.4) becomes

3{v®) (3.5)

It's easy to integrate this equation between two points 1 and 2 on
the streamline (remember that this equation holds for any
streamline in the flow):

2 2
-f§§ds=%5-5~m3(;’)ds
1 I

2 (3.6)

49




3-8

or

So you see that if the flow is steady and incompressible
there is an inverse relationship between fluid pressure and fluid
velocity along any streamline. Eguation {(3.6) is called the
Bernoulli equation. Remember that it holds only along individual
streamlines, not through the entire flow. (In other words, the
constant in the alternative form of the eguation above is
generally different for each streamline in the flow.) And it
holds only for inviscid flow, because if the fluid is viscous
there are shearing forces across the lateral surfaces of stream
tubes, and Newton's second law cannot be written and manipulated
so simply. But often in flow of a real fluid the viscous forces
are small enough outside the boundary layer that the Bernoulli
egquation is a good approximation.

Note that the right-hand side of Equation (3.6) is the
-negative of the increase in kinetic energy per unit volume of
£luid between point 1 and point 2, The Bernoulli equation is just
a statement of the work-energy theorem, whereby the work done by a
force acting on a body is egual to the change in kinetic energy of
the body. In this case fluid pressure is the only force acting
on the fluid.

In discussing inviscid flow around a sphere we called the
front and rear points of the sphere the stagnation points, because
velocities relative to the sphere are zero there. Using the
Bernoulli eguation it's easy to find the corresponding stagnation
pressures. Taking the free-stream values of pressure and velocity
to be po and vg, writing Equation (3.6) in the form

2 2
P =By =5 (V= v

and substituting v = 0 at the stagnation points, the stagnation
pressure (the same for front and rear points) is

2
pVv

P =P, ¥ 73
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3-9
TURBULENCE

Almost all fluid flows of sedimentological interest are
turbulent. Because of the range and complexity of problems in
turbulent flow, our approach will necessarily continue to be
selective. The introductory material on the description and
origin of turbulence in this section is background for the
important topic of turbulent flow in boundary layers in the
following section and in Chapter 5. The emphasis in all this
material on turbulence is on the most important physical effects.
Mathematics will be held to a minimum, although some is
unavoidable in the derivation of useful results on flow resistance
and velocity profiles.

What is Turbulence?

It's not easy to devise a satisfactory definition of
turbulence. Turbulence might be loosely defined as an irregular
or random or statistical component of motion that under certain
conditions becomes superimposed on the mean or overall motion of a
fluid when that fluid flows past a solid surface or past an
adjacent stream of the same fluid with different velocity. This
definition does not convey very well what turbulence is really
like; it's much easier to describe turbulence than to define it.

Our goal in this section is to present as clear a picture as
possible of what turbulence is like. Suppose that you were in
possession of a magical instrument that allowed you to make an
exact and continuous measurement of the fluid velocity at any
point in a turbulent flow as a function of time. We're calling
the instrument magical because all of the many available methods
of measuring fluid velocity at a point, some of them fairly
satisfactory, inevitably suffer from one or both of two drawbacks:
(i) the presence of the instrument distorts or alters the flow
we're trying to measure; (ii) the effective measurement volume is
not small enough to be regarded as a "point." What would your
record of velocities look like? Figure 3.8 is an example of such
a record, for the component u of velocity in the downstream
direction. The outstanding characteristic of the velocity is its
uncertainty: there is no way of predicting at a given time what
the velocity at some future time will be. But note that there is
a readily discernible (although not precisely definable) range
into which most of the velocity fluctuations fall, and the same
can be said about the time scales of the fluctuations.

Turbulence measurements present a rich field for statistical
treatment. First of all, a mean velocity u can be defined from
the record of u by use of an averaging time interval that is very
long with respect to the time scale of the fluctuations but not so
long that the overall level of the velocity drifts upward or
downward during the averaging time (Figure 3.9). A fluctuating
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Figure 3.8 Typical records of streamwise component u and
normal-to-boundary component v of instantaneous fluid
velocity in turbulent flow past a solid boundary. The
horizontal line representing the mean velocity u has the
property that the areas under the velocity curve above
and below the line are equal.

veloc1ty u' can then be defined as the difference between the
instantaneous ve1001ty u and the mean velocity u:

where the overbar denotes a time average. The time-average value
of u' must be zero. Now look at the component of velocity in any
direction normal to the mean flow direction (Figure 3.8). You'ad
'see a similar record, except that the average value would always
have to be zero:; the normal-to-boundary velocity is usually called
- v, and the cross-stream velocity (parallel to the boundary and
normal to flow) is usually called w.

vV = v -V
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A good measure of the intensity of the turbulence is the
root-mean-square value of the fluctuating components of velocity:
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RMS (w') = (u'2) /2
RMS(v') = (v’ 1/2
RMS (w') = (w'?)%/?

These are formed by taking the square root of the time average of
the squares of the fluctuating velocities; for those who are
familiar with statistical terms, the rms values are simply
standard deviations of instantaneous velocities. They are always
positive guantities, and their magnitudes are a measure of the
strength or intensity of the turbulence, or the spread of
instantaneous velocities around the mean. Turbulence intensities
are typically something like five to ten percent of the mean
velocity u (i.e., the coefficient of variation of velocity is

5-10%) .
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Figure 3.9 Choice of an averaging time interval for
turbulent velocity. Time interval 1 is too long,
because the velocity has drifted considerably. Time
interval 2 is too short, because it does not include
enough fluctuations to provide a stable or
representative average. Time interval 3 is acceptable,
because it includes a sufficiently large number of
fluctuations but the velocity has drifted very little.
An appropriate averaging interval like this can usually
be found.

Statistical analysis of turbulence can be carried much
further than this. But now suppose that you measured velocxty in

"'a different way, by following the trajectories of fluid "points”
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or markers as they travel with the flow and measuring the velocity
components as a function of time. It is straightforward, though
laborious, to do this sort of thing by photographing tiny
neutrally buoyant marker particles that represent the motion of
the fluid well, and then measuring their travel and computing
velocities. Velocities measured in this way, called Lagrangian
velocities, are related to those measured at a fixed point, called
Bulerian velocities, and the records would look generally similar.
The trajectories themselves would be three-dimensionally sinuocus
and highly irregular, as shown schematically in Figure 3.10,
although angles between tangents to trajectories and the mean flow
direction are usually not very large, because u' is usually small
relative to u. You can imagine releasing fluid markers at some
fixed point in the flow and watching a succession of trajectories
traced out at different times (Figure 3.11). Each trajectory
would be different in detail, but they would show similar
features.
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Figure 3.10 Typical trajectory of a small fluid element or
"marker" in a turbulent flow. The trajectory is
slightly exaggerated in the directicn normal to the
flow.
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Figure 3.11 A succession of trajectories of fluid markers
released at the same point but at different times in a
turbulent flow. Trajectories are slightly exaggerated
in the direction normal to the flow.

One thing you can do to learn something about the spatial
scale of the fluctuations revealed by velocity records like the
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one in Figure 3.8 is to think about the distance over which the
velocity becomes "different" or uncorrelated with distance away
from a given point. Suppose that you measured the velocity
component u simultaneously at two points 1 and 2 a distance x
apart in the flow and computed the correlation coefficient by
forming products of a large number of pairs of velocities, each
measured at the same time, taking the average of all the products,
and then scaling by dividing by the rms value. If the two points
are close together compared to the scale of the turbulence, the
velocities at the two points will be nearly the same, and the
coefficient will be nearly one. But if the points are far apart
the velocities will be uncorrelated (that is, they will have no
tendency to be similar), and the coefficient will be zero or
nearly so. The distance over which the coefficient falls to a
value close to zero is roughly representative of the spatial scale
of the turbulent velocity fluctuations. A similar correlation
coefficient can be computed for Lagrangian velocities, and
correlation coefficients can also be based on time rather than on
space.

One of the very best ways to get a gualitative idea of the
physical nature of turbulent motions is to put some very fine
flaky reflective material into suspension in a well illuminated
flow. The flakes tend to be brought into parallelism with local
shearing planes, and variations in reflected light from place to
place in the flow give a fairly good picture of the turbulence.
Although it's easier to appreciate than to describe the pattern
that results, the general picture is one of intergrading swirls of
fluid, with highly irregular shapes and with a very wide range of
sizes, that are in a constant state of development and decay.
These swirls are called turbulent eddies. Even though they're not
sharply delineated, they have a real physical existence. The
swirly nature of the eddies is most readily perceived when the eye
attempts to follow points moving along with the flow; if instead
the eyé attempts to fix upon a point in the flow that is
stationary with respect to ‘the boundaries, fluid elements (if
there are some small marker particles contained in the fluid to
represent them) are seen to pass by with only slightly varying
velocities and directions, in accordance with the Eulerian
description of. turbulent velocity at a point.

Each eddy has a certain sense and intensity of rotation that
tends to set it off, at least momentarily, from surrounding fluid.
The property of solid-body-like rotation of fluid at a given point
in the flow is termed vorticity. Think in terms of the rotation
of a small element of Fluid as the volume of the element shrinks
toward zero around the point. The vorticity varies smoothly in
both magnitude and orientation from point to point. The eddy
structure of the turbulence can be described by how the vorticity
varies throughout the flow; the vorticity in an eddy varies from
point to point, but it tends ta be more nearly the same there than
in neighboring eddies.
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Origin of Turbulence

You saw in Chapter 1 that steady uniform flow down a plane is
laminar under some conditions and turbulent under other
conditions. This is characteristic of most kinds of flows. Now
that you have some idea of the kinematics of turbulent flow, you
might consider what it is that.governs whether the flow is laminar
Oor turbulent in the first place, and what the transition from
laminar to turbulent flow is like. Osborne Reynolds did the
pPioneering work on these questions in the 1880sg in an experimental
study of flow through tubes with circular cross-section
(Reynolds, 1883). Think first about the variables important in
such a flow (Figure 3.12). Density p and viscosity u must be
taken into account, for the same reasons as in flow down a plane,
A variable that describes the speed of movement of the fluid is
important, because this governs both fluid inertia and rates of
shear. A good variable of this kind is the mean velocity of flow
in the tube; this can be found either by averaging the local fluid
velocity over the cross section of the tube or by dividing the
discharge (i.e., the volume rate of flow) by the cross~sectional
area of the tube. The diameter D of the tube is important because
it affects both the shear rate and the scale of the turbulence.
Gravity need not be considered explicitly in this kind of flow
because no deformable free surface is involved. As discussed in
Chapter 1, the four variables U, D, p, and y can be' combined into
a single dimensionless variable pUD/y on which all the
characteristics of the flow, including the transition from laminar
to turbulent flow, depend. Reynolds first deduced the importance
of this variable, now called the Reynolds number Re, by
considering the dimensional structure of the equation of motion in
the way we discussed briefly at the very end of Chapter 1.
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Figure 3.12 vVvariables that characterize the transition from
laminar flow to turbulent flow in a straight tube with
circular cross section. -
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Figure 3.13 Apparatus of the kind used by Reynolds to study
the transition from laminar flow to turbulent flow
downstream of the inlet to a straight circular tube.

Reynolds made two kindes of experiments. The first, to study
the development of turbulent flow from an originally laminar flow,
was made in an apparatus like that shown in Figure 3.13: a long
tube leading from a reservoir of still water by way of a
trumpet-shaped entrance section, through which a flow with varying
mean velocity could be passed with a minimum of disturbance.

Three different tube diameters (1/4", 1/2", and 1") and water of
two different temperatures, and therefore of two different
viscosities, were used. For each combination of D and p the mean
velocity was gradually increased until the originally laminar flow
became turbulent. The transition was observed with the aid of a
streak of colored water introduced at the entrance of the tube.

When the velocities were sufficiently low, the streak of
color extended in a beautiful straight line through the
tube [Figure 3.14A].... As the velocity was increased by
small stages, at some point in the tube, always at a
considerable distance from the trumpet or entrance, the
color band would all at once mix up with the surrounding
water, and fill the rest of the tube with a mass of
colored water [Figure 3.14Bl.... On viewing the tube by
the light of an electric spark, the mass of water
resolved itself into a magss of more or less distinet
curls, showing eddies [Figure 3.14C] -
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(Reynolds, 1883, p. 942). Reynolds found that for each
combination of D and u the point of transition was characterized
by almost exactly the same value of Re, around 12,000. Subsegquent
experiments have since confirmed this over a much wider range of
U, D, p, and u.
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Figure 3.14 Patterns of flow observed by Reynolds in his
experiments on transition from laminar flow to turbulent
flow in a straight circular tube. (A) Laminar flow
through the tube; (B) transition from laminar flow to
turbulent flow in the tube; (C) transition from laminar
flow to turbulent flow illuminated by a spark to reveal
the eddy structure of the turbulent flow.

8ince the transition from laminar to turbulent flow was so
abrupt and the resulting turbulence was so well developed,
Reynolds suspected that the laminar flow became potentially
unstable to large disturbances at a much lower value of Re than he
found for the transition when he minimized external disturbances,
and in fact he observed that the transition took place at much
lower values of Re if there was residual turbulence in the supply
tank or if the apparatus was disturbed in any way. Similar
experiments made with even greater care in eliminating such
disturbances have since shown that laminar flow can be maintained
to much higher values of Re, up to about 40,000, than in Reynolds'
original experiments. :

To circumvent the persistence of laminar flow into the range
of Re for which it is unstable, Reynolds made a separate set of
experiments to study the transition of originally turbulent flow
to laminar flow as the mean velocity in the tube was gradually
decreased. To do this he passed turbulent flow through a very
long metal pipe and gradually decreased the mean velocity until at
some point along the pipe the flow became laminar. The occurrence
of the transition was detected by measuring the drop in fluid
pressure between two stations about two meters apart near the
downstream end of the pipe. (It had been known long before
Reynolds' work that in laminar flow through a horizontal pipe the
rate at which fluid pressure drops along the pipe is directly
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proportional to the mean velocity, whereas in turbulent flow it is
approximately proportional to the square of the mean velocity.
Thus, although Reynolds could not see the transition he had a
sensitive means of detecting its occurrence.) Again many
different combinations of pipe diameter and fluid viscosity were
used; in every case the transition from turbulent to laminar flow
occurred at values of Re close to 2000. This is the value for
which laminar flow can be said to be unconditionally stable, in
the sense that no matter how great a disturbance is introduced,
the flow will always revert to being laminar.

Mathematical theory for the origin of turbulence is
intricate, and only partly successful in accounting for the
transition to turbulent flow at a certain critical Reynolds
number. One of the most successful approaches involves analysis
of the stability of a laminar shear flow against
very-small-amplitude disturbances. The mathematical technique
involves introducing a small wavelike disturbance of a certain
frequency into the equation of motion for the flow and then seeing
whether the disturbance grows in amplitude or is damped. The
assumption is that if the disturbance tends to grow it will
eventually lead to development of turbulence. Although a
satisfactory explanation would take us off the track at this
point, in laminar flow there is a tendency for a wave~shaped
distortion as in Figure 3.15 to be amplified with time: applying
the Bernoulli equation along the streamlines shows that fluid
pressure is lowest where the velocity is greatest in the region of
crowded flow lines, and highest where the velocity is smallest in
the region of uncrowded flow lines, and the resulting unbalanced
pressure force tends to accelerate the fluid in the direction of
convexity and thereby accentuate the distortion. But at the same
time the viscous resistance to shearing tends to weaken the
shearing in the high-shear part of the distortion and thus tends
to make the flow revert to uniform shear. It should therefore
seem natural that the Reynolds number, which is a measure of the
relative importance of viscous shear forces and accelerational
tendencies, should indicate whether disturbances like this are
amplified or damped.

Figure 3.16 is a stability diagram for a laminar shear layer
or boundary layer (see next section) developed next to a planar
boundary. The diagram shows the results of both the mathematical
stability analysis described above (Lin, 1955) and experimental
observations on stability (Schubauer and Skramstad, 1947). The
experiments were made by causing a small metal band to vibrate
next to the planar boundary at a known frequency and observing the
resulting velocity fluctuations in the fluid. Agreement between’
theory and experiment is good but not perfect; if the experimental
results were completely in agreement with the calculated curve,
they would all fall on it. The diagram shows that there is a
well-defined critical Reynolds number, Recyjit. below which the
laminar flow is always stable but above which there is a range of
frequencies at any Reynolds number for which the disturbance is
amplified, so that the laminar flow is potentially unstable and

59




3-18

will become turbulent provided that disturbances with frequencies
in that range are present.
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Figure 3.15 Amplification of a wave~shaped disturbance on an
interface of velocity discontinuity in laminar flow
{schematic). (A) Pressure forces acting to deform the
interface. Plus and minus signs indicate high and low
pressures, respectively, acting on each side of the
velocity discontinuity. (B) Evolution of the
disturbance with time in a series of vortices.
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Figure 3.16 Diagram showing stability of a laminar
shearing layer (boundary layer) developed next to a
planar boundary. The vertical axis is a dimensionless
measure of the freguency f of the imposed
small-amplitude disturbances. The horizontal axis is a
Reynolds number based on thickness § of the boundary
layer and free-stream velocity at the outer edge of the
boundary layer. The solid curve is the calculated curve
for neutral stability (Lin, 1955); the points represent
experimental determinations of neutral stability
(Schubauer and Skramstad, 1947).
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BOUNDARY LAYERS

A boundary layer is the zone of flow in the immediate
vicinity of a solid surface or boundary in which the motion of the
fluid is affected by the frictional resistance exerted by the
boundary. The no-slip condition requires that the velocity of
fluid in direct contact with solid boundary be exactly the same as
the velocity of the boundary; the boundary layer is the region of
fluid next to the boundary across which the velocity of the fluid
grades from that of the boundary to that of the unaffected part of
the flow {often called the free stream) some distance away from
the boundary.

A good example is the boundary layer that develops on both
surfaces of a stationary flat plate held parallel to a uniform
free stream of fluid (Figure 3.17). Just downstream of the
leading edge of the plate the boundary layer is very thin, and the
shearing necessitated by the transition from zero velocity to
free~stream velocity is compressed into a thin zone of strong
shear, and so the shear stress at the surface of the plate is
large. Farther along the plate the boundary layer is thicker,
because the motion of a greater thickness of fluid is retarded by
the frictional influence of the plate, in the form of shear
stresses exerted from layer to layer in the fluid; the shearing is
therefore weaker, and the shear stress at the surface of the plate
is smaller.
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Figure 3.17 Development of a laminar boundary layer
downstream of the leading edge of a flat plate held
parallel to a uniform stream of fluid. A boundary layer
is developed on both sides of the plate; only one is
shown. Rate of growth of the boundary layer downstream
is exaggerated. -
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Boundary layers develop on objects of any shape immersed in a
fluid moving relative to the object: flat plates as discussed
above, airplane wings and other streamlined shapes, and blunt Or
bluff bodies like spheres or cylinders or sediment grains.
Boundary layers also develop next to the external boundaries of a
flow: the walls of pipes and ducts, the beds and bottoms of
channels, the ocean bottom, and the land surface under the moving
atmosphere. In every case the boundary layer has to start
gsomewhere, as at the front surface or leading edge of a body
immersed in the flow or at the upstream end of any solid boundary
to the flow. And in every case it grows or expands downstream,
either until the flow passes by the body (the shearing motion
engendered in the boundary layer is then degraded by viscous
forces), or until it meets another pboundary layer growing from
some other surface, or until it reaches a free surface.

Flow in boundary layers may be either laminar or turbulent.
A boundary layer typically starts out as a laminar flow, but if it
has a chance to grow for a long enough distance along the boundary
it abruptly becomes turbulent. In the example of a flat-plate
boundary layer, we can define a Reynolds number Reg = pUSs/u based
on free-stream velocity U and boundary-layer thickness §
(Figure 3.18);: just as in flow in a tube or down a plane, past a
certain critical value of Res the laminar boundary layer is
potentially unstable and may become turbulent. If there are no
large turbulent eddies in the free stream, the laminar boundary
layer may persist to very high Reynolds numbers; if the free
stream is itself turbulent, or if the surface of the plate is very
rough, the boundary layer may become turbulent a very short
distance downstream of the leading edge. Turbulence in the form
of small spots develops at certain points in the laminar boundary
layer, spreads rapidly, and soon engulfs the entire boundary
layer. Once the boundary layer becomes turbulent it thickens
faster, because fluid from the free stream is incorporated into
the boundary layer at its outer edge in much the same way that
clear air is incorporated into a turbulent plume of smoke
‘(Figure 3.19). But the thickness of even a turbulent boundary
layer grows fairly slowly relative to downstream distance--the
angle between the average position of the outer edge of the
boundary layer and the boundary itself is not very large,
typically something like a few degrees.

A question that might be bothering you at this point is: How
thick can a boundary layer grow? In the case of objects immersed
in the flow, the boundary layer develops only in the immediate
vicinity of the object. Downstream of the object the fluid that
wae retarded in the boundary layer is gradually reaccelerated by
the free stream, until far downstream the velocity profile in the
free stream no longer shows any evidence of the presence of the
object upstream. The zone of retarded and often turbulent fiuid
downstream of the object is called the wake .

. The boundary layer that grows along an external boundary of
the flow itself keeps growing until it encounters a free surface
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Figure 3.18 Transition from iaminar flow to turbulent flow

in the boundary layer developed next to a flat plate
held parallel to the flow.
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Figure 3.19 Mixing of ambient free-stream fluid into the
outer part of a turbulent boundary layer.

or another boundary layer growing from the opposite boundary.
It's instructive to consider how the boundary layer in flow down a
plane develops if the flow actually has a well defined starting
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point, as at the sill or spillway of a large reservoir of still
fluid (Figure 3.20). A boundary layer starts to develop at the
head of the planar channel bottom and grows upward toward the
surface. At some point downstream the boundary layer becomes SO
thick that it reaches the free surface. Past this point the flow
is all boundary layer! Boundary-layer development is typically
complete in a length of channel equivalent to something like a few
tens of flow depths. Upstream, in the zone of boundary-~layer
growth, the boundary layer is nonuniform, in that it is different
at each section; downstream, in the zone of fully established
flow, the boundary layer is uniform. In the same sense, a fairly
straight river or tidal-channel flow is all boundary layer. Of
course, since objects can be immersed in such flows, local
boundary layers, called internal boundary layers, can be developed
within larger boundary layers. One example is that of the
boundary layer developed on a sediment grain on the bed of a
turbulent boundary-layer f£flow or settling through the flow:
another, discussed in more detail in Chapters 5 and 7, is that of
the boundary layer that develops locally in the accelerating flow
over the back of a ripple or a dune.
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Figuie 3.20 Development of a turbulent boundary layer at the
head of an open channel.

FLOW SEPARATION

The overall pattern of flow at fairly high Reynolds numbers
past blunt bodies or through sharply expanding channels or
conduits is radically different from the pattern expected from
inviscid theory, which we've said is often a good guide to the
real flow patterns. Figure 3.21 shows two examples of such flow
patterns, one for a sphere and one for a duct or pipe that has a
downstream expansion at some point. Near the point where the
s0lid boundary begins to diverge from the direction of the mean
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fiow, the boundary layer separates or breaks away from the
boundary. This phenomenon is called flow separation. In all
cases the flow separates from the boundary in such a way that the
fluid keeps moving straight ahead as the boundary surface falls
away from the direction of flow just upstream. The main part of
the flow, outside the boundary layer, diverges from the solid
boundary correspondingly. If you look only at the regions
enclosed by the dashed curves in Figure 3.21 you can appreciate
that flow separation is dependent not so much on the overall flow
geometry as on the change in the orientation of the boundary
relative to the overall flow--a change that involves a curving
away of the boundary from the overall flow direction. Separation
takes place at or slightly downstream of the beginning of this
curving away.

Downstream of the separation point is a region of stagnant
fluid with about the same average velocity as the boundary itself.
In this region the fluid has an unsteady eddying pattern of
motion, with only a weak circulation as shown in Figure 3.21. As
soon as the boundary layer leaves the solid boundary it 1s in
contact with this slower-moving fluid across a surface of strong
shear. This shearing surface is unstable, and a short distance
downstream of the separation point it becomes wavy and then breéaks
down to produce turbulence. This turbulence is then mixed or
diffused both into the main flow and into the stagnant region, and
is eventually damped out by viscous shearing within eddies, but
its effect extends for a great distance downstream. The stagnant
region of fluid inside the separation surface, together with the
region of strong turbulence developed on the separation surface,
is called a wake. Far downstream from a blunt body like a sphere
(Figure 3.21A) the wake turbulence is weak and the average fluid
velocity along a profile across the mean flow is slightly less
than the free-stream velocity. In £flow past an expansion in a
duct or channel (Figure 3.21B), the expanding zone of wake
turbulence eventually impinges upon the boundary; downstream of
this point, where the flow is said to reattach to the boundary,
the flow near the boundary is once again 1in the downstream
direction, and a new boundary layer develops until far downstream
of the expansion the flow is once again fully established.

You can understand why flow separation takes place by
reference to steady inviscid flow around a sphere (Figure 3.1).
Remember that variations in fluid velocity can be deduced
qualitatively Jjust from variations in spacing of neighboring
streamlines. As a small mass of fluid approaches the sphere along
a streamline that will take it close to the surface of the sphere
(Figure 3.22), it Jdecelerates slightly from its original uniform
velocity and then accelerates to a maximum velocity at the
midsection of the sphere (Figure 3.23). Beyond the midsection it
experiences precisely the reverse variation in velocity: it
decelerates to minimum velocity and then accelerates slightly back
to the free-stream velocity. We can apply the Bernoulli equation
(Eguation 3.6) to find the corresponding variation in fluid
pressure. The pressure is slightly greater than the free-stream
value at points just upstream and just downstream of the sphere
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Figure 3.21 Flow separation developed in (A) flow past a
sphere and (B) flow through a duct or pipe.
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Figure 3.22 Steady inviscid motion of a small mass of
fluid passing close to a sphere.
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Figure 3.23 Schematic variation in (A) velocity and (B)
pressure along a streamline passing close to the sphere,
for steady inviscid flow around a sphere.

but shows a minimum at the midsection {Figure 3.23). It is this
variation in pressure that causes strong accelerations and
decelerations as the fluid passes around the sphere. In front of
the sphere the pressure decreases along the streamline (the
spatial rate of change or gradient of pressure is said to be
negative or favorable), so there is a net force on the fluid

mass in the direction of motion, causing an acceleration. In back
of the sphere the pressure increases along the streamline (the
pressure gradient is positive or adverse), so there is a net

- force opposing the motion, and the fluid mass decelerates.
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In inviscid flow the pressure is the only force in the fluid.
But in the real world of viscous fluids, a boundary layer develops
next to the sphere. If the boundary layer is thin, the streamwise
variation in fluid pressure given by the Bernoulli egquation along
streamlines just outside the boundary layer is approximately
the same as the pressure on the boundary. (The pressure outside
the boundary layer is said to be impressed on the boundary.) If
now you follow the motion of a fluid mass along a streamline that
is close enough to the sphere to become involved in the boundary
layer, a viscous force as well as the impressed pressure force
acts on the fluid mass. Because the viscous force everywhere
opposes the motion, the fluid mass cannot ultimately regain its
uniform velocity after passing the sphere, as in inviscid flow.
The fluid cannot accelerate as much in front of the sphere as in
the inviscid flow, and reaches the midsection with lower velocity;
ther the adverse pressure gradient in back of the sphere, which is
augmented by the viscous retardation, decelerates the fluid to
zero velocity and causes it to start to move in reverse
(Figure 3.24). This reverse flow forms a barrier to the
continuing flow from the front of the sphere, and so the flow must
break away from the boundary to pass over the obstructing fluid.
Because velocities are small along streamlines close to the
boundary, this deceleration to zero velocity occurs only a short
distance downstream of the onset of the adverse pressure gradient
~where the boundary curves away from the mean flow direction.

&r«(qfui

Figure 3.24 Development of reverse flow and boundary-layer
separation in the region of adverse pressure gradient
where the solid boundary curves away from the mean flow
direction. Profiles show component of fluid velocity
parallel to the boundary.

You might justifiably ask why this same explanation should
not hold just as well for slow flow around a sphere at Reynolds
numbers small enough to be in the Stokes range. A superficial
answer would be that according to Stokes' law for slow viscous
flow around a sphere the distributions of pressure and shear
stress are such that the flow passes around the sphere without
reversal. A more basic explanation, which is gqualitatively true
but may not be very helpful, is as follows. As noted in
Chapter 2, flow around a sphere at low velocities is characterized
by fluid accelerations that are everywhere so small compared to
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fluid velocities that the viscous forces are everywhere closely
balanced by pressure forces, so that there is no tendency for
fluid to decelerate to a stall. At these low velocities,
vorticity generated by shearing in the fluid caused by the
presence of the solid boundary is spread uniformly for a great
distance away from the surface of the sphere rather than being
concentrated near the boundary. As the velocity around the sphere
increases, the vorticity is to a progre551vely greater extent
swept or convected back around the sphere in a progressively
thinner layer rather than being distributed in all directions (or,
in other words, shearing is more concentrated near the solid
boundary), and the pressure distribution in the surrounding fluid
is more and more like that predicted by inviscid theory.
Ultimately flow separation develops for the reasons outlined
above.
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CHAPTER 4. MORE ON DRAG AND SETTLING

INTRODUCTION

In Chapter 2 we outlined the basic law for settling of a
spherical grain through a still, viscous fluid. This was done by
establishing, partly on theoretical grounds but mainly from
dimensional analysis and experimentation, a relationship between
drag coefficient and Reynolds number for a sphere moving through a
viscous fluid. It was seen that the nature of the relationship
changes as the Reynolds number increases, corresponding to a
change from a viscous regime of flow to a regime in which the
motion of the particle results in the formation of a turbulent
wake.

In this chapter we will examine a little more closely the
phenomenon of wake formation, and then consider the modifications
of settling behavior that arise from changes in shape and
concentration of the settling grains.

MORE ON FLOW REGIMES

Flow separation is the basic physical process leading to the
formation of a wake behind a settling grain. Even before a wake
is developed, there are deviations of the observed drag
coefficient from that predicted by Stokes' Law, but after flow
separation begins, the deviations from Stokes' Law become very
large (Figure 4.1)}.

For spheres, flow separation begins at a Reynolds number of
about 24. The point of separation is at first close to the rear
of the sphere, and separation results in the formation of a ring
eddy attached to the rear surface of the sphere. Flow within the
eddy is at first quite regular and predictable, thus not
turbulent, but as the Reynolds number increases the point of
separation moves to the side of the sphere, and the ring eddy is
drawn out in the downstream direction and begins to oscillate and
become unstable. At Reynolds numbers larger than about 100,
turbulence begins to develop in the wake of the sphere. At first
turbulence develops mainly in the thin zone of strong shearing
produced by flow separation and then spreads out downstream, but
as the Reynolds number reaches values of the order of 1000, the
entire wake is filled with a mass of turbulent eddies. In the
range of Reynolds numbers from about 1000 to about 200,000 there
are few major changes in the pattern of flow. The flow separates
at a position about 80° from the front stagnation point, and there
is a fully developed turbulent wake. The drag is due mainly to
the pressure distribution on the surface of the sphere, with only
a minor contribution from viscous shear stress. The pressure
distribution is as shown in Figure 4.2 and does not vary much with
Reynolds number in this range (1000-200,000), so the drag
coefficient remains almost constant at about 0.5.
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Figure 4.1 Diagram of drag coefficient vs. Reynolds number
for spheres, cylinders, spherical plates, and
two-dimensional plates normal to the flow.

At very high Reynolds numbers, above about 200,000 {(this
value corresponds to a quartz sphere of about 16 cm diameter
settling in water), the boundary layer becomes turbulent before
separation takes place, and there is a sudden change in the flow
pattern, Separation takes place at the rear of the sphere (at a
position about 120-130° from the front stagnation point), the wake
contracts in size, and consequently the pressure distribution
changes markedly over the rear of the sphere (Figure 4.2). The

result is a sudden drop in drag coefficiént, to a minimum of about
0.1. This is sometimes called the "drag crisis.”

This sequence of different flow patterns or regimes for
spheres is very similar to that observed for flow past many other
blunt bodies, i.e., bodies without a good streamlined shape. It
is actually easier to observe and measure the flow patterns and
drag for circular cylinders normal to the flow than for spheres. 3
detailed sequence of the flow regimes for cylinders is shown in

Figure 4.3, and we will discuss it briefly below, as it
illustrates some features not shown by spheres,
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Figure 4.2 Flow pattern and pressure distribution around a
sphere at high Reynolds numbers. Upper part of diagram
shows experimental results for viscous boundary layer on

the front of the sphere; lower part of diagram shows
results for a turbulent boundary layer on the front of
the sphere. Theoretical pressure distribution for
inviscid flow shown for comparison. FPressure is scaled
by the stagnation pressure (pU2/2).

For cylinders, flow separation begins at a Reynolds number of
about 6. At first two regular eddies form, and the point of
separation is well around toward the rear of the cylinder (for
Re = 40, at an angle of 127° from the front stagnation point). 1In
the range of Reynolds numbers from 40 to 120 there is a regular
shedding of the eddies, first from one side of the cylinder and
then from the other, to produce a wake consisting of a row of
alternating regular eddies or vortices moving downstream. This
phenomenon is called the KirmAn vortex street. Shedding of the
eddies tends to make the cylinder oscillate or vibrate normal to
the flow direction--an effect that produces the humming of wires
and cables in the wind (Simpson, 1983). At Reynolds numbers of
about 120, the vortex street starts to become unstable, leading to

development of turbulence in the downstream part of the wake. The
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Figure 4.3 Flow patterns around circular cylinders normal to
the flow, for Reynolds numbers from less than six to
about 109,

point of separation moves forward to an angle of about 100° from
the front stagnation point, and the wake gradually becomes filled
with turbulent eddies, except at first in a region immediately
behind the cyllnder. At Reynolds numbers greater than 15,000 the
entire wake is turbulent, and the point of flow sepration has
moved upstream to a point about 80° from the front stagnation
point. Further increase in Reynolds number does not produce any
other major change in flow pattern until a Reynolds number of
about 200,000, when a turbulent boundary layer develops for
cylinders just as it does for spheres, and with about the same
results.

For both spheres and cylinders the observed control of the
drag coefficient by the Reynolds number can therefore be related
to just a few factors., Deviations from the slow viscous theory
appear even before flow separation in both cases, and can be
predicted by a more advanced theoretical treatment that takes more
acount of inertial forces (Batchelor, 1967, p. 244-246; O'Neill,
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1981). As the Reynolds number rises the drag due to asymmetrical
pressure distribution over the surface becomes more and more
important, and the drag due to viscous shearing less important.

At high Reynolds numbers the pressure distribution over the
front of a blunt body may be predicted reasonably well by inviscid
flow theory (e.g., Figure 4.2), but it is almost impossible to
predict the pressure distribution developed within the wake, and
it is also very difficult to predict exactly where separation will
take place. Therefore the pressure distribution at high Reynolds
numbers can be determined only experimentally. If this is done,
for example by measuring the pressure at a number of small holes
(called pressure taps) drilled through the surface of a hollow
model of the body, then the total drag force due to the pressure
distribution can be calculated from the vector sum of the measured
pressure forces. We will see later in this chapter that this has
been done for several cases of sedimentological interest. At high
Reynolds numbers most of the drag is due to the pressure
distribution, but this is not true at low Reynolds numbers. In the
case of settling grains the drag coefficient can simply be
calculated from the terminal settling velocity, but in other
situations (for example, a sphere resting on a bed of spheres,
with flow parallel to the bed) it is much more difficult to
investigate the drag coefficient experimentally.

As we have seen, most of the drag at high Reynolds numbers
results from the formation of a turbulent wake. The pressure
within the wake is generally negative relative to the ambient or
free-stream pressure (this is called suction) and has a magnitude
almost as large as the maximum pressure {(positive relative to
ambient pressure) reached at the stagnation point at the front of
the body. The combination of a large positive pressure on the
front  of a blunt body and a large negative pressure on the rear of
the body results in a high drag coefficient.

Given that the pressure is positive on the front of the
sphere and negative in the wake, and that the average magnitude of
the pressure in both of these regions is some fraction of the
stagnation pressure, we can predict that the total drag force 1is
proportional to the stagnation pressure, the area of the body
surface, and the proportion of that surface that 1is covered by the
wake:

Fp = (constant) [proportionate)(surface)(stagnationl
size of wake area pressure
= {coefficient) Ag (pu2/2)
The only difference between this and the conventional equation for
drag (Equation 1.11) is that we have substituted the surface area

for the cross-sectional area of the body. Some authors (e.qg.,
Komar and Reimers, 1978) prefer this form of the equation anyway.,
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because at lower Reynolds numbers the surface area also determines
the viscous component of the drag. From the form of the egquation
given above, we can readily see that one of the main factors
determining the size of the drag coefficient is the proportion of
the surface covered by the wake. (Vanoni and Hwang, 1967,
suggested that the resistance due to bed forms could similarly be
predicted by the proportion of the bed covered by separation
zones,) The slight increase in drag coefficient at Reynolds
numbers of about 10,000 can be attributed to an increase in the
size of the wake, as separation takes place closer to the front of
the grain. It might be predicted (as observed) that this increase
would not be observed for sharp-edged geometrical bodies or for
highly irregular grains, on which points of separation are likely
to be fixed by the geometry.

Changes in the shape of the rear of a body can produce major
reductions in drag, if the changes prevent or reduce flow
separation, because such changes eliminate the area of negative
pressures acting on the rear of the body. The shapes necessary to
do this are, of course, “"streamlined" shapes, such as the
cigar-like shapes developed for airships. These forms may have
drag coefficients less than 0.1.

Many natural grains approximate elongated ellipsoids, and it
might be thought that they would have much lower drag coefficients
than those of spheres and equant grains. This would be true if an
elongate or flat grain settled with its long axis vertical, but as
we will see in the next section, this position is unstable and the
grain is generally rotated into a position with the long axis (and
maximum projection area) transverse to the flow. In this
position, the drag coefficient is somewhat larger than that of a
sphere with the same maximum projection area.

EFFECT OF SHAPE

Basically the same kinds of flow regimes as those developed
around spheres and cylinders are developed around many other
shapes. The details of motion and the exact values of drag
coefficients and of the Reynolds numbers for the transition from
one regime to another differ somewhat from one shape to another.
At high Reynolds numbers, values for Cp vary from less than 0.1
for well streamlined shapes to more than one for flat disks
transverse to the flow. Compilations of existing experimental
data are given by Hoerner (1965) and Vogel (1981). Most of the
experimental results were obtained at high Reynolds numbers by
holding the test shape stationary in a wind tunnel or water tunnel
and measuring the drag force that results from a measured flow.

For a sphere, one would expect that drag coefficients
obtained in this way could be applied directly to calculate the
settling velocity, as was shown in Chapter 2, Even in this ideal
case, however, a recent investigation by Boillat and Graf (1981)
has suggested that the settling velocities calculated from the
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commonly accepted Re-Cp diagram in Figure 1.5 might not coincide
with those measured directly at high Reynolds numbers. They
observed that settling velocities of spheres in still water
corresponded to slightly larger drag coefficients than indicated
by the generally accepted curve. There are two possible reasons
for this discrepancy:

(i) in wind and water tunnels, the fluid moving past the
sphere is in turbulent motion, and this may affect the development
of the boundary layer and wake, and therefore the drag:

(ii) shedding of vortices, even from the lee of regular
symmetric bodies like spheres, is not perfectly regular and
symmetric, but shares some of the characteristics of the
irregular, turbulent wake that is produced. As a result, spheres
do not settle along a perfectly vertical trajectory, even in still
water, nor are they subject to a perfectly constant drag force.

For grains of irregular shape, there is no simple
relationship between laws of resistance and laws of settling:

{i) the resistance varies with the orientation of the grain
relative to the flow: '

(ii) a varying sequence of orientations may be assumed by a
settling grain, with the pattern of fall determined not only by
the Reynolds number but also by the moment of inertia of the
grain;

(iii) nonspherical grains do not necessarily settle along a
straight, vertical path: they may, for example, adopt a
side~-to~-side oscillating ("falling-leaf") type of motion. The
vertical settling velocity is then not the same as the speed at
which the grain is moves through the fluid. The grain is not in
steady motion and its drag coefficient is continually changing as
its orientation changes, so a simple eqguating of drag and gravity
forces is no longer possible.

Therefore, we do not expect that the settling of nonspherical
grains can be fully represented by a single diagram of drag
coefficient vs. Reynolds number. Nevertheless, we do expect that
for grains of a given size, shape, and density settling in a given
fluid there is a sphere of the same density whose average vertical
settling velocity is the same as that of the grain; the diameter
of this sphere has long been defined by sedimentologists as the
equivalent diameter or sedimentation diameter. The “true"
diameter of a nonspherical grain differs from the equivalent
diameter, and is generally defined as the diameter of the sphere
with the same volume as the grain (the nominal diameter). The
practical problem, therefore, is to find some measurable property
of the grain shape ("shape factor") that expresses the
relationship between the egquivalent diameter and the nominal
diameter.
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ORIENTATION

Particles settling freely in a fluid generally tend to
reorient themselves with their maximum projection area normal to
the flow. To understand why this is so, consider Figure 4.4,
which shows the flow past a disk-shaped particle oriented oblique
to the flow direction.
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Figure 4.4 Flow and pressure distribution around a disk
' inclined at a large angle to the flow direction
(hypothetical).

Except at very low Reynolds numbers, separation takes place
at the edges of the disk, producing an almost uniform negative
pressure on the lee side of the disk. There is a stagnation point
on the front of the disk, situated close to the "leading edge” (as
shown in the diagram): this point is also the point of the
highest pressure, the stagnation pressure, equal to oU2/2 from the
Bernoulli equation. Flow on either side of the stagnation point
is convergent almost to the edge of the disk, where 1t becomes
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divergent just upstream of the points of separation. Almost the
whole front part of the disk is therefore an area of positive
pressure relative to the free stream, and the pressure decreases
from a maximum at the stagnation point to negative values near the
edge (where the velocity is higher than it is far from the grain
and therefore the pressure must be lower), It is evident that
although the negative pressure in the wake is almost uniformly
distributed over the rear surface, the positive pressures on the
front surface of the disk are not at all uniformly distributed,
but concentrated near the leading edge. The resultant pressure on
the disk therefore acts to the leading side of the center of mass,
and tends to swing the disk around to adopt an orientation normal
to the flow.

The response of the disk to the force moment produced by form
drag depends on the moment of inertia. Four different responses
have been noted by Willmarth et al, (1964) and Stringham et al.
{(1969): (i) Steady-flat fall, with the disk oriented normal to
the flow. This takes place at Reynolds numbers less than 100,
when the viscous forces are large enough to damp out the
oscillations that tend to be produced by the pressure moment.
(ii) Regular oscillation about a position normal to the flow, with
little deviation of the settling disk from a straight vertical
line of fall. (iii) Glide-tumble, in which the disk swings from
side to side as it falls, and assumes a high angle to the
vertical, or actually tumbles over,. at the end of each swing (the
"falling-leaf" pattern). (iv) Tumble, a pattern of fall in which
the disk continously tumbles end-over-end, and moves along a path
that is almost straight but oblique to the vertical. Typical
examples of each pattern are shown in Figure 4.5.

The tumble pattern of flow is an example of a phenomenon
called autorotation by Riabouchinsky (1935; for references and a
review of the literature see Lugt, 1983). A body is said to be
autorotating if it exhibits continuous rotation in a parallel
flow, even though one or more stable positions exist at which the
fluid flow exerts no torque on the resting body.

Willmarth et al. (1964) found that the stability and pattern
of fall of disks correlated not only with Reynolds number but also
with the following dimensionless form of the moment of inertia:

moment of inertia

5
ODL

I =

where Dp, is the long (maximum) diameter of the disk. The moment
of inertia of a disk is given by '
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where Dg is the short diameter (thickness) of the disk and pg 1is
the density of the solid. So for disks

ﬂpSDS

I = /==
64pDL

Experimental results on the settling of disks are summarized on
the Cp-Re-I diagram shown in Figure 4.6. The dimensionless moment
of inertia becomes important in determining the drag coefficent
and pattern of fall for Reynolds numbers greater than about 2000.
Larger values of dimensionless moment of inertia tend to produce
the tumbling pattern of fall, and give rise to higher drag
coefficients for a given Reynolds number. In almost all cases,
however, the drag coefficient for freely falling disks is less
than that for a disk fixed in a position normal to the flow,
provided that computations of drag coefficient and Reynolds number
are based on path velocity. If they are based on the vertical
component of velocity only {(i.e., on net settling velocity) then
~the drag coefficients are higher for a freely falling disk than
for a fixed disk.

Experimental results for a variety of different regular
geometric shapes, calculated from the nominal diameter and the
path velocity, are shown in Figure 4.7.

Most natural grains do not have regular geometrical shapes.
It is the almost universal practice of sedimentologists to devise
measures of the shape by combining measurements of the three
principal diameters of the grain: the long (D7), intermediate
(D7), and short (Dg) diameters. Explicitly or implicitly,
therefore, most sedimentologists assume that a grain can be
approximated by a regular triaxial ellipsoid.

For such grains, Wadell suggested use of sphericity ¢ as an

index of shape:
(DIDS
v =~

P

1/3
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Figure 4.5 Pattern of fall of a disk (from Stringham et al.,
1969). A, Reqular oscillation pattern; B, glide-tumble
pattern; C, tumble pattern. 1In C, note the large angle
between the path of the falling disk and the vertical
direction.

Sneed and Folk (1958) and Corey (see American Society of Civil
Engineers, 1962) independently concluded that Wadell sphericity
was unlikely to be a good index of settling behavior. Sneed and
Folk pointed out that, because a grain tends to become oriented
with its maximum projection area normal to the flow, the drag
force is proportional to the area DpDjy, whereas for a sphere with
the same volume as the grain it would be proporticnal to
(D,D1Dg)2/3. . The settling velocities might therefore be expected
to be related in the same proportion, and the appropriate shape
factor would be the Maximum Projection Sphericity ip:

2/3
(DLDIDS)

(p Py
P Dy,Pp
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Figure 4.6 Diagram of drag coefficient vs. Reynolds number

10

- for fixed and falling disks (fixed sphere shown for
comparison). Fall pattern shown by shading. At high
Reynolds numbers both the pattern and the drag
coefficient depend on moment of inertia (see text).
Computations are based on maximum diameter of disk and
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path velocity. (From Stringham et al., 1969.)
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Figure 4.7 Diagram of drag coefficient vs.. Reynolds nurber

for various falling shapes (from Stringham et al.,
1969). Computations are based on nominal diameter and
path velocity. 8.F.. 1s Corey Shape Factor, V¢ is
Waddell sphericity. SR
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The Corey Shape Factor (S.F.) has a similar definition:

DS
172
(Dy D)

_ ., 3/2
“p

It is clear from the discussion given above that such
measures of shape cannot be expected to provide an exact . :
correction for the effect of shape upon the settling velocity of
nonspherical particles; but for natural grains, the range of
shapes and densities is so large that the best that can be
expected is an approximate correction, and for this purpose the
Maximum Projection Sphericity or Corey Shape Factor is certainly
adequate, and an improvement over the Wadell sphericity (Komar
and Reimers, 1978; see also Baba and Komar, 198la). Figure 4.8
shows a graph of Shape Factor against sieve diameter and standard
settling diameter (the equivalent diameter, determined in water at
24°C) determined empirically for natural sands. Most gquartz sands
have a Shape Factor of about 0.6 to 0.7; the natural variation in
average shape is not large, because the shape of qguartz grains is
determined largely by the ultimate source of the grains.

The fact that natural sands do not vary greatly in shape
suggests that it might be useful to have an empirical formula that
can be used to calculate the settling velocity of grains of known
size and density in a fluid of known density and viscosity. Rubey
(1933b) provided such a formula, and this formula was widely used
before it became clear that it gives results that are too slow for
most natural grains. A corrected form of Rubey's equation has
been given by Watson (1969), but Riley and Bryant (1979) found
that the corrected equation did not work well with their beach

sands. Older experimental data on natural sands were summarized
by Graf (1971, p. 35-63), and more recent studies include those of
Baba and Komar (1981b) and Hallermeier (1981). For spheres

accurate settling data and empirical formulas have been given by
Gibbs et al. (1971}, Warg (1973), and Boillat and Graf (1981).
The use of the Gibbs formula has been discussed by Komar (1981)
and Slingerland (1982).

Biogenic grains are especially variable in shape, and may
also differ from mineral grains in density, because of structural
porosity and the incorporation of organic substrates.
Experimental studies of these grains have been published by
Maiklem {1968), Futterer (1978), Mehta et al. {1980), and Fok~Pun
and Komar (1983).
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and standard settling diameter. (From American Socilety
of Civil Engineers, 1962.)}

very fine grains may not settle as predicted by Stokes' law
for several reasons: they may be flocculated into low-density
aggregates (Kranck, 1975), they may be. bound together by or coated
with organic matter (Johnson, 1974; Smith and Syvitski, 1982), or
they may be electrically charged and interact with ilons or polar
water molecules (Chase, 1979). The settling velocity of natural
aggregates has been studied by Hawley (1982).

DRAG FORCES ON GRAINS RESTING ON A BED

At this point it may be useful to digress slightly to
consider another case of some practical importance: the drag
forces exerted by a flow on a grain that is resting on a flat bed
{(or a bed composed of similar grains) rather than being freely
suspended in a fluid. We will return to this toplic again in
Chapter 6, when we consider movement of grains on a bed.
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Figure 4.9 Flow pattern and pressure distribution for
inviscid flow over a cylinder normal to the flow
direction and lying on a flat bed.

Consider first the case of a cylinder resting on a plane
surface (Figure 4.9). For inviscid fluids the flow would be
symmetrical about the cylinder and the velocity would increase as
the streamlines crowd together where the flow passes over the top
of the cylinder. For this we can predict the pressure
distribution shown, which indicates that although the flow is
theoretically not subject to any drag force in this ideal case, it
is subject to & 1ift force, directed vertically away from the bed.
This 1ift can be calculated, and corresponds to Cp = 4.5.

A more realistic case, corresponding to relatively large
Reynolds numbers, is shown in Figure 4,10, In this’ case there is
flow separation behind the cylinder, SO there is a drag as well as
a 1ift component. The exact pressure distribution is not known,
but its general character can be inferred from pressure
distributions measured on freely suspended cylinders. The maximum
positive pressure on the front of the cylinder is slightly less
than the stagnation pressure, and the (negative) pressure in the
wake also has a magnitude somewhat less than the stagnation
pressure. There is likely to be a region of high negative
pressure On the upper front part of the cylinder (as shown in
Figure 4.10) because of the high velocities produced by flow
convergence in this region. It 1is clear that the resultant
pressure distribution must include large components of both drag
(parallel to the flow) and 1lift (transverse to the flow).
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Figure 4,10 Flow pattern and pressure distribution
(hypothetical) for flow of a viscous fluid past a
cylinder normal to the flow direction and lying on a -

flat bed (for moderately large Reynolds numbers).
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Figure 4,11
{hypothetical)
imbricated flat plate

nunbers) .,

1t is also instructive to consider the case of a thin plate
inclined at an angle o to the downstream direction, and with the
leading edge in contact with the bed. (Such a plate 1ls an
idealization of an imbricated blade-~shaped grain lying on the
bed.) The flow pattern and hypothetical pressure distribution are
shown in Figure 4.11, The resultant pressure force in this case
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ie directed downstream and towards the bed. In general,
therefore, the flow tends to press imbricated flat grains down
onto the bed rather than lifting them off as it does most other
grains. ©Only if grain shape and flow conditions are such that
large negative pressures are developed on the upper trailing
surface might imbricated flat grains be subject to a net 1ift
force; a hypothetical example is shown in Figure 4.12. Perhaps
such conditions might be achieved for some grain shapes when a
rurbulent boundary layer is developed at high Reynolds numbers.
Under normal circumstances, however, a tightly packed bed of well
imbricated flat grains should be very difficult to dislodge.

PRI

PR

- A
. 2R«csSure: distribution

Figure 4,12 Flow pattern and pressure distribution
(hypothetical) for flow of a viscous fluid past an
imbricated disk-shaped pebble {(moderately large Reynolds
numbers).

For small grains it is to be expected that imbrication is
less effective in stabilizing the grain, because the viscous
component of drag is as important as form drag, and for flat
imbricated grains the viscous forces have an upward as well as a
downstream component,

EFFECT OF CONCENTRATIOCN

Up to this point we have been considering the settling of
only a single grain, or we have at least assumed that 1f there is
more than one grain settling in a £luid, the grains are
sufficiently far from each other that they do not interact in any
way. In nature this assumption is often not valid: the
concentration of grains often exceeds one percent by volume, and
may reach very high values, so that some interaction between
grains is inevitable.
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Two opposite bulk effects are possible. (i) Group settling,
due to local concentrations of grains. A high concentration of
grains locally raises the bulk density of the suspension, and may
cause it to move through the surrounding fluid as a "density
current.” (ii) Hindered settling, due to interactions between the
grains and an overall reduction in the cross section available for
the upward movement of the fluid that is displaced by the downward
movement of grains.

Group settling is important in settling tubes of the type in
which the sample is introduced at the top of the tube; the effect
can be minimized only by making use of a very small sample and a
large tube diameter. Also, Jopling (1964) has reported group
settling of grains in the "heavy fluid layer” formed by the high
concentration of grains close to the bed on the stoss side of a
dune, as this layer moves over the brink of the dune
(Figure 4.13).

Hindered settling is generally the more important of the two
effects. A pioneer study was made of the settling of ‘
metallurgical slurries by Coe and Clevenger (1916). They observed i
two types of settling phenomena in concentrated fine~grained
suspensions (Figure 4.14). 1In the first type, two interfaces
develop: one with clear liquid above and the other with the i
settled sediment below. The zone between is mostly of constant
concentration. The upper interface moves down at a constant rate,
and the sedimentation rate is also constant., After the two
interfaces meet (i.e., after all the sediment has settled) there
is some slight further lowering of the sediment-water interface
due to consolidation of the bed. The second and less common type
of hindered settling is found in fine suspensions, particularly
where there is a wide range in particle sizes (greater than six to
one)., In this type the concentration and size composition of the
suspension change progressively during the settling; there may be
a zone of constant concentration above the zone of variable
concentration {see further discussion by Wallis, 1969).

Figure 4.13 Two examples of group settling: A, at the top
of a settling tube; B, on the lee slope of a dune
(megaripple).
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A

Figure 4.14 Two types of hindered settling: A, settling
from a dispersion with constant concentration; B,
settling from a dispersion showing zones of constant (C)
and variable (V) concentration.

In the first type of hindered settling, the constant
concentration of the grain dispersion indicates that a segregation
of grains by their individual sizes or settling velocities is no
longer possible at the high concentrations involved. The bed
deposited therefore shows no size grading. In the second type,
some segregation of grains is still taking place within the zone
of variable concentration. It is expected, therefore, that the
bed should show some size grading, although the degree of size
segregation, and therefore grading, should depend on the absolute
concentration., In scme cases, where a zone of uniform
concentration is found above a zone of variable concentration, the
size grading is restricted to the base of the bed.

The main reasons for the modification of settling behavior in
hindered settling have been well summarized by Coulson and
Richardson (1955):

(i) Large grains are settling relative to a suspension of

. fine grains, and this suspension has a higher viscosity and

density than the pure fluid, thus tending to reduce the settling
velocity.

(ii) Fluid displaced by settling grains flows upward between
the grains, so that the settling velocity is less than the true
relative velocity between the grain and the fluid. 1f there is a
large range in grain sizes, finer grains may actually be swept
upwards by the fluid rising up through the spaces hetween the
larger settling grains.

(iii) velocity gradients close to the grains are increased as

a result of the proximity of other grains.
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(iv) For cohesive grains, proximity and resulting random:
collisions between grains may trigger flocculation.
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Figure 4.15 Effect of concentration on settling at low
Reynolds numbers (after McNown and Lin, 1952). wg is
settling velocity at zero concentration, w¢ is settling
velocity at a concentration ¢, and d is the diameter of
the grains.

For low Reynolds numbers the problem of hindered settling has

been studied theoretically as well as experimentally. McNown and
Lin (1952) used a modification of the Stokes creeping-flow theory
to study the effect of low concentrations, and calculated the
result numerically for selected Reynolds numbers (Figure 4.15).
The effect is large at low Reynolds (as also is the effect of the
side wall of the settling tube) because for slow viscous flow the
presence of a moving grain changes the pattern of flow relatively
far away from the grain, and the pattern of flow is what
determines the magnitude of the viscous drag. The effect of a
sidewall, for example, is detectible at low Reynolds numbers for
ratios of tube diameter to grain diameter as large as 100. The
effect of a sidewall or of other particles is much less at large
Reynolds numbers, for which the drag is determined mainly by the
pressure distribution, which changes only slightly in response to
major changes in the pattern of flow round the grain.
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Experimental results for Reynolds numbers greater than one
have been determined by Richardson and Zaki (1954) and Thorpe
(1965). Thorpe studied the settling of uniform sand in water for
concentrations up to about 10 percent, and Richardson and Zaki
studied even higher concentrations. Richardson and Zaki (1954)
found that the ratio between the observed settling velocity and
the settling velocity w, of a single grain (i.e., of grains at
vanishingly small concentration) was

w/Wwg = (1 - C)1

where C is the fractional volume concentration and n is a
~oefficient that varies at low Reynolds numbers but reaches a
constant {minimum) value of 2,4 for Reynolds numbers greater than
500.

Thorpe (1965) found that for concentrations between 0.5 and
10 percent the settling velocity of sand in water 1s directly
proportional to the diameter of the grains, a result not predicted
by settling theory for single grains. He concluded that at these
concentrations viscous drag on the grains is more important than
inertial effects, even though the grains are individually well
seyond the range of validity of Stokes' Law.

LIQUEFACTION AND FLUIDIZATION

The two similar terms liquefaction and fluidization have been
used by different groups of engineers (in soil mechanics and
chemical engineering, respectively) to refer to phenomena related
to the settling of grains at very large concentrations.

Liquefaction refers to the sudden loss of strength of a
loosely packed sand, when the grains temporarily lose contact with
each other and become suspended in the pore fluid. Contact
between grains, and the strength of the mass of sand, is restored
when the grains settle down again through the interstitial fluid,
a part of which escapes vertically upward to the surface.

Fluidization is a process developed by chemical engineers to
promote rapid chemical reaction in a column filled with loose
grains. (The high surface area of the grains tends to catalyze
certain reactions.) Fluid is introduced at the base of the column
until the mass of grains is expanded so that the individual grains
are no longer in contact, and their weight is supported by the
rising fluid. At this point there is a sudden drop in the
pressure required to force the fluid up through the column, and
the grains are said to be fluidized (Figure 4.16). A whole range
of conditions of fluidization exists, from the minimum flow
required for fluidization through progressive expansion of the bed
(i.e., decrease in concentration of the suspension) to the point
where a single particle is freely suspended in the rising fluid.
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Under certain conditions grains are uniformiy suspended
("particulate fluidization"), but under other conditions (more
common in fluidization by gases +han in fluidization by liquids)
small or large bubbles {("slugs") or channels of almost grain- free
fluid rise up through the suspension.

Etymologically, the terms ligquefaction and fluidization have
an almost identical meaning, which derives from the observation
that when the grains in a concentrated mass are no longer in
contact the mass loses ite strength and behaves like a viscous
£1uid rather than like a solid material. Because of this, the two
terms were used almost synonymously by Middleton (1269, 1970b) and
by Middleton and Hampton (1973, 1976) . Lowe (1976a) has recently
argued that the term nfFluidized bed" should be restricted to cases
where there is an upward movement of fluid through grains which
themselves are not moving downward. If the upward movement Of
fluid is Eroduced py the downward movement of grains, the bed
should be described as ligquefied rather than fluidized.

The question arises whether or not fluidization, in the strict
sense, ever takes place in nature. One obvious possibility is in
volcanic vents (Reynolds, 1954). 1In ash flows, where the hot
particles are gtill releasing volcanic gases, there is also a
possibility of an upward flow of fluid which is not simply due to
the settling of the grains {(McTaggart. 1960). 1In flows of
concentrated suspensions of sand, however, there can generally be
no upward flow of fluid except that produced by settling out of
grains. A possible exception might be the case of movement over a
pasal fluid layer., & mechanism invoked by Shreve (1968) to explain

the high mobility of some rock slides in air.

Fluid escaping from a liquefied sand does not generally do sO
uniformly:; generally it moves preferentially up nearly vertical
planes Or tubes, thereby producing the range of structures
Jescribed as sheet structures (Laird, 19270} or pillar structures
(Lowe, 1973). As pointed out by Lowe (1975) ., velocities of £luid
escaping upward within these confined regions may locally exceed
those needed to fluidize the grains. Evidence from sedimentary
structures indicates that this happened in some pillars but not in
others.

Flows that originate by liquefaction may pbecome turbulent 1if
they reach sufficiently large Reynolds numbers. The effective
viscosity of highly concentrated grain dispersions is as much as
several thousand times that of water, SO relatively deep flows and
high velocities are needed to achieve +urbulence, but these
conditions are likely to be found in natural environments like the
heads of submarine canyons. Turbulence and trapping of water
ander the head of the flow (see Chapter 8) may mix water into the
suspension, sO there may be all transitions from liquefied flows
of wvery high concentration to flows of much lower concentration in
which the grains are supported mainly by fluid turbulence.
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Figure 4.16 Result of an experiment on the fluidization of
sand by water (data from Wilhelm and Kwauk, Table 10).
The experiment was performed with 1 mm sand in a tube
7.5 cm wide. The fixed bed was initially 15 cm high.
(A) the drop in pressure across the bed as the vertical
velocity of water in the tube is increased; (B) the same
data but plotted as porosity of the bed vs. mean fluid
velocity in the pore space.
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sedimentation from highaconcentration liquefied flows should
pe somewhat similar to static nhindered settling, as discussed in
the previous section. At sufficiently high concentrations and
with only a small range in grain sizes there will be little size
segregation, SO 1ittle grading will be cbserved in the deposit.

put with lower soncentrations and a larger range of grain sizes a
well-developed grading is possible.

gome unusual patterns of grain segregation might possibly
result from the settling of concentrated dispersions of particles
of different densities, sizes, and shapes. Richardson and Meikle
(1961) studied the settling of concentrated dispersions composed
of two different types of grains having the same settling
velocity. The types were glass pallotini (beads}, with a density
of 2.92 g/cm3 and a diameter of 0.07 mm, and polystyrene, with a
density of 1.04 g/cm3 and a diameter of 0.39 mm (both types of
grains had a settling velocity of 0.324 cm/s). Settling from
dispersions of very low concentration produced a sediment '
consisting of a mixture of both types of grains, but sedimentation
from dispersions at a concentration of more than 10 percent
produced a complete geparation of the grain types. with a bed of
pure pallotini below a bed of pure polystyrene. ‘Segregation of
the two types of grains took place within the concentrated
dispersion during settling: at an intermediate stage of settling
(Figure 4.17) the dispersion consisted of a lower zone of glass
pallotini, an intermediate mixed zone, and an upper zone of
polystyrene. The result was explained by Richardson and Meikle in
rerms of the difference in density betwen the grains and the
dispersion-- for very light grains, iike polystyrene, the
dispersion may actually have a bulk density larger than that of
the light grains, SO that they tend to float upwards in the
dispersion rather than settling out. It is possible too (though
not considered by Richardson and Meikle) that the large size
difference between the grains might be important: the glass
grains were small enough to pass through the interstitial spaces
between even a alosely packed layer of polystyrene grains.

Figure 4.17 Results of an experiment by rRichardson and
Meikle (1961) on the settling of a concentrated
disperion of mixed glass and polystyrene grains. P,

dispersion of polystyrene only; M, mixed dispersion: G,
dispersion of glass only.
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Obviously these results cannot be transferred directly to the
interpretation of natural sedimenting systems, where the range of
sizes and densities is more complex than in the experiments, and
where turbulence may inhibit complete grain segregation, but the
experiments do indicate the sort of complexities that are
pessible. It is not unrealistic to suppose that grains in natural
systems ({intraclasts of little~consolidated fine sediment, for
example) may have densities less than those of highly concentrated
sand-water mixtures (as pointed out by Kuenen, 1950). The
presence of large "floating" shale clasts within a sandstone bed
has sometimes been cited as evidence for a particular mechanism of
sand transport (e.g., Stauffer, 1967)--but perhaps it is simply
evidence for the high density of the dispersion, whatever the
mechanism of flow.
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SAPTER 5. TURBULENT FLOW

INTRODUCTION

Almost all flows that transport sediment are turbulent.
w2've mentioned turbulence at several points already and devoted
.n introductory section in Chapter 3 to it:; this chapter deals in
wore detall with some aspects of turbulent flow most relevant to
sediment transport. We'll concentrate on two related problems:
+he nature of the resistance force exerted on the turbulent flow
ny the boundary, and the profile of time-average velocity along a
line normal to the boundary. With turbulent flow it's not possi-
s1e to solve the equations of motion to obtain exact solutions for
sach things as boundary resistance oY velocity profiles. The rea-
san for this is basically similar to, although more general than,
the reason why in Chapter 1 we weren't able to obtain a solution
for turbulent flow down a plane: we know what equations we have
ro solve but we can't solve them because of the uncertainty that
rurbulence introduces into the application of these equations.
The great number of equations to be found in textbooks and papers
on turbulent flow are semi-empirical: the general form of the
equation may be suggested by physical reasoning, but the numerical
~onstants in the equation, and therefore its specific form, must
~e found from experiments. And in many cases not even the general
form of the equation is known, and the curve must be obtained en-
tirely by experiment.

TURBULENT SHEAR STRESS

One of the most significant effects of turbulence is the
rransport of such things as heat, solute, or suspended matter--
things that can be viewed as carried passively by the fluid--
across planes parallel to the mean flow Dy the random motions of
fluid masses back and forth across these planes. The mean veloci~
ty across such planes is by definition zero, so the net mass of
fluid transferred back and forth in this way must balance to zero
on the average. But if the property passively associated with the
fluid is on the average unevenly distributed--if its average value
varies in a direction normal to the mean motion--~then the balanced
turbulent transfer of fluid across the planes causes a transport
or "flow" of this property in the direction of decreasing average
value. To see this, think about the result of an exchange of two
fluid parcels or eddies with equal mass across a plane of mean
shear parallel to the boundary in a turbulent boundary layer (Fig-
ure 5.1). The eddy traveling from the side of the plane with
higher average value of some property P tends to arrive on the
other side with a higher value of P than its new surroundings, and
conversely the eddy traveling from the side with lower average
value will tend to arrive with a lower value than its surround-
ings. The exchange thus tends to even out the distribution of P
by means of a net transport of P in the direction of decreasing

average value. This process 1s an example of turbulent diffusion.
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Figure 5.1 Physical basis for turbulent diffusion.

An irregular or nonuniform distribution of the property P at
the scale of individual eddies is to be expected by the very na-
ture of the diffusion process. An average gradient of P is main-
tained in some way unrelated to diffusion that need not concern us
here, but diffusion is always randomly disrupting this gradient.
So not every eddy that crosses the plane of mean shear shown in
Figure 5.1 from the side with higher average P will arrive on the
other side with a value of P higher than the new surroundings, and
conversely not every eddy crossing in the other direction will ar-
rive with a lower value of P. But the important thing is that
there's a tendency for this to happen because there's a statistic-
al correlation between values of P and position normal to the
plane. An example, the correlation between suspended-sediment
concentration and distance above the bottom in a horizontal
boundary-layer flow, is shown schematically in Figure 5.2. Here,
sediment is diffused upward in the flow by turbulent motions while
the average upward gradient is maintained by settling. The nature
of the resulting vertical distribution will be explored more fully

'in the next chapter.

We can use the idea of diffusion of £1luid momentum to account
for the velocity distribution in flow down an inclined plane, dis-
cussed in Chapter 1. 1In laminar flow there are no eddies to be
exchanged across shear planes parallel to the bottom, but the mol-
ecules themselves hurtle or weave randomly back and forth across
these planes in loose analogy with the picture outlined above for
the random motions of turbulent eddies. Since on the average the
molecules have a greater downchannel velocity in the region above
a given shear plane than below it, molecular exchange across the

plane tends to even out

rhe distribution of fluid momentum and

therefore also of fluid velocity.
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Figure 5.2 Correlation between suspended~sediment concen-
tration and distance above bottom in a sediment-
transporting turbulent boundary layer (schematic).

created by the downslope forces of gravity, then transported
toward the bottom boundary by molecular diffusion, and in the pro-
cess 1s consumed by the resistance force at the bottom boundary.
This is just a different way of looking at the nature of the vel-
ocity distribution derived in Chapter 1. The tendency for molecu-
lar motions to even out the velocity distribution in a sheared
fluid is in part the physical cause of the resistance of a fluid
to shearing. In liquids the effect of transient molecular attrac-
tions in resisting shear is more important, but in gases the dif-
fusive effect is the dominant one. The viscosity of a fluid is
simply a measure of the effectiveness of molecular motions and/or
molecular attractions in smoothing out an uneven velocity distrib-
ution or in maintaining the velocity distribution against the ten-
dency for the fluid to accelerate downslope and intensify the
shearing. The continuum hypothesis allows us to disregard the de-
tails of molecular forces and diffusion and regard the resulting
shear stress as a point quantity.

In turbulent flow, on the other hand, there is an additional
diffusional mechanism for transport of fluid momentum toward the
boundary: exchange of macroscopic fluid eddies across the planes
of mean shear parallel to the bottom tends to even out the veloci-
ty distribution by diffusion of momentum toward the bottom. By
Newton's second law this rate of transport of momentum by the tur-
bulent motions is equivalent to a shear stress across the plane.
This is called the turbulent shear stress (or, usually, the
Reyvnolds stress). It has exactly the same physical effect as an
actual frictional force exerted directly between the two layers of
fluid on either side of the plane: the faster-moving fluid above
the plane exerts an accelerating force on the slower-moving fluid
below the plane, and conversely the fluid below exerts an equal
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and opposite retarding force on the fluid above. It is true that
the "range of operation" of this force is smeared out indefinitely
for some distance on either side of the plane, but the result is
the same as that of a force exerted directly across the plane.

The total shear stress across a shear plane in the flow is the
sum of the turbulent shear stress, caused by macroscopic diffusion
of fluid momentum, and the viscous shear stress, caused in part by
molecular diffusion of fluid momentum and in part by attractive
forces between molecules at the shear plane. Owing to its macro-
scopic nature the turbulent shear stress can be associated with a
given point on a shear plane only in a formal way; the viscous
shear stress, although it has real physical meaning from point to
point, must be regarded as an average over the area of the shear
plane, because in turbulent flow both the magnitude and the orien-
tation of shearing vary from point to point.

In Chapter ! we derived an expression (Bquation 1.20) for the
shear stress across shear planes in laminar channel flow. In tur-
bulent channel flow the shear stress in Equation (1.20) is the sum
of the turbulent shear stress and the viscous shear stress. You
may protest that the result in Egquation (1.20) was obtained for
laminar flow only. But in deriving the equation we didn't assume
anything at all about the internal nature of the flow, only that
the flow is steady and uniform on the average. (This is in con=-
trast to the result for velocity distribution, Eguation (1.23),
which involves the assumption that the shear stress across a shear
plane is given by Equation (1.2)--an assumption inadmissible for
turbulent flow because of the importance of the additional turbu-
ient shear stress.) The linear distribution of shear stress from
zero at the surface to a maximum at the bottom should therefore
hold just as well for turbulent flow as for laminar flow, provided
only that the flow is steady and uniform on the average.

Except very near the solid boundary, where the vertical compo-
nent of the turbulent velocity must go to zero, the turbulent
shear stress is far greater than the viscous shear stress. This
is because turbulent exchange of fluid masses acts on a much lar-
ger scale than the molecular motions involved in the viscous shear
stress, and therefore transports momentum much more efficiently.
Figure 5.3 is a plot of the distribution of turbulent shear stress
and viscous shear stress in steady uniform flow down a plane. The
total shear stress is given by the straight line, and the turbu-
lent shear stress is given by the curve that is almost coincident
with the straight line all the way from the surface to fairly near
the bottom but then breaks sharply away to become zero right at
the bottom. The difference between the straight line for total
shear stress and the curve for turbulent shear stress represents
the viscous shear stress; this is important only very near the
boundary.

Because the turbulent shear stress is so much larger than the

viscous shear stress except near the boundary, differences in
time-average velocity from layer to layer in turbulent flow are
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Figure 5.3 Distributions of total shear stress, turbulent
shear stress, and viscous shear stress in steady uniform
flow down a plane.

much more effectively ironed out over most of the flow depth than
in laminar flow. This accounts for the much gentler velocity gra-
dient du/dy in turbulent flow than in laminar flow; go back and
look at Figure 1.16. But as a consequence of this gentle velocity
gradient over most of the flow depth, near the bottom boundary
(where viscous effects rather than turbulent effects control the
flow} the velocity gradient 1s much steeper than in laminar flow,
pecause the shearing necessitated by the no-slip condition is com-
pressed into a thin layer immediately adjacent to the boundary.

STRUCTURE OF TURBULENT BOUNDARY LAYERS

Introduction

We've said gquite a lot about what turbulence looks like in a
general way. We now need to be more specific about the structure
of turbulence in turbulent boundary layers, because most flows
that transport sediment are turbulent boundary-laver flows, and
the forces exerted on sediment grains, both those resting on the
bed and those in transport, are governed by the characteristics of
the turbulence. We'll also have to deal with the opposite effect:
if the concentration of sediment in transport is great enough,
even if only in a thin layer near the bed, the turbulence charac-
teristics themselves must be substantially different from those in
clear flows.
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Many of the important things about turbulence in boundary
layers have been known for a long time. Workable techniques for
reliable measurement of instantaneous velocities in air were
worked out many years ago, in the 1940s and 1950s. Comparable
laboratory techniques for water flows became available only in the
1960s, and reliable field measurements in water flows have become
possible even more recently. It is still very difficult to make
detailed observations of the scales, shapes, motions, and interac-
tions of turbulent eddies, especially the relatively small eddies
near the boundary. Only since the late 1960s has observational
knowledge of the dynamics of near-boundary turbulent structure ad-
vanced from the stage of point measurements of velocities and
their statistical treatment, to observations of the eddy structure
of the turbulent flow as a whole by means of various flow-
visualization techniques. Studies on the structure and organiza-
tion of turbulent fluid motions in boundary layers is now a large
and actively growing branch of fluid dynamics, and has resulted in
much deeper understanding of the dynamics of turbulent flows.

Since knowledge of the important features of turbulent mo-
tions is so important to the study of sediment transport, we'll
present some of the most important facts and observations here.
We'll continue to use steady uniform flow down a plane as a refer-
ence case, but the differences between this kind of boundary-layer
flow and that in a straight open channel with irregular cross- '
section shape, or flow in a straight closed conduit like a circu-
lar pipe, or a boundary layer developing on a surface the flow has
just encountered, lie only in minor details and not in important
effects.

Vertical Organization

First of all, you should expect the nature of turbulence to
vary strongly from surface to bottom in the flow, because the
boundary 1s the place where the vertical turbulent fluctuations
must go to zero and where by the no-slip condition the fluid velo-
city itself must go to zero. You've already seen that the rela-
tive contributions of turbulent shear stress and viscous shear
stress change drastically in the vicinity of the boundary.

1£ the bottom boundary is physically smooth, or is rough but
the height of the roughness elements is less than a certain value
to be discussed presently, three gqualitatively different but
intergrading zones of flow can be recognized (Figure 5.4): a thin
viscous sublayer next to the boundary, a turbulence-dominated
layer occupying most of the flow depth, and a buffer layer be-
tween. If the boundary is too rough, the viscous sublayer is
missing. Here we'll only give a gualitative description of the
flow in these layers; in later sections we'll show their implica-
tions for flow resistance and velocity profiles.

The viscous sublayer is a thin layer of flow next to the
boundary in which viscous shear stress predominates over turbulent
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Figure 5.4 Zones of turbulence structure in steady uniform
turbulent flow down a smooth plane. Eddy structure
(schematic) is as seen by an observer moving with flow.

shear stress. Shear in the viscous sublayer, as characterized by
the rate of change of average fluid velocity away from the wall,
is very high, because fast-moving fluid is mixed right down to the
top of the viscous sublayer by turbulent diffusion.

The thickness of the viscous sublayer depends on the charac-
teristics of the particular flow and fluid; it's typically in the
range of a fraction of a millimeter to many millimeters. The flow
is not strictly laminar in the viscous sublayer because it exper-
iences random fluctuations in velocity. But since fluctuations in
velocity normal to the boundary must become zero at the boundary
itself molecular transport of fluid momentum is dominant over
turbulent transport of momentum near the boundary. Fluctuations
in velocity very close to the boundary must therefore be largely
parallel to the boundary. Fluctuations in shear stress at and
near the boundary caused by these fluctuations in velocity can be
substantial and must have an important bearing on sediment trans-
port. Normal-to-boundary velocity fluctuations in the viscous
sublayer can, however, be important in diffusion of sediment
toward or away from the boundary even though they are unimportant
in diffusion of fluid momentum. The turbulent fluctuations in
velocity in the viscous sublayer are the result of advection of
eddies from regions farther way from the wall; these eddies are
damped out by viscous shear stresses in the sublayer.

When the boundary is physically smooth the thickness of the
viscous sublayer can easily be defined, but when the boundary is
covered with closely spaced roughness elements like sediment par-
ticles with heights greater than the thickness of the viscous sub-
layer (or, more properly, what the sublayer thickness would be in
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the absence of the roughness), then no sublayer is actually pres-
ent at all, and turbulence extends all the way to the boundary, in
among the roughness elements.

The buffer layer is a zone just outside the viscous sublayer
in which the gradient of time-average velocity is still very high
but the flow is strongly turbulent. TIts outstanding characteris-
tic is that both viscous shear stress and’ turbulent shear stress
are too important to be ignored. With reference to Figure 5.3 you
can see that this is the case only in a thin zone close to the
bottom. Very energetic small-scale turbulence is generated here
by instability of the strongly sheared flow, and there is a sharp
peak in the conversion of mean-flow kinetic energy to turbulent
kinetic energy, and also in the dissipation of this turbulent en-
ergy; for this reason the buffer layer is often called the
turbulence~generation layer. Some of the turbulence produced here
is carried outward into the broad outer layer of flow and some is
carried inward into the viscous sublayer. The buffer layer is
fairly thin, but thicker than the viscous sublayer.

The broad region outside the buffer layer and extending all
the way to the free surface is called the outer layer. (In pipe
flow this is more naturally called the core region.) This layer
occupies most of the flow depth, from the free surface down to
fairly near the boundary. Here the turbulent shear stress is pre-
dominant, and the viscous shear stress can be neglected. Except
down near the buffer layer, turbulence in this zone is of much ‘
larger scale than nearer the boundary. Because of their large
size the turbulent eddies here are more efficient at transporting
momentum normal to the flow direction than are the much smaller
eddies nearer the boundary; this is why the profile of mean veloc-
ity is much gentler in this region than nearer the bottom. How-
ever, the eddies contain much less kinetic anergy per unit volume
of fluid than in the buffer layer. The normal-to-bottom dimension
of the largest eddies in this outer layer is a large fraction of
the flow depth.

In terms of the relative importance of turbulent shear stress
and viscous shear stress, it's convenient to divide the flow in a
somewhat different way into a viscosity~dominated region, which
includes the viscous sublayer and the lower part of the buffer
layer, where viscous shear stress is more important than turbulent
shear stress, and a turbulence-dominated region, which includes
the outer layer and the outer part of the buffer layer, where the

reverse is true. 1In a thin zone in the middle part of the buffer

layer the two kinds of shear stress are about equal. It's worth

emphasizing that there are no sharp divisions in all this profu-

sion of layers and regions: they grade smoothly one into another.
Bursting

Up until the 1960s the emphasis in turbulence research was
statistical: turbulence was largely viewed as a strictly random
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~henomenon, one that can be analyzed only by statistical methods.
s5ince the late 1960s there have been many studies with emphasis
less on statistical analysis than on the characteristic patterns
»f eddy motion and eddy structure near the boundary in a turbulent
shear flow past a solid wall:; for a good review, see Cantwell
{1981). Studies of this kind have mostly used three techniques of
low visualization: (i) dye indjection, (ii) generation of lines
»f tiny hydrogen bubbles in water by passing a current through a
fine platinum wire immersed in the flow, and (iii) high-speed
motlon~picture photography of very small opaque solid particles
suspended in the flow.

Flow-visualization studies of turbulent boundary layers have
shown the importance of guasi-ordered or quasi-deterministic pat-
terns or sequences of movement of certain structures or elements
in the flow. These structures are parcels of fluid, with distinc-
tive dynamics, that probably follow a consistent sequence of
development in time. The structures are never precisely the same
in detail, however, and because they develop randomly in space,
observations made at any one place show only a crude periodicity
in properties and sequence. Although the details (to say nothing
of the underlying causes) are not yet clear, it is generally
agreed that turbulent £flow near the boundary is characterized by
the following sequence of events. A high-velocity eddy or vortex
(called a sweep) moves toward the boundary and interacts with low-
velocity fluid near the boundary to cause acceleration, increase

in shear, and development of small-scale turbulence; this acceler-

ated fluid is then lifted from the boundary and ejected as a tur-
bulent burst into a region of flow farther from the boundary. The
entire sequence of events is usually called bursting.

Close to the boundary the high-velocity and low-velocity
vortices or eddies tend to be elongated or streaked out in the
streamwise direction, and their manifestation is a streaky or
ribbon~like pattern of high and low fluid velocities, and
therefore of boundary shear stresses as well. The scale of the
motions involved in bursting is of the same order as the thickness
of the viscous sublayer and the buffer layer. Owing to the
substantial changes in velocity, shear, and turbulence above a
given point on the boundary occasioned by the bursting cycle, the
effective thickness of the viscous sublayer varies with time. The
periodicity of events seems to be controlled by the velocity and
scale of the main flow outside the near-boundary zone, perhaps
because the periodicity of large eddies 1is controlled by these
properties of the main flow {(Jackson, 1976). It is not yet clear
to what extent similar quasi-ordered patterns are also
characteristic of the region of flow farther away from the
boundary. In any case, appropriate measurements of turbulent
velocities have shown that this ordered sequence of eddy motions
accounts for most of the turbulent shear stress in the lower part
of the flow. A final significant point is that the same bursting
cycle is observed near the boundary in flows with a boundary so
rough that no viscous sublayer is present. 8So, whatever the
physics of bursting, it's not related to the existence of a
viscous sublayer.
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FLOW RESISTANCE

Introduction

In this section we take account of what is known about the
mutual forces exerted between a turbulent flow and its solid
poundary. As you saw in Chapter 1, flow of real fluid past a
solid boundary exerts a force on that boundary, and the boundary
must exert an equal and opposite force on the flowing fluid. It
is thus immaterial whether you think in terms of resistance to
fiow or drag on the boundary.

Forces Exerted by a Flow on Its Boundary

What is the physical nature of the mutual force between the
flow and the boundary? Remember that at every point on the solid
poundary, no matter how intricate in detail the geometry of that
boundary may be, two different kinds of fluid forces act: pres-
sure, acting normal to the local solid surface at the point, and
viscous shear stress, acting tangential to the local solid surface
at the point. If the boundary 1is physically smooth (Figure 5.57)
the downstream component of force the filuid exerts on the boundary
can result only from the action of the viscous shear stresses, be-
cause the pressure forces can then have no component in the direc-
tion of flow. But the boundary may be strongly uneven or rough on
a small scale at the same time it is planar or smoothly curving on
a large scale; this unevenness Or roughness might involve arrays
of various kinds of bumps, corrugations, protuberances, or sedi-
ment particles. Then the picture is more complicated (Figure
5.5B), because there is a downstream component of pressure force
on the boundary in addition to a downstream component of viscous
force: Jjust as with the drag on blunt bodies considered in Chap-
ter 3, if roughness elements are present on the boundary, local
pressure forces are Jgreater on the upstream sides than on the
downstream sides, and so each element is subjected to a resultant
pressure force with a component in the downstream direction.

The details of pressure forces on roughness elements are com-
plicated, because they depend not only on some Reynolds number
based on the size of the roughness elements and the local velocity
of flow around the elements, but also on the shape, arrangement,
and spacing of the elements. Qualitatively, however, the picture
is clear: at low Reynolds numbers the pressure force on an ele-
ment is of the same order as the viscous force, as in creeping
flow past a sphere, whereas at higher Reynolds numbers the pres-
sure forces are much greater than the viscous forces, as in sepa-
rated flow past a sphere.

The sum of all the forces on individual roughness elements on
the boundary {or, in the case of a physically smooth boundary, the
sum of the viscous shear stresses at all points of the boundary)
congitutes the overall drag on the boundary, or conversely the
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Figure 5.5 Pressure forces (double-barbed arrows) and vis-
cous forces (single-barbed arrows) exerted by flow over
(A) a physically smooth boundary, (B) a physically rough
boundary. (Highly schematic.) -

overall resistance to the flow. When expressed as force per unit
area this boundary resistance is called the boundary shear stress
5. It's important to remember that 1o refers not to the viscous
shear stress at any given point on the f£low boundary {which, after
all, fits the description of "boundary shear stress” perfectly)
but to the average force per unit area, viscous plus pressure,
over an area of the boundary large enough that the variations in
local forces from point to point are suitably averaged out. The
word “suitably" calls for some explanation. If you're interested
in the overall boundary shear stress, YOou average oOver an expanse
of bed large enough to include a fair number of the largest rough-
ness elements present (which could range from sediment particles
to bed forms). If you're interested in some small local area on
or among roughness elements that are much larger than the sediment
particles, you have to average over an area that's small relative
to those large elements but still large relative to the grain
roughness.

It's worth considering at this point how boundary shear
stress is actually measured in channel flows. Direct measurement
is extremely difficult even in the laboratory: mechanical shear
plates set flush with the boundary tend to cause some disturbance
to the flow because of the lnevitable gap or step at the edges.
Hot~-film sensors, which measure the shear at the fluid-solid
interface indirectly via the conductive heat transfer from a heat-
ed solid surface, get around this problem nicely for smooth boun-
daries, but they don't work well when sediment is transported as
bed load over a granular bed, and they can measure only the local
boundary shear stress anyway. Direct measurement has so far been
out of the question under field conditions or in the presence of
abundant transported sediment. Fortunately, there are other
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ways to measure boundary shear stress. If the flow is steady and
uniform we can use Equation (1.16), the resistance equation for
channel flow, to find 14 without concern for the internal details
of the flow simply by measuring the slope of the water sur face;
although not always a simple matter, this is possible in both
field and laboratory with the proper surveying equipment. The
problem is that the value of 15 obtained 1s the average around the
wetted perimeter of the cross section. Another method, suitable
only for laboratory experiments with smooth flow, is to measure
the velocity profile within the viscosity-dominated zone of flow
very near the boundary, using various techniques, in order to
determine velocity gradient at the boundary, which by Equation
(1.5) is proportional to T,. Finally, we'll see presently, after
considering velocity profiles in turbulent £flow, that 145 can also
be found indirectly in both rough and smooth flow by means of

less demanding measurement of the velocity profile through part or
all of the flow depth. This last method is the most useful and
important of all.

Tf the fluid forces on the individual grains that form a
loose sediment bed become momentarily large enough, they may set
some of the grains into motion. For now we're interested only in
the average of the pressure forces and viscous forces over the
entire surface of the boundary, and in how the mean velocity of
flow depends upon this average force. Chapter 6 provides more
detail on fluid forces on sediment particles exposed on the bed,
and on the nature of particle motions when the forces are large-
enough to entrain the particles.

Smooth Flow and Rough Flow

Two fundamentally different but intergrading cases of
turbulent boundary-layer flow can be distinguished by comparing
the thickness of the viscous sublayer and the height 0f granular
roughness elements. (What we'll say here will be for sand-grain
roughness, but the situation is about the same for close-packed
roughness of any geometry.) The roughness elements may be small
compared to the thickness of the sublayer and therefore completely
enclosed within it (Figure 5.6A). Or they may be larger than what
the sublayer thickness would be for the given flow if the boundary
were physically smooth rather than rough (Figure 5.6B). 1In the
latter case, flow over and among the roughness elements is
turbulent, and the structure of this flow is dominated by effects
of turbulent momentum transport. There can then be no overall
viscous sublayer in the sense described in an earlier section,
although a thin viscosity-dominated zone with thickness much
smaller than the roughness size must still be present at the very
surface of all the elements. In the transitional case the
roughness elements poke up through a viscous sublayer that is of
about the same thickness as the size of the elements.

If, in flow over a rough bed, sublayer thickness is much
greater than roughness size, the overall resistance to flow turns
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Figure 5.6 Relationship between viscous-sublayer thickness
and height of roughness elements. (A} Roughness elements
much smaller than sublayer thickness. (B) Roughness
elements much larger than sublayer thickness.

out to be almost the same as if the boundary were physically
smooth: such flows are said to be dynamically smooth (or
hydraulically or hydrodynamically or aerodynamically smooth), even
though they are in fact geometrically rough. (Obviously, flow
over physically smooth boundaries is also dynamically smooth. )
This is a consequence of the argument, introduced above, that if
the Reynolds numper of flow around individual roughness elements
is small, as must be the case if the elements are much smaller
than the viscous sublayer, pressure forces and viscous forces are
of about the same magnitude, so that the presence of roughness
makes little difference in the overall resistance to flow. If the
elements are much larger than the potential thickness of the
viscous sublayer, however, Reynolds numbers of local flow around
the elements are large enough that pressure forces on the elements
are much larger than viscous forces, and then the roughness has an
important effect on flow resistance. Such flows are said to be
dynamically rough.

It's convenient to have a dimensionless measure of distance
from the boundary that can be used to specify the thicknesses of
the viscous sublayer and the buffer layer. For this purpose,
assume that the mechanics of flow near the boundary is controlled
only by the shear stress 15 and the fluid properties p and u.

This should seem at least vaguely reasonable to you, in that the
dynamics of turbulence and shear stress in the viscous sublavyer
and buffer layer are a local phenomenon related to the presence of
the boundary but not much affected by the weaker large-scale
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eddies in the outer layer. (There will be more on this in the la-
ter section on velocity profiles.) You can readily verify that
the only possible dimensionless measure of distance Yy from the
poundary would then be ol/27,1/2y/yu, often denoted by y¥. A sim-
ilar dimensionless variable 51/27 1/2p/y, involving the height D
of roughness elements Or sediment grains on the boundary, can be
derived based on the same line of reasoning about variables impor-
+ant near the boundary. This latter variable is called the boun-
dary Reynolds number Or roughness Reynolds number Rex. It's use-
fol in dealing with fluid forces and motions near a sediment bed.

The dimensionless distance y* and the roughness Reynolds num-
ber Rex can be written in a more convenient and customary form by
introduction of two new variables. The quantity (to/p)17%, usual-
1y denoted by ux (pronounced u-star), has +he dimensions of a vel-
ocity; it's called the shear velocity or friction velocity. (Un-
important footnote: The =sterisk should be a subscript but we
couldn't manage to make it look right on our word processor.) The
quantity w/p, which you may have noticed always appears in
Reynolds numbers, 1is called the kinematic viscosity., denoted by v.
The word kinematic is used because the dimensions of v involve
only length and time, not mass. Remember that the two variables
ux and v are nothing more than convenience variables; ux 1is not
actually a velocity, only a disguised boundary shear stress. If
y T as defined above is rearranged slightly it can Dbe written '
uxy/ v, and the roughness Reynolds number <an be written uxD/v.
atare at these two dimensionless variables for a few seconds now,
pecause you'll be seeing them often.

When expressed in the dimensionless form v+, the transition
from the viscous sublayer to the buffer layer is at a yt value of
about 5, and the transition from the buffer layer to the
+turbulence—dominated layer is at a y* value of about 30. These
transition values are about the same whatever the values of boun-
dary shear stress Tg and fluid properties o and u; this confirms
the supposition made above that over a wide range of turbulent
boundary-layer flows the wvariables 1o, P« and u suffice to charac-
terize the flow near the boundary. These values are known not
from watching the flow but from plots of velocity profiles, as
will be discussed presently.

The relative magnitude of the viscous—-sublayer thickness and
the roughness height D can be expressed in terms of the roughness
Reynolds number uxD/v. To see this, take the top of the viscous
sublayer to be at uxéy/v = 5, meaning that §¢ = Sv/ux is the
distance from the boundary to the top of the viscous sublayer.
Here we've replaced y by 8y, the thickness of the viscous
sublayer. The ratio of particle size to sublayer thickness is
then D/6y = (uxD/v)/5. In other words, sublayer thickness and
particle size are about the same when the roughness Reynolds
number has a value of about 5. (But remember that if the
particles are this large or larger, there won't be any well
developed viscous sublayer in the first place.)} Another way of
ioocking at this is that we can compare the particle size D with
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v/ux, a quantity with dimensions of length called the viscous
length scale, which is proportional to the thickness of the

viscous sublaver.

The limits of smooth and rough flow can also be specified by
values of the roughness Reynolds number. The upper limit of
smooth flow is associated with the condition that the height of
the viscous sublayer is about equal to that of the roughness
elements. As noted above, at the top of the viscous sublaver
y* = ux§,/v = 5, so the upper limit of roughness Reynolds number
for smooth flow should be uxD/v = 5, and in fact the value of 5 is
in good agreement with results based on both boundary resistance
and velocity profiles. Likewise, the lower limit of roughness
Reynolds numbers for fully rough flows is found to be about 60.
In between these values (5 < uxD/v < 60) the flow is said to be
transitionally rough.

Some further discussion of smooth and rough flow can be
found in the latter part of this chapter in the section on
velocity profiles.

Dimensional Analysis of Flow Resistance

One circumstance that tends to make the standard treatments
of flow resistance in fluid-dynamics textbooks seem more
complicated than they really are is that the details of the
equations for flow resistance (although not their general form)
depend not only on the boundary roughness but also on the overall
geometry of the flow. On the one hand, the flow may be a
turbulent boundary layer growing into a free stream; on the other
hand, it may be a fully established turbulent boundary layer that
occupies all of a conduit or channel. In terms of flow mechanics
in the boundary layer itself these two kinds of flow may be
treated together. 1In the latter case any number of boundary
gecometries are possible. Most engineering applications involve
flow in a closed conduit of some cross-sectional shape or a
turbulent boundary layer growing from a surface, as on an airplane
wing. An application more relevant to our purposes is flow in an
open channel with a planar bottom boundary that is very wide
compared to the flow depth. But since the classic experiments on
flow resistance were made using circular pipes with inside
surfaces coated with uniform sand, and not much systematic work
has been done on channel flow, the discussion here will focus on
pipe flow, with the understanding that both the principles and the
general form of the results will be the same for any steady
uniform flow whatever the boundary geometry.

In common with other aspects of turbulent boundary-layer
flow, there is no theory upon which we can draw in finding
relationships for flow resistance. It is therefore again natural
to start with a dimensional analysis of resistance to flow through
a circular pipe or tube (Figure 5.7) in order to develop a
framework in which experimental data can provide dimensionless
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Figure 5.7 Flow through a circular pipe coated with uniform
sand.

relationships that are expressible in the form of essentially
empirical equations valid in certain ranges of flow.

What variables must be specified in order that the boundary
shear stress t1, be fully characterized or determined? Pipe
diameter d and mean flow veloclity U are important because they
affect the rate of shearing in the flow, both directly and through
their effect on the structure of turbulence. Viscositv u is
obviously important because of its role in determining viscous
shear stress at the boundary. Fluid density p is important
because if the flow is turbulent there must be local fluid
accelerations. Finally, the size of boundary roughness elements
may affect the turbulent forces and motions near the boundary.
There are thus two important length scales in the problem of flow
resistance: pipe diameter and roughness height. We'll have to
assume that shape, spacing, and arrangement of the roughness
elements are either always the same or, 1f variable, are of
secondary importance in determining flow resistance. Neither
assumption is justified, but they form a good place to start.
Never mind that i1f the boundary is rough there is some haziness
about where the position of the wall should be taken in defining
the pipe diameter; at least with respect to flow resistance, any
reasonable choice will produce consistent results provided that
consideration is limited to geometrically similar roughness.

Assuming that all the important variables have been included,
1o can be viewed as a function of the five variables U, d, D, p,
and u. You should then expect to have a dependent dimensionless
variable as a function of two independent dimensionless variables.
It should occur to you immediately that one of the independent
dimensionless variables can be a Reynolds number based on U and 4,
which we'll call the mean-flow Reynolds number. The other
independent dimensionless variable is most naturally d4/D, the
ratio of pipe diameter to roughness height. This variable is
called the relative roughness. The dependent dimensionless
variable, which must involve 14, has exactly the same form and
physical significance as the dimensionless drag force or drag
coefficient that characterizes the drag on a sphere moving
relative to a fluid (Chapter 1}, except that here we're dealing
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with a force per unit area rather than with a force. You can
verify that one possible dimensionless variable involving To 1s
814/ pU?%, and although this is not the only one possible (there are
two others) it's the most useful, and it's the one that's
conventionally used. (The factor 8 is present: for reasons of
convenience that need not concern us here.) This dimensionless
boundary shear stress is called the friction factor, denoted by f;
it is one kind of flow-resistance coefficient.

The functional relationship for flow resistance can thus be
written

81
- o pud d
rm;}?—F(T"ﬁ) (5.1)

where F is a function which for turbulent flow must be ascertained
by experiment.

Resistance Diagrams

The relationship expressed in Equation (5.1) can be shown in
a two-dimensional graph most easily by plotting curves of £ vs.
Reynolds number for a series of values of d4/D. Figure 5.8 shows a
graph of this kind, called a resistance diagram. The data were
obtained by Nikuradse (1933) for £flows through circular
pipes lined with closely spaced sand grains of approximately
uniform size. A version of Figure 5.8 is shown in just about all
books on flow of viscous fluids.

Leaving aside the steeply sloping part of the curve on the
far left (it holds for laminar flow in the pipe, for which an
exact solution can be obtained), you see that at fairly low
Reynolds numbers the curve of £ vs. Re for any given 4d/D in
Figure 5.8 at first slopes gently down to the right, then breaks
away, and finally levels out to a horizontal straight line. The
larger the relative roughness 4/D the greater the Reynolds number
at which the breakaway takes place. Physically smooth boundaries,
for which D/d = 0, follow the descending curve to indefinitely
high Reynolds numbers. Flows that plot on this descending curve
are those we earlier termed dynamically smooth. Note that flows
over physically rough boundaries can be dynamically smooth, so
long as d/D is sufficiently large. If Re is fairly small and the
pipe is fairly large, D can be absolutely large--millimeters or
even centimeters--in smooth water flows. Flows that plot on the
horizontal straight lines to the right are those we called fully
rough, and those at intermediate points are those we called
transitionally rough. For .a given d/D the flow is smooth at low
Reynolds numbers but rough at sufficiently high Reynolds numbers.
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Figure 5.8 Plot of friction factor f against mean- flow
Reynolds number Ud/v for several values of relative
roughness d/D in fully developed pipe flow. Data are
from experiments by Nikuradse (1932, 1933) on flow
through pipes with inside surfaces smooth or artifi-
cially roughened with closely spaced uniform sand
grains.

Two questions need to be discussed at this point: How would
the results in Figure 5.8 change for kinds of roughness elements
different from glued-down uniform sand grains, and how would the
results change for conduits or channels with geometry different
from that of a circular pipe? The answer to both of these
gquestions 1is that the results are qualitatively the same, provided
that the characteristics of the roughness are not grossly
different and that the size of the roughness elements remainsg a
small fraction of the conduit diameter or channel depth. The
curves are merely shifted slightly in position or differ slightly
in shape. To adapt the uniform-sand-roughness results to other
kinds of roughness a quantity called the equivalent sand
roughness, denoted by kg, is defined as the fictitious roughness
height that would make the results for the given kind of roughness
expressible by the same plot as in Figure 5.8 for uniform-sand-
roughness pipes. (We'll have a little more to say about kg later
in the section on velocity profiles.) And to compare the pipe
results with those for conduits or channels with different
geometry, it's customary to use the hydraulic radius in place of
the pipe radius, although the results can't be expected to be
exactly the same. By applying the definition of hydraulic radius
given in Chapter 1 you can verify that for a circular pipe the
hydraulic radius specializes to one-~fourth the pipe diameter, and
for infinitely wide flow down a plane, to the flow depth (see
Appendix 2)}.
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How then can you predict the friction factor for a given
sand-transporting flow in a laboratory flume or a natural channel?
-¢'s all right to use the graph in Figure 5.8 for channel flow
sver motionless planar sediment beds {unless the particle size 1is
. substantial fraction of the flow depth, as could be the case in
.ravel-bed streams). But usually the bed is covered with bed
sorme like ripples or dunes whose shape, spacing, and arrangement
,re drastically different from sand-grain roughness and whose
Leight might be a substantial fraction of the flow depth. Also,
sven when the bed is planar in very strong flows, the abundance of
sediment in transport changes the frictional characteristics of

+the flow substantially. So you shouldn't expect Figure 5.8 to

nhelp you much with resistance in most natural flows. The obvious
thing to do would be to develop a similar graph for the frictional
-haracteristics of equilibrium flow-generated bed roughness over a
wide range of conditions in natural channels. But only a start
has been made on that formidable task. We'll return briefly to
the problem in Chapter 7. ' '

There's an equivalent way of expressing resistance that's
uvsed specifically for open-channel flow. Combining the equation
T = (£/8)pU2 that defines the friction factor f with the equation
16 = vxd (Equation 1.15) for boundary shear stress in steady uni-
corm flow down a plane, eliminating 7o from the two equations, and
then solving for U (remembering that vy = pgsing),

‘ 1/2
U = (%gd51n¢) {5-2A)
This is usually written
U= c(d Sincp)l/z (5.28)
where
1/2
C = (%ﬂ) (5.2C)

This formula, which relates mean velocity, flow depgh, and slope
for uniform flow in wide channels, is called the Chezy equation,
after the eighteenth-century French hydraulic engineer who first
developed it. The coefficient C, called the Chezy coefficient, is
not a dimensionless number like f; it has the dimensions g'’<.

But since g is virtually a constant at the Earth's surface, C can
be/viewed as being a function only of £. We've introduced the
Chézy C because it's in common use in work on open-channel flow,
but you should understand that it adds nothing new.
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VELOCITY PROFILES

Introduction

You've already seen that the profile of time-~average local
fluid velocity T from the bottom to the surface in turbulent flow
down a plane is much blunter over most of the flow depth than the
corresponding parabolic profile for laminar flow {Figure 1.18).
This difference is a consequence of the efficient transport of
fluid momentum across planes of mean shear by motions of turbulent
eddies. Here we continue the treatment of velocity profiles in
steady uniform turbulent flow down a plane. Remember from what we
said about the structure of turbulent boundary layers that the-
results should be almost the same as for flow in a closed conduit
or for a boundary layer growing into a free stream. <Can an
equation for velocity profile in turbulent flow be found by
writing an equation like Equation (1.5) for turbulent flow and
solving for the velocity profile by integration?

Equation (1.19) or (1.20), for the distribution of total
shear stress in the flow, is valid for turbulent flow as well as
for laminar flow because no assumptions were made about the nature
of internal fluid motions in its derivation, just that the flow
must be steady and uniform on the average. And an expression of
the same kind as Equation {1.5), defining the shear stress, can
also be written for turbulent flow:

T = U %5 + 1 %%- (5.3)

The term p(du/dy) is the viscous shear stress due to the mean
shear across planes parallel to the boundary. (Actually it's a
spatial average over an area of such a plane that's large relative
to eddy scales, because fluid shear varies from point to point in
a turbulent flow.) The term n{du/dy) is a way of writing the
turbulent shear stress across these planes that involves an
artificial gquantity n, called the eddy viscosity, that's formally
like the molecular viscosity u. Everywhere in a turbulent shear
flow except very near the solid boundary the eddy viscosity is
much larger than the molecular viscosity, because turbulent
momentum transport is dominant over molecular momentum transport.
(0Often n is written as pe, where & can be viewed as the kinematic
eddy viscosity, in analogy with v: e is also callied the eddy
diffusion coefficient.) Just as for laminar flow, the expressions
for 1, in Equation (5.3) and Equation (1.20) can be set equal to
give a differential equation for T as a function of distance vy
from the boundary:
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(0 + n>§—§" = v (d - ¥) (5.4) ki

Unfortunately there's always an insuperable problem in integ-

atlng Equation (5.4), or any other equation like it for turbulent
flow in a conduit or channel with some other geometry, to find the
velocity distribution: n is not a property of the fluid, as is u,
put depends upon the flow: it varies with height above the boun- ' 4
dary, because the turbulent shear stress it represents is a func—- i
tion of the flow itself, for which we're trying to scolve. We're :
therefore always forced to find the velocity distribution in tur-
vulent flow by experiment. It's important to realize, however,
that the approach doesn't have to be blindly empirical: physical
reasoning can be used to guess which effects and therefore which
_varlables are important in governing the velocity distribution in
the Vvarious layers of the flow. If the functional relationships
thus specified by the dimensional structure of the problem are
consistent with the observational results, then the correctness of

hat quailtatlve view of the physics is confirmed. In fact, much
of what's known about turbulent flow past solid boundaries has
been learned in this way.

We made a dimensional analysis of the velocity distribution
in turbulent flow down a plane in Chapter 1 {see Equation 1.14),
but we didn't show any data to indicate whether the approach is
valid. It is, but we'd like to backtrack a little and repeat the
analysis here in a slightly different way that leads more directly
toward the equations for velocity profiles usually found in the
literature. To this end we'll use not the driving force yyx, the
downslope component of the weight per unit volume of the fluid,
but instead 15, which in steady uniform flow must balance the dri-
ving force (Figure 5.9). We'll also extend the analysis slightly
to flow over physically rough boundaries; if for now we stick to
the roughness represented only by planar beds of loose sediment,
and not worry about sorting and grain shape, this adds the mean
sediment size D to the problem. Then U can be viewed as a func-—
tion of boundary stress 15, flow depth d, sediment size D, the
fluid properties p and u, and of course the distance y above the
bottom:

u = f(Tor pe U, D, 4, Y) (5.5)

The dimensionless functional relationship for u is then

uD 4 )
= fl—, & X .
- f( v " D' d (5.6)
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where we've made use of the shear velocity ux and the kinematic
viscosity v introduced earlier in this chapter. Equation (5.6)
says that U/u%, a dimensionless version of u (often denoted y%),
should be a function only of the roughness Reynolds number usD/v
and the relative roughness d/D for a given dimensionless position
y/4 in the flow. There are alternative possibilities for the
three independent dimensionless variables {for example, all three
could be put into the form of a Reynolds number, each with a
different one of the three length variables), but this is the most
natural.

Figure 5.9 Definition sketch for dimensional analysis of
velocity profiles in turbulent flow down a plane.

We're sure that all the velocity data you could get your hands
on would plot very nicely in a four-dimensional graph using the
variables U/ux, uxD/v, d4/D, and y/d. But even though the number
of variables has been reduced from seven to four you'd still have
a burdensome plotting job and a product that would be unwieldy for
practical use. Moreover, further careful study would be needed to
decipher what the graph is telling you about the physics of the
phenomenon. This is a good place to think about whether the
problem can be simplified further by a divide-and-conguer approach
wherein certain of the variables are eliminated or modified in
certain ranges of conditions to arrive at simpler functions that
represent the data well under those conditions. This serves two
purposes: it provides useful results, and it helps to clarify the
physical effects that are important.

First off, in the next two sections, we'll present some ideas
about energy in turbulent flow. This may seem out of place here,
but it leads to two conclusions that are of great importance for
velocity profiles in turbulent flow: that of the existence of
overlapping inner and outer layers of the flow, in which separate
equations for velocity profiles hold, and that of the approximate
independence of these profiles on the mean-flow Reynolds number.
Five further subsections are devoted to the details of velocity
profiles in the inner and outer layers of flows for which the
diameter of the sediment on the bed is far smaller than the flow
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jepth. As you read these sections, refer to Figure 5,10, which
srovides a key or road map for the relationships that will be dev~
sloped for velocity profiles under various conditions of flow and
in various parts of the flow. The level of detail might strike
vou as excessive~-but it's hard to find this fundamental material
spelled out explicitly in the literature, so we've chosen to in-
-iude it. If you're not interested in this much detail you can
sxlip those five sections and read instead a following summary sec-—
~ion. A less detailed section then covers flows over beds with
sediment particles or bed forms (roughness elements, in the fiuid
jynamicist's parlance) whose height is a larger fraction of the
flow depth and/or whose spacing is more open. A final section
presents some field measurements of velocity profiles.

Upon first exposure to the great variety of equations for vel-
ocity profiles in most fluid-dynamics textbooks, a common reaction
of the student is, "How will I keep them straight and know when to
ase them?" You may well have the same reaction. But we've worried
about that, and we've tried to develop carefully the reasoning
that' leads to the equations and their appllcablllty A few espec-—
ially important and useful equations are put in boxes and given
names or descriptive phrases.,

Enerqgy

In making some simplifying assumptions it helps to take a
closer look at the nature of turbulence in a channel flow. We'll
present some arguments we hope will make some sense to you even
though they can't be developed rigorously here. In what follows,
keep in mind that kinetic energy, a quantlty mv2/2 associated with
a body with mass m moving with velocity v, is changed only when an
unbalanced force does work on the body, and the change in kinetic
energy is equal to the work done. The change in kinetic energy
caused by the action of certain forces like gravity can be recap-
tured without any loss of mechanical energy--think of throwing a
ball straight up and watching it as it passes you on the way back
down-~~but the work done by frictional forces represents conversion
of mechanical energy into heat.

We'll start with laminar flow because the energy bookkeeping
is simpler. The viscous shear stress acting across the shear
planes does work against the moving fluid. (Remember that a force
does work on a moving body provided that there's a component of
the force in the direction of movement of the body, as is true
here.) The viscous shear stress is counterbalanced by the down-
slope component of the weight of the fluid, so no net work is done
and the kinetic energy doesn't change. But you can think in terms
of potential energy being converted to kinetic energy, and kinetic
energy then being converted to heat at the same rate. So in terms
of energy the flow is a mechanism that converts potential energy
into heat, the heat then being transferred to the surroundings at
the same rate by conduction or radiation. The particular magni-
tude of kinetic energy in the flow in the process of this conver-
sion is an outcome of the dynamics of the flow.
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Figure 5.10 Key to profiles of time-average velocity as a
function of distance from the boundary in turbulent
boundary layers. Equations and figures cited are
discussed in the following sections.

In turbulent flow, kinetic energy is contained not just in the
mean flow but also in the turbulent fluctuations. Potential
energy is again converted to heat, but the way the flow mediates
this conversion, and therefore the picture of kinetic energy in
the flow, is more complicated. This is because enerqgy is
extracted mainly by the work done against the mean motion by the
turbulent shear stress rather than by the viscous stress, because
at all levels in the flow except very near the bottom the former
greatly overshadows the latter. This work done by the turbulent
shear stress transforms the kinetic energy of the mean motion into
kinetic energy associated mostly with the largest eddies, which
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~ave the dominant role in the turbulent shear stress because they
sre the longest-range carriers of fluid momentum. But not much of
+rhis turbulent kinetic energy is converted directly into heat in
-hese large eddies, because they are so large relative to the vel-
scity differences across them that shear rates in them are very

small.

Then where does the kinetic energy go? Answer: 1t's handed
iawn to smaller eddies. This phrase "handed down" might strike
-ou as plausgible but unilluminating. Large eddies degenerate or
secome distorted into smaller eddies in ways not elaborated here,
and when this happens the kinetic energy that was associated with
:ne large eddies becomes transferred to the smaller eddies. But
-ne odds are all against smaller eddies organizing themselves
1;aln into larger eddies--just watch the breakup of regular flow
.1 a smoke plume to get the sense that the natural tendency in
murbulent motions is from regular motion to irregular motion.  So
in terms of kinetic energy, turbulence is largely a one-way
street: 1t passes energy mostly from large scales to small
scales, not in the other direction. This effect is called an
2nerygy cascade. Shear rates are greatest in the smallest eddies
pecause of thelir small size relative to the velocity differences
across them, and it's in these smallest eddies that most of the
winetic energy is finally converted into heat. In fact, the rea-
3on there's a lower limit to eddy size is that below a certain
scale the viscous shear stresses are so strong that they damp out
the velocity fluctuations. '

A very significant consequence is that viscosity has a direct
effect on turbulence only at the smallest scales of turbulent mo-
tion. If the mean-flow Reynolds number is increased, the energy
cascade is lengthened at the smallest scales by development of
even smaller eddies, but the structure of turbulence at larger
scales 1s not much changed. So any bulk characteristic of the
£low that 1is governed by the large-scale turbulence--like the vel-
ocity profile, which depends mainly on the turbulent exchange of
tluid momentum-~should be only slightly dependent on the Reynolds
number. This effect is called Reynolds—number similarity.

Inner and OQuter Layers

Now back to velocity profiles. We want to convince you that
two different but overlapping regions or layers of the flow can be
recognized {Figure 5.11}) in which the velocity profile depends not
on the full list of variables 15, p, v, D, vy, and d used in the
dimensional analysis above, but on certain subsets. The advantage
is that in each of these layers there's then a simpler functional
relationship for the velocity profile, one that leads to a curve
in a two-dimensional graph that holds very well for almost the
entire range of turbulent channel flows. We'll wave our arms a
little about the various variables, but of course the most convin-
cing evidence 1is that this is how things actually work out, as
you'll see,
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Figure 5.11 Inner and outer layers in turbulent channei
flow. See also Figure 5.4.

vear the bottom boundary, in what we called the buffer zone and
for 2 ways outside it, the turbulence is small-scale and intense,
and poth production and dissipation of turbulent kinetic energy
are kxnown from actual measurements to be at a peak. it's reason-
able to view the dynamics of the turbulence, and therefore the na-
ture of the velocity profile, as being controlled by iocal effects
and substantially independent of the nature of the turbulence in
the rest of the flow, all the way up to the free sur face. This is
also true of the viscous sublayer, if one is present, because
there the velocity profile is controlled by the strong viscous
shear adjacent to the solid boundary. The velocity profile in
this inner layer thus depends on To, 2y Pr Wy and y, but not on d.

On the other hand, over most of the flow depth, from the free
surface all the way down to the top of the buffer layer in smooth
flow, you've seen already from the discussion of turbulent energy
that the velocity profile should be largely independent of u. If
the boundary is rough the profile should be independent of D as
well as of u down to & position just far enough above the rough-
ness elements that the turbulence shed by the elements is not im=-
portant in the turbulence dynamics. But you should expect the
profile to depend on d, because the size of the largest eddies 1s
proportional to the flow depth. The velocity profile in this out=-
er layer (here we've generalized the significance of the outer—

Tayer concept introduced in an earlier section) should thus depend
on 15, p., 4, and y, but not on D or u.

1f you scrutinize the definitions of the inner and outer lay-
ers in the last two paragraphs in the light of what we've said
about the structure of the flow, you'll see that they are tikely
to overlap. In other words, there's a zone where the velocity
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3roflle is at the same time independent of all three variables 4,
. and D. This should be true so long as the mean- flow Reynolds
sumber is high enough (well beyond the laminar-turbulent
*raﬂSltlon) that the viscosity-dominated zone near the boundary is
very thin relative to the flow depth. (Remember that the
~nickness of the viscous sublayer decreases as the Reynolds number
. nereases, because the Reynolds number is a measure of the
-slative importance of inertial forces and viscous forces.) This
is usually the case in sedlment transporting turbulent flows of

sedimentological interest.

You're probably thinking by now that we've presented you with
a confusion of layers. We'll summarize them at this point. On
the one hand, in terms of the relative importance of viscous shear
stress and turbulent shear stress it's natural to recognize three
intergrading but well defined zones (the viscous sublayer, the
suffer layer, and the outer layer) or, more generally, a
viscosity~dominated layer below and a turbulence-dominated layer
apove. On the other hand, in terms of importance or unimportance
of variables {(a related but not identical matter) two overlapping
layers can be recognized: an inner layer in which the mean
velocity {and other mean characteristics of the flow as well)
depends on u or D {or both) but not d, and the same outer layer in
which the mean velocity depends on d but not on y or D. In rough
flow the entire thickness of the flow is dominated by turbulence,
and there's no viscosity-dominated layer--but there are still
inner and outer layers.

The Law of the Wall for Smooth Boundaries

Look first at the inner-layer velocity profile over a
physically smooth bottom. From what was just said about the inner

lLavyer,

U= £(T_, 0, M, ¥) (5.7)
or in dimensionless form,
- pULY
U f( : ) (5.8)
U, W

Equation (5.8) states that the velocity U, nondimensionalized
using ux, depends only on y¥, the dimensionless distance from the
bottom. So the velocity profile should be expressible as a single
curve for all turbulent channel flows with smooth bottoms.
Equation (5.8) is the general form of what's called the law 0f the

wall for smooth boundaries.
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You should expect the velocity profile expressed in Equation
(5.8) to be in two different parts, one corresponding to the
viscous sublayer and the other +o the outer part of the inner
layer, where turbulent shear stress predominates over viscous
shear stress. These two parts of the profile have to pass
smoothly one from the other in the intervening buffer layer.

Because fluid accelerations are unimportant in the viscous
sublayer, u there depends on Tor Mo and y, but not on p:

q = f(TOr Ly ¥) (5.9)

The only way to write Equation (5.9) in dimensionlesé form is

o

|

Y _ = const {(5.10)
5 ‘

~
3

because there's only one way to form a dimensionless variable from
the four variables u, To. U« and y. Equation (5.10) can be
juggled algebraically a little by introducing e on poth sides, for
no other reason than to put it in the same form as Equation

{(5.8):

PULY
H

2. = const (5.11)
Uy

The constant in Equation (5.11) turns out to be unity. TO
get an idea wny, 90© back to Equation (1.22), the exact solution
for the velocity profile in iaminar channel flow. It's reasonable
to expect that the velocity profile in the viscous sublayer of a
turbulent channel flow is like the velocity profile near the
boundary in a laminar channel flow. Points near the boundary in
iaminar flow, where the velocity gradient du/dy is very large, are
way out on the limb of the parabola in Equation (1.22}, so the
second term on the right in Equation (1.22) can be neglected and U
assumed to be a linear function of v/d:

_ To?
- = 5.12A
u Y (vd) . ( )

When cast in the same form as Equation (5.11), this becomes
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= ouLY the law of. the wall
2. = for a smooth boundary (5.12B)
et W inside the viscous sublayer

Figure 5.12 shows that Equation (5.12) is in good agreement with
careful velocity measurements in the viscous sublayer. It turns
out that Equation (5.12) holds for all turbulent boundary layers
next to smooth boundaries, not just for open-channel flows.
Equation (5.12) provides a way of finding 15 in flow over smooth
boundaries: 1f you have available a very small velocity sensor,
measure the velocity profile in the viscous sublayer, fit Equation
(5.12) to it, and find ux given p and p.

In the ocuter, turbulence-~dominated part of the inner layver
over a physically smooth bottom we can assume that du/dy does not
depend on u, because the shear stress and therefore the velocity
gradient 1s determined almost entirely by turbulent momentum
exchange (see Equation 5.3). On the other hand, U itself must
depend on u, because the velocity profile in the turbulence=-
dominated part of the inner layer must be connected to that in the
viscosity-dominated part, and you've just seen that the velocity
profile in the viscous sublayer depends on u. In other words, the
velocity at the base of the turbulence~dominated part of the inner
layer depends on the velocity at the top of the viscous sublayer,
which in turn depends on p. The viscosity-dominated part of the
profile can be viewed as anchoring the turbulence-dominated part
of the profile to the bottom, where the velocity is zero by the
no-slip condition. So to get the velocity profile we have to
start with the velocity gradient, rather than the velocity itself,

and write du/dy = £(5, p, y) in dimensionless form as
y du
o dy A (5.13)

(where A is a dimensionless constant that should hold in this
particular layer for all turbulent channel flows over smooth
boundaries) and then integrate to obtain the dimensionless
velocity profile:

u
o Alny + Ay (5.14)
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Figure 5.12 Arithmetic plot of u/ux, ratio of local

+ime-average velocity to shear velocity, against puxy/ u,
dimensionless distance from the boundary. for the
viscous sublayer over smooth boundaries. This plot
represents the law of the wall inside the viscous
sublayer. Equation (5.12) is given DY the solid line.
Data points are from several sources, and cover a fairly
wide range of mean~ flow Reynolds numbers and outer-layer
flow geometries. '

where Ay, also dimensionless, 15 & constant of integration. By the
concept of Reynolds-number similarity discussed above, A should be
very nearly constant provided +hat the Reynolds number is high
enough for the turbulence to Dbe fully developed.

Note that Eguation (5.14) doesn't contain p explicitly, but
from what we said above, u has to pe in there somewhere. The
resolution of this seeming paradoX is that the constant of
integration Aj} must depend upon u. YOu can verify that this is so
py noting that Equation (5.14) can be put into the general form
for the law of the wall given by Equation (5.8) if and only if M

is equal to A in{pux/u) + B: putting this expression for Ay into
Equation (5.14),

i

puy
Alny + Aln + B

o

Ua n
PURY
U

1§

A ln (5.15A)
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The constant B is just the residuum of the constant of integration
after A In{pux/u) has been extracted.

I1f the argument leading from Equation {5.14) to Equation
(5.15A) leaves you a bit unsatisfied, you can look at the matter in
a way that is physically more revealing although mathematically
more taxing. Assume that Equation (5.12) holds to a height §'
that's about in the middle of the buffer layer and that Equation
(5.14) holds above that; §' is thus the height at which the curves
given by the two equations intersect. This ignores the smooth
transition in velocity profile through the buffer layer, but it
leads to evaluation of the constant of integration Aj in Equation
(5.14) in a natural way by use of the fact that Equations. {5.12)
and (5.14) must both hold at the point of intersection. This is
what we meant when we said above that the viscosity-dominated
profile anchors the turbulence-dominated profile to the bottom.

The outcome is that B in Equation (5.15A) is a function of puxé'/u,
the dimensionless form of §', which like the dimensionless
thickness of the viscous sublayer or of the buffer layer is largely
independent of the mean-flow Reynolds number if the flow is fully
turbulent. If you're interested in the mathematical details, see
Appendix 3.

Equation (5.15A) shows that the velocity profile is expressed
by a single curve for the turbulence-dominated part of the inner
layer, just as was the case for the viscosity-dominated part. It's
the profile given by Equation (5.15A) that's usually called the law
of the wall, although that term more properly describes the whole
inner-layer profile, viscosity-dominated and turbulence-dominated,
plus the transition between. The logarithmic form of the velocity
orofile was prefigured way back in Chapter 1, in Figure 1.16.

There's no universal agreement in the literature on the values
of the constants A and B: A is usually taken to be between 2.4 and
2.5, and B is taken to be between 5 and 6. The small differences
in A and the larger differences in B from source to source are an
understandable result of fitting straight lines in semilogarithmic
plots of slightly scattered data from diverse experimental studies.
Discussions on the values of these constants can be found in Monin
and Yaglom (1971) and Hinze (1975). With the commonly used values
A = 2.5, B = 5.1, Equation (5.15A) becomes

the law of the wall
= PULY for a smooth boundary
= = 2.5 1n + 5.1 outside the viscous {5.15B)
* sublayer and buffer
layer

In summary, time-average velocity u in the inner layer over a
smooth boundary, when nondimensionalized by dividing by ux, should
plot as a single curve as a function of y¥, the dimensionless
distance above the bottom. Figure 5.13, which incorporates the
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data already plotted in Figure 5.12 for the viscous sublayer, shows
the velocity profile through +he whole of the inner layer over a
smooth boundary. This profile represents the complete law of the
wall for smooth boundaries. The data points in the
viscosity~-dominated part of the inner layer follow Equation

(5.12); the data points in the turbulence-dominated part of the
inner layer follow Equation (5.15B), which plots here as a
straight line because of the semilogarithmic coordinates.

petween yt values of about 5 and about 30 in Figure 5.13
there is a smooth transition between the viscosity-dominated
profile (Equation 5.12B) and the turbulence-dominated profile
(Equation 5.15B). This is the buffer layer, where viscous shear
stress and turbulent shear stress are both important. For yt < 5
the turbulent shear stress 1is negligible, and Equation (5.12B)
describpes the profile; for y* > 30 the viscous shear stress 1is’
negligible, and Equation (5.15B) describes the profile. It's in
wall-law plots like Figure 5.13 that the lower and upper limits of
thesbuffer layer are most clearly manifested. You'll see a
variety of lower and upper limiting y* values mentioned in the
literature; this is understandable, because the divergence of the
curves given by Equations (5.12B) and (5.15B) from the actual
profile is gradual. Although it's of no great physical
significance, the height of intersection &' of equations {5.128)
and (5.15B) in the buffer layer is at yt = 11, as you can see from
Figure 5.13, so puxé'/u = 1ll. What's of greater significance is
+hat the turbulent shear stress and the viscous shear stress are
found experimentally to be equal at a slightly larger vt value of
about 12; this is in a sense the "middle®" of the buffer layer.

The dimensionless height vyt above the boundary at which u/us
begins to deviate from the law of the wall depends on the
mean- flow Reynolds number Re; it ranges upward from around 500 at
small Re to over 1000 at larger Re (Figure 5.14). For vyt greater
rhan this, W/ux is greater than predicted by the law of the wall.

How thick is the inner layer? The upper limit of yt for the
law of the wall at high Reynolds numbers for open-channel flow is
not well established, but assume a vyt value of 1000 in a flow of
room-temperature water 1 m deep at a mean flow velocity of 0.5
m/s. Then y at the outer limit of the inner layer is about 5 cm.
(To figure this out, compute Re, use the smooth-flow curve in
Figure 5.8 to get £ and therefore to, and put this into y¥.) So
the inner layer occupies only a small percentage of the flow
depth, no more than 10-20%. And the viscous sublayer in this £f£low
is only a fraction of a millimeter thick. Note that the
logarithmic abscissa axis in plots like Figures 5.13 and 5.14
crowds the whole outer layer, in which Equation (5.15B) no longer
holds, into a small part of the graph.

Most of the data points in Figure 5.13 are from flows in
circular pipes and rectangular ducts rather than from open-channel
flows. But data from open-channel flows, and from boundary layers
developing on flat plates as well, are consistent with those from
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flow in pipes and ducts. This emphasizes the important point that
the law of the wall holds for a wide variety of geometries of
outer-layer flow. From the earlier discussion of variables
important in the inner and outer layers, this should be no

surprise: the flow in the inner layer ig governed by local

30 T
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Figure 5.13 Plot of u/ux, ratio of local time-average velo-
city to shear velocity, against the logarithm of puxy/u,
dimensionless distance from the boundary, for the inner
layer over smooth boundaries. This plot represents the
complete law of the wall for dynamically smooth turbu-
lent boundary layers. Equations (5.12B) and (5.15B),
for the viscosity-dominated and turbulence-dominated
parts of the inner layer, are given by the solid curves.
Data points are from several sources, and cover a fairly
wide range of mean-flow Reynolds numbers and various
outer-liayer flow geometries. The intersection of Equa-
tions (5.12B) and (5.15B) at §' is discussed in the text.

effects and is independent of the nature of the outer flow. In
fact, the law of the wall is even more general: although we won't
pursue the matter here, the law of the the wall holds even when
there is a substantial pressure gradient (negative or positive) in
the direction of flow, resulting in downstream acceleration or
deceleration.

The Law of the Wall for Rough Boundaries

Introduction

If the bottom is occupied by or consists of roughness
elements of some kind, the velocity profile depends on the size,
shape, and arrangement of those roughness elements as well as on
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Figure 5.14 Inner-layer velocity profiles in pipe flow for
two different mean-flow Reynolds numbers. Data are from
Laufer (1954).

Tor p¢ ¥, and y:

q = £(t,, P» U, ¥, roughness geometry) (5.16)

where the roughness geometry is specified by the size
distribution, the shape distribution, and the arrangement of the
roughness elements. To make any progress we have to be specific
about the nature of the roughness. We'll assume here that the
roughness is composed of fairly well sorted mineral sediment
particles with the usual natural range of particle shape and
roundness, and that the particles form a full sediment bed that's
planar on a large scale. This kind of roughness, called
close-packed granular roughness, is fairly well characterized by
the single variable D, the mean or median particle size. It may
seem as though we're defining most of the phenomenon away, but
this case is of obvious importance to sediment transport.
Fortunately, it's also the best studied. It's not the only
important case, however; eventually we'll have to deal with
bed-form roughness. With the above simplifications, Eguation
(5.16) becomes

u = f(t_, o, U, ¥, D) (5.17)

or, in dimensionless form,
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..o dimensionless velocity u/ux depends not only on y* but also on
.ne boundary Reynolds number. Equation (5.18), which could also
o written using y/D instead of puxD/u, is the law of the wall for
.ranular-rough boundaries.

Two different aspects of the effect of the roughness on the
velocity profile become apparent upon examination of Equation
(5.18). First, the size of the roughness elements relative to the
«nickness of the viscous sublayer is important. Remember from the
section on smooth flow and rough flow earlier in this chapter that
{f D is much smaller than the viscous length scale u/pux the
particles are embedded in the viscous sublayer, whereas if D is
qmuch larger than u/pux there's no viscous sublayer, and the
particles are enveloped in turbulence generated by flow separation
around upstream particles. You should suspect, then, that for
very small puxD/u (less than about 5, for which viscous-sublayer
thickness and particle size are about equal), the roughness has no
zffect on the velocity profile. Under these conditions the
velocity profile over physically rough boundaries is indeed found
to coincide with that over physically smooth boundaries~-provided
that we don't place our velocity meter so close to the bed that
individual grains distort the velocity field. The law of the wall
for smooth boundaries, Equations (5.12) and (5.15) together with
the transition between them through the buffer layer, therefore
holds for flows with puxD/u < 5 over physically rough boundaries
also. These are the flows that in the section on flow resistance
were termed dynamically smooth even though physically rough and
were shown to fall on the curve for physically smooth boundaries
in the resistance diagram in Figure 5.8. For very large puxD/u,
however, there's no viscous sublayer and therefore no effect of u
on the velocity profile, and you should expect to see a velocity
profile rather different from the wall law for smooth flow. The
next two subsections are devoted to the velocity profile in these
dynamically rough flows, which are sedimentologically so
important.

Second, in the case of rough flow the value of y relative to
D is important. For y = D, at points in the flow that are nestled
among the uppermost particles or just a few diameters above, the
velocity depends in a complicated way on the shape and packing of
the particles and on the position of the profile relative to
individual particles, and we shouldn't expect to find any
generally applicable profile; the velocity profile could be said
to be spatially disunified. A bit higher in the flow, several
diameters above the tops of the particles, the wakes shed by
individual particles can be expected to blend together in such a
way that the velocity profile is about the same at all positions,
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but the flow structure is still affected by the roughness-
generated turbulence. Far above the tops of the particles,
however, for y »> D, it's reasonable to expect that the turbulence
structure is governed by local dynamics, as in smooth flow, and
not by the wakes from the little particles far below. If D is
sufficiently smaller than the flow depth d, there should then be 3
layer of the flow for which y << d and y »> D at the same
time--that is, a part of the inner layer in which roughness-
generated turbulence is not of direct importance. Remember,
however, that by analogy with what was said about smooth flow
above, this part of the profile still has to be anchored at its
lower end to that part of the velocity profile controlled by the
roughness-generated turbulence.) :

In the following we examine in some detail the velocity
profile in rough flows for which there's indeed a zone for which
y << d but at the same time is above the near-bed layer of spatial
disunification of the profile. The treatment will be in two
sections, one for the region farther from +he bed, where the bed
grains don't affect the profile shape, and the other for the
region nearer the bed, where the turbulence shed by the grains has
a direct effect on the profile. We'll return briefly later to the
equally important flows in which there's no such zone, examples
being shallow flows over dgravels and flows over bed forms whose
height is not very small relative to the flow depth.

Inner Layer Far Above the Grains

In the part of the inner layer for which y »>> D, neither u
nor D affects the slope of the velocity profile. We can therefore
make exactly the same statement as for the turbulence-dominated
part of the inner layer in physically smooth flow: the velocity
gradient du/dy depends only on Tg, 0. and y. This leads again to
Equation (5.13), and upon integration, to Equation (5.14). We
should even expect the constant A to be the same, because it is a
manifestation of the vertical turbulent transport of streamwise
£1uid momentum, and we just concluded that sufficiently far from
the boundary the structure of the turbulence depends only on local
effects and is independent of the turbulence shed by the bed
roughness. The constant of integration Aj, however, is different,
because it depends on the nature of the connecting velocity
profile nearer the boundary, which is different from that in
smooth flow. This latter difference has to do with the relative
importance of viscous shear stress and turbulent shear stress near
the boundary, and with the relative importance of viscous drag and
pressure drag at the boundary: if D »> y/pux (we've termed such
flows fully rough), viscous shear stress in the flow and viscous
drag on the boundary are negligible, so not only the velocity
gradient but also the velocity itself is unaffected by u in the
layer under consideration here.

We can rearrange Equation (5.14) to obtain Equation (5.15A)
just as in the case ©of smooth flow, but with onée important
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difference: by comparison with the general form of the law of the
wall for rough flow (Equation 5.18), the term B is now not a
constant but instead a function of the boundary Reynolds number:

- PULY pu,D
Y - A in + f( ) (5.19)
& U H

ot

This can be put into an eguivalent but more revealing and more
useful form by splitting f£f(puxD/u)} into two parts: -A In(puxD/u)
plus a remainder that's some different function of puxD/u, which
we'll call B'. The only reason for this otherwise arbitrary
choice is that now Equation (5.19) can be written

[ou,y pu,D|
Al -1 + B
ni‘l nu

Y '
Aln s + B

=
*
Il

(5.20A)

il

This is neater than Equation (5.19), but remember that B' is a
function of pusD/u. If puxb/p is sufficiently large, however, so
that D is large relative to what the viscous-sublayer thickness
would be, turbulence extends down among the roughness elements and
there's no viscosity-dominated layer next to the bottom. The
velocity profile then cannot depend on p and therefore not on
puxD/u, so B' in Equation (5.20A) is a constant, which has a value
of about 8.5 for uniform, close-packed sand-grain roughness.
(There's about as much uncertainty about this constant as there is
about the constant B in Equation 5.158.) The value of B has indeed
been found experimentally to become constant for puxD/y > 60.

It's under these conditions that the flow was termed fully rough
in the earlier section on flow resistance. Equation (5.20A) can
then be written as Equation (5.20B), the law of the wall for fully
rough flow:

The law of the wall

for fully rough flow

over granular-rough (5.20B)
boundaries

C]CI
I
1y
i
=

o<
+
oo
(]

*

Figure 5.15 shows Equation {(5.20B) together with the data
from Nikuradse (1933) on which the value of 8.5 for B' was
originally derived. UNikuradse's data were obtained for a
particular geometry of granular roughness manufactured by gluing a
somewhat open monolayer of subrounded and almost single-size sand
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to the inner walls of circular pipes. You should expect the value
of B' for full, loose beds of less well sorted sand to be differ-
ent, even if the mean size is the same, because the effective
height and spacing of the "tallest" roughness elements (i.e., the
largest and most protrusive bed grains) are different. As is com-
monly done, you can preserve the value of 8.5 in Equation (5.20B)
and use for D the fictitious diameter of single-size sand grains in
a uniform monolayer that makes Equation (5.20B) fit the velocity
data best. That size is called the equivalent sand roughness, usu-
ally denoted kg. (A more descriptive term would be the "equivalent
Nikuradse-style sand roughness.”) In other words, kg for any given
bed roughness is the uniform-sand-grain height that gives the same
wall-law velocity distribution for a given value of 15.

20 T i ] I |

. 10 50

Figure 5.15 Plot of T/ux against y/b for the inner layer over
granular-rough boundaries. Data are from Nikuradse
(1933} for runs with pipe radius > 60 D. Only data for
which Rex > 60 are shown, so this plot represents the law
of the wall for dynamically fully rough flow. All points
up to 0.2 times the pipe radius are shown. Equation
(5.20) is shown by the straight line, with A = 2.43 and
B' = 8.56 obtained by a least-squares fit. Included are
8 profiles from 4 sand~lined pipes. As described in a
later section, the y = 0 level has been adjusted downward
from the tops of the grains a distance y1/D = -0.36 to
extend the straight-line fit as close to the bed as
possible.,

one further comment about Figure 5.153 in pipe flow, and also
in open-channel flow, it happens that the velocity profile doesn't
deviate greatly from Equation (5.20B) even at positions far out
from the boundary toward the centerline of the pipe or the free
surface of the channel. So you c<an safely fit your rough—£flow vel-
ocity profile to Equation (5.20B) without great error. But you
shouldn't expect the value of 15 derived therefrom (for how to do
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that, see a later section) to be exactly the same as that derived
from just the inner part of the velocity profile; from Nikuradse's
original pipe data, for example, estimates of 1y based on almost
the entire profile, out to 90% of the pipe radius from the wall,
are dreater on the average by a factor of 1.07 than the actual
measured values, when the value of 2.46 for A determined from only
the lowest 20% of the profile is used also in the case of the
entire profile. {We could just change the value for A a little in
the equation for the whole profile to make the value for 1, come
out right. But since least-squares fits of the entire velocity
profile are not as good as those of just the inner layer, and A is
of fundamental physical significance, it's better simply to view
as slightly erroneous the use of the entire profile.) ‘
Unfortunately, we don't know of any data good enough for the same
comparison for open-channel flow.

For 5 < puxbD/p < 60 the flow is said to be transitionally
rough. The velocity profile is still a semilog straight line for
y >> D, whether u/ux is plotted against puxy/u as in Figure 5.13
or against y/D as in Figure 5.15, and it still has the same slope
given by the universal constant A. But the position of the
straight line varies as the near-bed part of the profile changes
from the smooth-flow profile shown in Figure 5.13 to the fully
rough profile shown in Figure 5.15. For transitionally rough
flows, the law of the wall in the innermost region, where there's
some dependence on u, can't be derived in the form of a simple
equation like Equation (5.12) or Equation (5.20); keep in mind,
however, that some form of the general law of the wall for rough
boundaries (Equation 5.18) holds there nonetheless.

Figure 5.16, a combined plot of the law of the wall in smooth
and rough flows, summarizes much of what's in the last two
subsections. The three-dimensional surface in Figure 5.16, drawn
by use of Equations (5.12), (5.15), and (5.20), shows U/u* as a
function of y* and Rex. 1In smooth flows, represented by the
left-hand part of the surface, the velocity profiles don't depend
on Rex, so the surface is a cylinder whose elements are parallel
to the Re* axis. Each of the several profiles shown (which
represent intersections of the surface with planes for which
Rex = const) is exactly the same as that in Figure 5,13, In fully
rough flows, represented by the region to the right of the plane
Rex = 60, the velocity profiles depend only on y/D. To see why the
right-hand part of the surface slopes downward to the right, write
In(y/D) as In(puxy/u) - In(pu*D/y), or In y* - 1n Rex; thus, the
larger the value of Rex, the smaller the value of T/ux for a given
value of y*. Since there's no viscous sublayer or buffer layer to
contend with, the profiles are straight lines all the way down to
positions not far above the tops of the roughness elements,

You'll see in the next section that unless the y = 0 level is
chosen carefully the rough-wall profile deviates from a semilog
straight line within several grain diameters above the tops of the
grains--to say nothing of the spatial disunification of the
velocity profile that sets in below the tops of the grains. oOnly
at points on the surface well above the dashed curve that
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Figure 5.16 Combined plot of the law of the wall in smooth,
transitionally rough, and fully rough flows. See text
for explanation.

expresses the condition y = D are the profiles valid: the part of
the surface shown in the lower right is therefore useful only
hypothetically,. for displaying for you the nature of the
relationships. Finally, in the middle part of the surface the
profiles are transitional between the smooth and the fully rough
profiles. Here the lines for y* = 5 and y* = 30 shown on the
left-hand part of the surface lose their physical significance as
the viscous sublayer disappears.

Note in Figure 5.16 that at any value of y* well up in the
inner layer u/ux in any rough flow is less than u/ux in any
smooth flow, although the slopes of the profiles for the two flows
are the same at that height. This is because nearer the bottom
the velocity increases more sharply with distance from the bottom
in smooth flow than in rough flow. Subtract Equation (5.20B) from
Equation (5.15B) to find the difference in U/ux between smooth and
rough flow:
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It's easy to verify that Au/ux is indeed always positive for any
fully rough flow: B is about 5 and B' is about 8.5 (see above),
and since puxD/y > 60, In(puxD/u) is always greater than about 4.

A conventional additional step that's taken with Equation
(5.20A) is to write B' in the form -A 1ln(yo/D)., where the quantity
Yo. wWith the dimensions of length, is called the roughness length
(Outdoors fluid dynamicists like meteorologists take the
normal-to-boundary coordinate direction to be z, so they deal with
Zo: NOt Yo.) This allows B' to be completely absorbed into the
log term in Egquation (5.20A):

2 = A ln-x~" Aln —
u, D

(5.21)

By the definition of the natural logarithm, ys can be written in
terms of B' as yo = D exp{(-B'/a).

If the flow is only transitionally rough, y, is a function of
puxD/u, as is B'. If the flow is fully rough, however, Yo is
1ndependent of puxD/u for the same reason that B' in BEquation
(5.20A) is independent of puxD/u. Don't confuse y, with the
actual roughness height D: for a given geometry of roughness in
fully rough flow yo is proportional to D (for close-packed uniform
sand-grain roughness y, = D/30) but the proportionality
coefficient varies with roughness geometry.

Setting y equal to ys in Equation (5.21) gives u/ux = 0. So
another way of looking at ys 1s that it's the height at which the
velocity would become zero if the logarithmic rough-wall equation
for the velocity profile could be extended down to that height.
It's important to remember, however, that Equation (5.21) becomes
inapplicable far above that position, which is nestled in amongst
the grains. In fact, we'll see below that Equation (5.21) has to
be corrected at positions even well above the tops of the grains.
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Inner Layer Not Far Above the Grains

Wwe still haven't considered the lowermost part of the inner
layer, not far above the tops of the grains. For sand-size bed
roughness this region isn't much more than a few millimeters
thick, but for water flowing over gravels or for wind blowing over
large ground-surface roughness it may be decimeters or even
meters thick, and no sophisticated, miniaturized velocity meters
are needed to include it in measured velocity profiles. At
positions this close to the bed there's a troublesome problem
we've avoided up to now: where's the origin for y? It seems
reasonable to suppose that the y = 0 level lies somewhere between
the bases and the tops of the surface particles. A natural choice
would be the average surface elevation--the spatial average of the
heights, normal to the mean plane of the bed, at which a solid
surface is first encountered in descending onto the bed. You'll
see, however, that this doesn't produce the best fit of velocity
to Eguations (5.20) or (5.21). And it's not a very practical
choice anyway. With close-prcked granular roughness, the plane
through the tops of the grains (which itself is not very well
defined) is usually taken as the y = 0 level for velocity
measurements.

For a given dimensionless distance y* from the boundary, a/ ux
is not the same in rough and smooth flow, because the second term
on the right side of Equation (5.19) always has a value different
from B in Equation (5.15A). But the shape and slope of the
velocity profile are the same: if you differentiate Equation
(5.19) for the rough-flow velocity profile with respect to y, you
get

Au
- (5.22)

2|8
|

which is exactly the same as Equation (5.13) for flow over a
smooth bottom. You might expect, however, that at positions
closer down to the tops of the grains, the grains have some effect
on the shape as well as the position of the velocity profile,
making the shape different from the smooth-flow case. In other
words, when y is not much greater than D, the velocity gradient
depends not only on 1o, p, and y but also on D: du/dy = f(1o. o,
y, D), or in dimensionless form (cf. Equation 5.13),

(y/u+)dd/dy = £(D/y). It's convenient to extract the same
constant A from the function on the right, so that the effect of
proximity to the bed grains can be viewed as a correction function
by which the right side of Equation (5.22) must be multiplied:
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There's no simple way of dealing with the physics behind the
correction function f£(D/y) in Equation {(5.23). The only thing we
can say with certainty is that as y gets smaller (and D/y gets
larger)} the correction gets larger. To investigate the
correction function further we can expand it as a power series in
p/y (Monin and Yaglom, 1971; remember that any function can be
approximated in this way by an appropriate power series.)
tquation (5.23) can then be written

— Au 2 )
v Ty ra2y b(ﬁ) + o (5.24)
dy Y Y Y

As the bpoundary is approached from above, and the correction gets
larger, the term aD/y, the dominant term while the correction is
still small, gets less important relative to terms of higher order
in D/y. 1In the following we'll consider only positions higher
than one to two diameters ‘above the tops of the roughness
elements. (Measurements are seldom made closer to the bed anyway,
because to get a representative value for the mean velocity a
large number of profiles must be taken at different places
relative to the roughness elements and then spatially averaged.)
To conform to the usual practice in dealing with the

grain- moximity correction we have recast Equation {(5.24) into

a slightly different form by introducing a new variable y-y1 for
the vertical coordinate, where yj is a small constant that's in
the same ballpark as D itself. We also need the following
algebraic identity:

re () - PRl - )

where y is some variable and ¢ is a constant. Then, replacing 1/y
in Equation (5.24) with the right side of the identity above and
letting the constant be yj,
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Neglecting terms of order higher than 1/y on the right side,
Equation (5.25) becomes

- Au aD - vy

du * 1

Wwe're at liberty to adjust the definition of y1 at the outset in
such a way that y] = aD; then Equation (5.26) becomes

CE_E_ Au*

5.27
dy y - yl ( )

Equation (5.27) can be integrate

rough- flow equivalent of Equati

d in the same way as the
Eguation (5.20),

on (5.13) to be in the same form as

y = ¥y
[}
) + B

o
‘G"; = A 1In (5-28)

and Equation (5.28)

can be manipulated into the same form as
Equation (5.21). with yo and no

separate constant of integration,

Y"Yl

Y - aAln (5.29)
Uy YO

(See Appendix 4 for details.)

Equations (5.28) and (5.2
dealing with the correction fu
Equation (5.23).

small quantity VY

9) are the conventional way of
nction £(D/y) that appears in
shifting the origin of the Y coordinate by the
1 usually straightens out the velocity profile in
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a semilog plot down to positions not far above the tops of the
roughness elements. What's commonly done with wind-velocity
profiles above the iand surface is to take y = 0 at the base of
the roughness elements--the ground on which the observer is
standing--and then find the value of y; which when subtracted from
y gives the best straight-line fit of data to BEquation (5.29).

The distance y; (often denoted by d) is called the displacement

height or the zero-plane displacement. The situation is a little

different with close-packed granular roughness, which is of
greater interest here: wusually the velocity profile is measured
with respect to the tops of the grains, and then the apparent
origin for y is lowered to produce the best straight-line fit to
gquation (5.29). (The plane through the tops of the grains isn't
ideally well defined, but it's impossible to define a dynamically
natural plane that represents the bases of the grains in a full
bed of loose sediment.) So the value of yj depends not only on
the physics of the problem but also on the y origin chosen at the

outset,

To see whether Equation (5.29) represents the velocity
profile well, consider an actual example of a measured profile.
profile A in Figure 5.17 shows one of the original velocity
profiles measured by Nikuradse (1933) in his classic experiments
on flow resistance in sand-roughened pipes. (You might object
that sedimentologists aren't much interested in pipe flow, but
remember that the law of the wall holds just as well in
sand-roughened open channels as in sand-roughened pipes.) Profile
A shows U vs. 1n y for a flow with a cross-section mean velocity U
of 5.75 m/s through a pipe with diameter 0.1 m onto which uniform
0.4 mm sand had been glued (Nikuradse, 1933, Table 10, Column 7y.
The flow was fully rough, the boundary Reynolds number being 154,
and the value of about 125 for the ratio of pipe radius to grain
diameter is comfortably within the range for which there’'s a zone
with y > D and y/r << 1 at the same time. The origin for y is
taken here at the tops of the grains.

From the preceding section on the outer part of the inner
layer, far above the grains, you should expect the profile to be a
straight line for y >> D and y/r about 0.2 or less. 1In Profile A
in Figure 5.17 only a few points, from Point 3 out to Point 6,
meet these conditions. Because of the way y] enters into
Equations (5.28) and (5.29), changing the origin by yj; shifts the
points more and more as the bed is approached. So it should be
possible to find a value for y; that shifts Points 1 and 2 onto to
the extension of the straight line that can be passed
approximately through Points 3 through 6. We hunted by trial and
error for the value of y] that produces the best straight-line fit
(in a least-squares sense) to the curve of T vs. ln y for Points 1
through 6, which extend up to a height y/r = 0.2. The value of yj3
that produces the best straight line is 0.26 mm. So the new
origin is below the tops of the grains by 0.26 mm, or about half a
grain diameter. For a wide variety of roughness geometries, this
distance has been found to be between 0.2 and 0.4 roughness diame-
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Figure 5.17 velocity profile measured by Nikuradse (1933) in
a sand-roughened pipe. A. Raw profile of u vs. In y, .

based on points out to 90% of the pipe radius toward the
center line. B. The same profile after the origin for y
i shifted a distance y} of 0.21 mm (=~ 0.5D) toward the
boundary, producing the best least-sguares straight-line
£it of the lowermost six points of the velocity profile,
up to 20% of the pipe radius. The solid circles in B
are corresponding points transferred directly from A.

ters below the tops of the roughness elements (Jackson, 1981).

For this value of yi, the velocity profile is as shown in Figure
5,17B. You can see that the profile becomes almost a straight
line. Using the independently measured value of ux for this
profile the constant A comes out to be 2.44, within the range of
accepted values. 1f the same thing 1s done using all the profile
points up to 90% of the pipe radius, about as good a straight line
is obtained but the value for A is higher, 2.49.

Wwe're fooling you a 1ittle here: when the other fully rough
profiles taken in the very same pipe are considered, values for A
range from 2.31 to 2.57, and y1, which igs especially sensitive to
errors in velocity measurement , ranges from almost zero to twice
the roughness diameter. When the measured points in all three
profiles are lumped together, however, A comes out to be a
respectable 2.43 and y1 comes out to be 0.26 mm, again putting the
new origin a little below the tops of the grains. This serves as
a reminder that unless your profiles are based on a lot of
accurately measured points, the results for any one profile can be
misleading when used to find 1o, as described in the next
section.
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The physical significance of the displacement height y) has
~jever been clear. There's some experimental evidence that the
neight y] above the origin is the level in the flow at which the
~oundary shear stress Tg appears to act (Thom, 1971). The
nworizontal component of the force per unit area the flow exerts on
its bed has not only a magnitude but also a line of action. 1In
sther words, 1if we could measure To with enough accuracy and
jetail we would £ind that it appears to act on sone plane parallel
co the bed. (Presumably this plane would lie somewhere between
the bases and tops of the roughness elements.) Choose an
arbitrary plane above or pelow the bed and find the moment M per
unit bed area assoclated with the force 1o per unit bed area.
nividing M by 1o gives a quantity with the dimensions of length,
and this length is just the distance above or below the arbitrary
olane at which 1o acts. Jackson (1981) reasons that this distance
is none other than the displacement height yi.

Using the Law of the Wall to Find 1o

An important practical reason for measuring mean-velocity
profiles, in addition to finding the crogs—-section mean velocity
U, is to obtain the bed shear stress T14. The first thing to
remember is that, as will become ¢lear when you reach Equation
(5.30) below, you can't obtain both A and 1o from a measured
profile, no matter how good the profile is; all you get 1is the
product Aux. If you have a trustworthy independent measurement of
15 you can get your own estimate of A by looking at the slope of
the velocity profile in the outer part of the inner layer, well
above the tops of the roughness elements. If no sediment is in
motion on or above the bed, then your estimate should be close to
2,.5. But if 15 is what you want but don't have, you must assume
the accepted value of 2.5 for A and use the slope of the profile
to obtain 15. It doesn't make any difference whether the flow is
smooth or rough, because the slope of the wall-law profile in the
outer part of the inner layer is always the same.

An important note of caution: the value of the constant A
seems to change when sediment is being transported--although the
nature and magnitude of the change is still a matter of debate
(Coleman, 1981; Gust and Southard, 1983). Unfortunately,
therefore, obtaining 1o from the velocity profile when the flow is
transporting sediment is a less straightforward matter than
outlined below for an immobile sediment bottom.

The easiest way to find 1o, alias ux, is to use the
differential form of the law of the wall, (y/ux)dli/dy = A, which
holds for both smooth and rough flows (Equations 5.13 and 5.22).
plot T against ln y, and from that graph find the slope du/d(ln v}
of the straight-line part of the law of the wall in the outer part
of the inner layer. By the chain rule
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so Equations (5.13) and (5.22) can be written

du/d du/d(ln y) \
a, = ¥ d /ay /A Yy (5.30)

(Be careful about the base of the logarithms. If you want to work
with logs to the base ten, A is larger by the factor 2.3, This is
why you often see the value 5.75 instead of 2.5 for A in
fluid-mechanics textbooks.) An example of finding 15 from a.
measured wall-law velocity profile is given in Appendix 5.

Aside from the practicalities of measuring a good velocity
profile (see the later section on field measurements), you have to
make sure that there actually is a straight—-line outer part of the
inner layer. This means that D/d, the ratio of roughness height 'D
to flow depth d, must be small enough for you to work with a range
of y such that two conditions hold at the same time: y << a {y/a
less than, say, 0.2-0:3), and y >> D (this latter requirement can
be made less stringent by choosing y = 0 so as to extend the
straight-line part of the wall law as close to the bed as
possible, as described above in the discussion of the displacement
height yi)-

1n addition to finding 1o (and also the displacement height
y] as a byproduct) there are three other things you might want to
£ind from your velocity profile: (1) the roughness length Yo \
(Equations 5.21 and 5.29); (ii) the constant B' (Equations 5.20 ‘
and 5.28); and (iii) the equivalent sand roughness kg, obtained by
using the conventional value of 8.5 for the constant B' in
Equations (5.20) and (5.28}; this value corresponds to the
reference case of a glued-down monolayer of subrounded and almost
single-size sand grains, studied by Nikuradse (1933). Details are
given in Appendix 6.

Velocity-Defect Law

Now look at the velocity profile in the outer layer. There
the velocity is most naturally specified relative to that at the
free surface, because we've seen that the inner layer, with a
different relationship for the velocity, intervenes between the
outer layer and the bottom boundary. In other words, if we look
at the velocity relative to that at the surface we don't have to
worry about how the velocity is anchored to the bottom through the
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inner layer. So instead of U we use Ug-u, called the velocity
jefect, where Ug is the surface (i.e., maximum)} velocity.

I1f you go back and review the discussion in the section on
inner and outer layers you'll see that the structure of the
turbulence in the outer layer should depend on 15, o, Y. and 4,
put not on u, for the same reason that the velocity profile in the
turbulence-dominated part of the inner layer doesn't depend on u.
Since this is true from the free surface down to the bottom of the
outer layer, and Ug-u characterizes the velocity relative to the
free surface rather than the bottom, not just the velocity
gradient du/dy {(as in the turbulent part of the inner layer) but
also Ug~u itself is independent of u. “Pfurbulence structure and
Ug~U shouldn't depend on D either, provided that D << d. So the
general form of the velocity-defect profile is

U, - U= flrg, e ¥r @ . (5.31)

or in dimensionless form

U - u -
s . .y._) )
™ £ (d (5.32)

The dimensionless velocity defect depends only on the
dimensionless height above the bottom. This relationship for the
velocity profile in the outer layer is called the velocity-defect
law. We'll defer further discussion of velocity profiles in the
outer part of the flow until the following section, where an
examination of the region of overlap between the inner and outer
layers affords further insight into the form of the velocity-
defect law.

The Overlap Layer:; More on the Velocity-Defect Law

One more matter to consider in this exposition of velocity
profiles has to do with the overlap layer, where at sufficiently
high mean-flow Reynolds numbers the conditions defining the inner
and outer layers hold simultaneously; we refer you once more to
the earlier section on inner and outer layers. This overlap layer
is far enough from the bottom that the flow structure is
independent of both viscosity and the characteristics of the
bottom roughness but close enough to the bottom that the flow
structure is independent of the flow depth. Here the inner-layer
and outer-layer velocity profiles must match--that is, the
velocities U given by the law of the wall and by the
velocity~-defect law at any level in the overlap layer must be the
same. The upper limit of the overlap layer igs at the top of the
inner layer. In smooth flow the lower limit is at the top of the
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puffer layer. With regard to the lower limit in rough flow,
presumably the velocity~defect representation of the velocity
profile, which looks downward from the free surface and can ignore
the details of the Dbottom roughness, must start to break down when
it reaches the lower part of the inner layer, where you've seen
that the roughness causes the inner-layer profile to curve away
from a semilog straight line. (But you won't f£ind much discussion
of this point in the literature.)

The constraints imposed by the matching requirement on the
form of both the wall law and the velocity-defect law in the
overlap layer were first perceived by Tzakson (1937) and Millikan

(1939). One way to show the consequences of the matching is to
equate the velocity gradients dua/dy given by the outer-layer
profile and the inner-layer profile (see, e.g., Tennekes and

Lumley, 1972, p. 153-155). Differentiate with respect to y the
profile given by Equation (5.32) in the outer layer to obtain
du/ay,

- u af
du * 1 (5.33)

i = = F daly/d

(remember the chain rule), and also the profile given by Equation
(5.8) for smooth flow or by Equation (5.18) for rough flow in the
inner layer,

2

- pu df

du _ __* 2 (5.34)
dy Y dlpu,y/w

The functions on the right in Equations (5.33) and {5.34) have
veen distinguished here as fi1 and f9 to keep them straight,
although we'll see in a moment that in fact they're the same. Set
the expressions for du/dy in Equations (5.33) and (5.34) equal and
multiply by y/ux:

af PULY daf

_Y 1. 2 5.35
d dly/4} ! d{pu,y/w) ( )

The left side of Equation (5.33) is a function only of y/d and not
ouxy/u, and the right side is a function only of pury/u (and also
pusxD/u, for rough flow) but not of y/d. The only way these two
statements can be true at the same time is for both sides to be
equal to some constant; we'll call this constant A. You'll see
presently that this is the same as the constant A in the law of
the wall. Each of the resulting equations can be integrated, the
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first with respect to the variable y/d@ and the second with respect
+o the variable puxy/u (for clarity and economy we'll call these
two variables gqi and d3. respectively):

af, Uswﬁ dq, v

Pl = P - [ 4 -

jdql dq, f(ql} ™ qul A ln g cq A ln-§-+ ¢y (5. 36)
e = B — X e T + = A + .
&, dq2 f(qz} T A I A ln g, C, T c, ( )

where ¢] and ¢ are constants of integration.

First examine FEquation (5.37) for the inner-layer profile.
1+ holds for both smooth flow and rough flow, because the ‘
expression for du/dy in Equatiocn (5.34) holds for both. It's the
same as Equation” (5.15) for smooth flow if ¢y is identified with
B, and it's the same as Eguation (5.20) for rough flow if cg is
identified with f(ouxD/u); in the former case cp is really 4
constant, and in the latter case it's a function of ouxD/u,
wecause the integration is in fact a partial integration. 1In both
cases this exercise shows in a different way that the law of the
wall in the turbulence-dominated part of the inner layer has to be
logarithmic. ‘

Now look at Equation (5.36), for the outer—layer profile in
the overlap layer, the end result being

{5.38)

This is just a specialization of the velocity-defect law given by
Equation (5.32). It holds only in the overlap layer, up to y/d
values that correspond to the top of the inner layer; keep in mind
that this extends no more than about 20% of the way from the
pottom to the surface. Equation (5.38) shows that in the overlap
layer--~but not farther out, beyond the inner layer--the
velocity-defect law too is of logarithmic form. The overlap layer
is often called the logarithmic layer, because in it both the wall
1aw and the defect law are logarithmic.

(A slightly different way of matching inner-layer and
outer-layer velocity profiles in the overlap layer, leading to the
same result as above, is to add the two profiles given by
Equations (5.18) and (5.32), differentiate the resulting equation

twice, once with respect to puxy/u and then with respect to v/d,
solve the resulting differential equation to get the law of the
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wall, and then compare this solution to the original equation ob-
tained by addition to get the logarithmic form of the velocity-
defect law in the overlap layer. See Appendix 5.) Figure 5.18
shows velocity-defect profiles on flat plates and in pipes, wide
planar ducts, and open channels. The open-channel data, from
Coleman (1981), are for a width-to-depth ratio of only about 2,
pbut we could find no better data; the scarcity of good published
data on complete velocity profiles from surface to bottom in stea-
dy uniform open-channel flows at large ratios of width to depth is
amazing. In each graph in Figure 5.18 the data points define a
gingle curve that holds for a wide range of mean flow Reynolds
numbers, indicating that our assumptions about the controls on
velocity and turbulence in the outer layer are justified. In each
graph there's a well defined straight-line segment for fairly
small y/d corresponding to Equation (5.38). Toward the position
of maximum velocity at y/d = 1 the profile breaks away from the
semilog straight line to reach the point (Ug-d)/ux = 0 at the po-
sition of maximum velocity. The velocity farthest from the solid
boundary is thus greater than that given by the extension of Equa-
tion (5.19), which holds in the logarithmic part of the outer lay-
er. The different intercepts of these gstraight lines with the
right-~hand vertical axis in Figure 5.18 reflect different values
for ci in the three cases.

The differing shape of the outer part of the velocity-defect
profile in different geometries of flow is to be expected because
of differing physical effects in the movement and geometry of
large eddies in the region of the flow farthest from the solid
boundary. Since the outer edge of a freely growing turbulent
boundary layer is highly irregular in shape (Chapter 3), at any
point near the outer edge passage of larxge turbulent eddies alter-
nates with passage of nonturbulent fluid, so the efficacy of tur-
bulent momentum exchange is less and the velocity gradient corres-
pondingly steeper than in regions closer to the boundary: this
presumably explains the large divergence of the profile from the
semilog straight~line segment in Figure 5.18A. 1In pipes and pla-
nar ducts the similar but smaller divergence might be explained by
the free passage of large eddies across the centerline or center
plane from the opposite side of the flow. In open-channel flow a
similar effect might be produced by fiattening of large eddies mo-
ving toward the free surface. The meager data from open channels
suggest an effect similar in magnitude to that in pipes and planar
ducts, or perhaps even smaller. There seems to be no reason to
expect a perfectly logarithmic profile all the way to the free
gsurface, but the deviations clearly are insubstantial, at least
for practical work. .

Note that as a consequence of the matching of inner and outer
velocity profiles the coefficient A of the log term in the velo-
city-defect law in the overlap layer, Equation (5.38), is exactly
the same as the coefficient A in the law of the wall smooth or
rough (Equations 5.15 and §.20). This constant A, which as noted
earlier is a reflection of the nature of turbulent momentum trans-
port in the inner layer, is usually written 1/x, and « is called
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Figure 5.18 Velocity-defect profiles: plots of (Ug=0) /u*
vs. y/d in boundary-layer flows with four geometries:
A, flat plate; B, circular pipe; C, wide planar duct; D,
opan channel. After Monin and Yaglom (1971; various
sources) and Coleman {(1981). Straight lines with slopes
of -A (=-1/k) are fitted to points for y/d < 0.2,

von Karman's constant. Thus, « has a value very nearly 0.4. (The
reason A is written as 1/« is historical, not fundamental.)

You'll see values other than 0.4 cited, because the accuracy with
which A is known is not ideal, being dependent upon fitting mea-
sured profiles to the equations. Also, you should expect a weak
dependence of « on the mean-flow Reynolds number. The exact value
of ¢ and its variation with Reynolds number have been controver-
sial (see, for example, Simpson, 1970; Huffman and Bradshaw,
1972). The variation of k with the concentration of sediment in
transport--an even more controversial matter--is discussed in
Chapter 6.

Summary on Velocity Profiles

This section summarizes the preceding three sections; you
might as well skip it if you're satisfied with what you got out of
those sections. If not, then before reading it you might review
the earlier section on inner and ocuter layers.

Remember that we're concentrating on high-Reynolds-number
flows over physically smooth surfaces or granular sediment beds
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whose size is far smaller than the flow depth. When the bottom ig
physically smooth, the profile of velocity as a function of
distance above the bottom in the inner layer depends on 15, p., and
¢ but not on 4, so

e u
T " *Y) (5.39)
U

This relationship, called the law of the wall, is in two parts.
In the viscous sublayer adjacent to the bottom, where viscous
shear stress predominates over turbulent shear stress, T doesn't

depend on p, so @ = f(15, u, y), or in dimensionless form,
ua/ 1oy = const. In terms of ux and with some rearrangement, this
can be written W/ux = const(puxy/u). The constant here can be

shown to be unity by going back to Equation (1.22) for the
velocity profile in a laminar open-channel flow and neglecting the
quadratic term because y igs small near the boundary. Then the law
of the wall in the viscous sublayer becomes

LUy
u

(5.40)

*ﬂ‘-lﬁi
{

Equation (5.39) can be specialized for the
turbulence-dominated part of the inner layer by use of the fact
that du/dy doesn't depend on u there, because the shear stress and
therefore the velocity gradient depends on turbulent rather than
viscous momentum exchange. So dG/dy = £(15., o, Y), Or in
dimensionless form (y/ux)dd/dy = A, where A is a fundamental
constant that expresses the nature of the turbulent momentum
exchange. Integrating with respect to vy,

=Alny + & (5.41)

e

where A} is a constant of integration. By writing Ay as

A In(pux/y + B), Equation (5.41) can be put into the form of the
law of the wall, Equation (5.39):

O PULY
M. = A ln + B (5.42a)
Uy U
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This is the law of the wall for a smooth bottom outside the
viscosity-influenced layer adjacent to the bottom. It shouldn't
surprise you that p appears explicitly here, because u itself
must depend on u even though du/dy doesn't: the velocity at the
pase of the turbulence-dominated part of the inner layer depends
on the velocity at the top of the viscous sublayer, which in turn
depends on p. With commonly used values for A and B, Equation
{5.423) becomes

PULY '
+ 5.1 (5.42B)

8 - 2.5 1n
Uy

For values of gu*y/y in an intermediate range of about 5 to 30
the velocity profile grades smoothly from that given by Equation
(5.40) to that given by Equation (5.42); this is the region we
earlier called the buffer layer.

When the bottom is rough the velocity profile in the inner
layer depends not only on 15, p, u, and y but also on the size,
shape, and arrangement of the roughness elements. Assume that
D << d, so that the distinction between the inner layer and the
outer layer is valid in the first place, and assume further that
the bottom is covered with rounded and well sorted grains. Then

a = fl1g,s 0+ U4 Yo D}, or

PULY pu*D)

u_
’-ﬁ:—" f(i—l t 1 (5-43)

Equation (5.43) is the most general form of the law of the
wall for granular-rough boundaries. To see what specific form it
takes, we have to worry about two important matters. First,
what's the size of the grains relative to the thickness of the
viscous sublayer (which is proportional to the viscous length
scale p/pux)? If the ratio of D to u/pux is very small (puxD/u
less than about 5), the grains are embedded in the viscous
sublayer and have no effect on the velocity profile. The profile
is the same as if the boundary were physically smooth, and the
flow is said to be dynamically smooth even though physically
rough. But for large values of D relative to yu/pux (pusD/u
greater than about 60), viscous forces on the boundary are
negiligible, the velocity profile doesn't depend on u, and the
flow is said to be dynamically rough as well physically rough.

Tn the intermediate range of puxD/u, u can't be neglected, and
the flow is said to be transitionally rough.

Second, what's the value of y relative to D? Far above the

grains, for y »> D, the turbulence structure depends only on
local dynamics, and is independent of the turbulence shed by the
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ped grains, whereas for y not much greater than D the velocity
profile is strongly influenced by the turbulence shed by the bed
grains. 8o we have to consider the inner layer in two parts.
(Even closer to the bed, within a grain diameter or two above the
grains, the velocity profile depends on position relative to the
individual bed grains.)

High up in the inner layer neither u nor D affects the
velocity gradient aw/dy. So we can again write
au/ay = £l1o, oo y) and integrate to obtain Egquation {5.41), Jjust
as for smooth flow. The constant A 1is +he same, because it
expresses the nature of vertical ryrbulent momentum transport far
above the bed, and that's the same as in smooth flow. The
constant Al is 3ifferent, howevel, pecause it depends on how the
velocity profile connects with the boundary, and that's different
in smooth and rough flow.

Equation (5.41) can again be put into the form of Equation
(5.42A ), but now, by comparison with the form of the law of. the
wall for rough flow (Equation 5.43), B must be a function of
puxD/u:

¢

o 0uLY pugD
= = A ln + f (5.44)
U, H H

This can be made more useful by splitting f(pouxD/u) into two
parts, -A in{puxD/u) + B', where ' is just a different function
of puxD/u. Then Equation (5.44) can be written

= A In %Jr B! (5.45)

£l

In fully rough flow B' is a constant, which for a glued-down
monolayer of well rounded and almost single-size grains is about
8.5. So the law of the wall for dynamically rough flow over
granular»rough poundaries is

U . 2.5 ln %+ 8.5 (5.46)
T, 5)

some points about Equation (5.45): (i) B’ is different for
other roughness geometries owing to differences in sorting and
arrangement Of surface roughness elements. Commonly the value of
8.5 is nonetheless retained for B', and D is taken to be the
Ffictitious diameter of single-size grains in a uniform monolayer
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_wat makes Equation (5.45) fit the data best. That size is
lalled the equivalent sand roughness kg. (ii) Equation (5.45)
shouldn't be expected to hold outside the inner layer--something
Lixe the lowermost 20% of the flow depth--but in both open
-hannels and closed ducts it fits the velocity profile without
qreat error all the way to the free surface or pipe centerline,.
7{ii) For transitionally rough flow the velocity profile is still
4 semilog straight line outside the near-bed layer of wviscous
influence, but the equation for the profile is not so simple
~ecause B' in Equation (5.45) is a function of the boundary
reynolds number rather than being a constant. (iv) By writing
3¢ = -A In{yo/D) Equation (5.45) can be put into the equivalent
form

4 _and (5.47)
U, Yo

where ys is called the roughness length. Like B', yo is a
function of the boundary Reynolds number for transitionally rough
flow but is a constant for fully rough flow. For close- packed
uniform sand-grain roughness, yp is found to be approximately
n/30.

In the lower part of the inner layer (but above the zone of
spatial disunification of the velocity profile within one or two
grain diameters above the tops of the grains) the grains should
ve expected to have an effect on_the gradient as well as on the
magnitude of the velocity. So dG/dy depends not only on tg, o
and y, as in the outer part of the inner layer, but also on D.
Tn dimensionless form, {(y/ux)di/dy = f(D/y). From the function
on the right we can extract the same constant A as before,

ag _ 2+ f(_1_3_> (5.46)

so by comparison with the expression du/dy = Aux/y obtained by
differentiating Equation (5.44) the effect of proximity to the
bed grains can be viewed as wrapped up in a maultiplicative
correction factor f£(D/y). Upward f£rom the bed £(D/y) gets
smaller and eventually becomes negligible.

The way the correction function £{D/y) is usually handled is
to shift the origin for y up or down by trial and error until the
profile expressed by Equation (5.45) comes out closest to a
semilog straight line. {(You might expect the most natural origin
+o lie somewhere between the tops and bases of the grains, but
the best choice is not immediately obvious.) You can look at
this from the standpoint of the derivative du/dy in the equation
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du . T (5.49)
dy -y — Yy

where y1, called the displacement height oOr the zero- plane
displacement, usually puts the best origin for y a short distance
below the tops of grains, something like 25% of the grain
diameter. It's shown in the preceding main text that the
introduction of yp in Equation (5.49) is eguivalent toO keeping
just the linear part of the correction function £(D/y) in
Equation {5.48). There seems to be a good physical reason why
things work this way: the height yj; above the origin seems to be
the level in the flow at which 1o appears to act. (Remember that
the drag component of 1o has not only a magnitude but also a line
of action.)

Now consider the outer layer. Tf we look at .the velocity
relative to that at the free surface we don't have to WOrry
about how the velocity profile is anchored to the bottom through
the inner layer. Then the velocity defect Ug-u, the difference
petween the velocity at the free surface and that at a distance ¥y
above the bottom, shouldn't depend on u. Neither should it
depend on D, so long as D << d. So Ug-u = fl1o, p. ¥ d), or

U - u

%;m—n £ (é’a_) (5.50)

Equation (5.50) is called the velocity-defect law.

Remember that so long as the mean— flow Reynolds number is
large enough there's an overlap layer where the conditions
defining the inner and outer layers hold simultanecusly. This
overlap layer extends upward from the top of the buffer layer to
the top of the inner layer, which depending on conditions is 10%
to 20% of the way up through the flow. Here the velocity profile
given by the wall law and that given by the velocity-defect law
must match, because they're equivalent ways of expressing the
velocity. A consequence of this matching (see an earlier section
for details) is that within the overlap layer the velocity~defect
law is of semilogarithmic form Wwith the same constant A:

U - u

= -A ln.%%-% c (5.51)

Uy 1

For this reason the overlap layer is also called the logarithmic
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layer. Above the overlap layer the velocity-defect law shouldn't
be expected to be logarithmic, although in both pipe flow and
open~-channel flow the deviations from logarithmic form are not
substantial.

Effects of Roughness Height and Spacing

It's in some ways horrifying to sit back and consider that
just about everything said so far about velocity profiles is
limited to the case of sediment—free flow over close-packed
granular roughness whose size is a tiny fraction of the flow

depth. Except for threshold of movement on a planar sediment
bed, most problems in sediment transport go beyond this limited
case: sediment is moved on or above the bed, thereby altering

the turbulence structure in certain fundamental but poorly
understood ways, and the bed is often molded into bed forms whose
dimensions are orders of magnitude larger than the particle size
and often a sizable fraction of the flow depth. In these
important cases, velocity profiles have not Dbeen nearly as well
studied. The discussion in this section emphasizes mostly the
qualitative effects to be expected as the roughness height .
increases relative to the flow depth and as the roughness spacing
increases relative to roughness height.

Figure 5.19 summarizes the changes in velocity profile as
the size of close~-gpacked granular roughness increases relative to
flow depth. In Figure 5.19A the sediment is so small {or, more
precisely, the roughness Reynolds number puxD/y is so small) that
the sediment is embedded in a viscous sublayer, and the flow is
dynamically smooth. In Figure 5.19B the sediment is larger and
the flow is dynamically rough, but the sediment size is still so
small relative to the flow depth that there is a well developed
outer layer beyond the overlap layer in which the velocity-defect
profile expressed by Equation {(5.32) holds but the inner-layer
profile expressed by Fquation (5.20) does not. These first two
cases are covered by the preceding detailed treatment of velocity
profiles,

in Figure 5.19C, as the ratio of flow depth to grain size
decreases still further, the distinction between inner and outer
layers begins to be blurred, and eventually a situation is
reached where the entire profile, from bottom to free surface, is
affected by the details of the roughness. The whole profile then
looks like just the lower part of the wall-law profile in flows
with very large values of d4/D. This effect begins to become
appreciaple at d/D values of something like 10 to 15.
Fortunately it seems that even in this situation the law of the
wall for rough flow represents the velocity profile fairly well
through the entire flow depth provided that the origin is
adjusted by an appropriate displacement height, as in Equation
(5.28), although experimental evidence on this point is scanty.
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Figure 5.19 Changes in velocity profile as the size of
close-packed granular roughness increases relative to
flow depth.

As d/D decreases, an increasingly large fraction of the
total flow depth is occupied by the zone of the flow (within one
or perhaps two grain diameters above the tops of the bed grains)
where the velocity profile is spatially disunified in the sense
that it varies with position relative to the layout of the
grains. As shown in Figure 5.19D in exaggerated form, for a/D
values below about 2 or 3 most or all of the velocity profile is
spatially variable in this way. 1It's not well known whether the
inner-layer representation of the velocity protile after
adjustment by the displacement height breaks down before this
stage of total disunification is reached.

What happens as d/D decreases further (Figure 5.19E) depends
on the value of the mean-flow Froude number U/(gD)!/2. (For full
appreciation of this point you'll have to jump ahead to the

section on subcritical and supercritical flow in Chapter 7.) For
Froude numbers close to or greater than one (i.e., for
supercritical or nearly supercritical flow}. the free surface is

strongly deformed by the presence of the grains just below the
surface; think of a shallow fast-flowing mountain stream with a
bed of cobbles and boulders. For the same very small d/D but low
Froude numbers, however, the grains sit just beneath a relatively
placid water surface, or in the extreme case project above the
surface as islands.
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Figure 5.20 is a cartoon showing the changes in the
zzructure of the flow as the roughness spacing decreases relative
-> the roughness height. Start with a physically smooth and
~.anar bottom; the flow is dynamically smooth, and y = 0 is
wzturally taken at the planar bottom. Now take a set of
--~uaghness elements whose heights are a very small fraction of the
i.ow depth and begin to place them either randomly or in a
v:zgular pattern on the bed. The elements could be three-
iimensional bluff bodies or two-dimensional ridges transverse to
zne flow; the effects are qualitatively the same, at least until
-me ratio of spacing to height becomes very small.

Provided that the roughness Reynolds number (based on the
weight of the roughness elements being added) is sufficiently
lzrge, each element creates a wake as the flow separates around
= From the discussion of flow separation in Chapter 3 you can
ee that the flow structure downstream of each roughness element
‘15 very complicated: the smooth- flow boundary layer is
nrofoundly modified by the development of a highly turbulent
snear layer that extends downstream from the separation point.
Downstream from each element the flow gradually readjusts toward
the boundary~layer structure that would exist in the absence of
roughness; the wakes shed by the elements are said to relax.

This readjustment or relaxation takes the form of a new lowest
tayer of the flow, expanding upward at the expense of the
curbulent shear layer, im which a turbulence-dominated wall-law
profile is established in just the same way as in a boundary
layer growing on a flat plate. It takes a surprisingly large
numpber of element heights downstream, something of the order of a
nundred, for the process to be completed, whereupon the local
structure of the flow shows no trace of the presence of the
roughness element upstream and the wall-law layer extends without
interruption from the planar bottom up into the region of the
flow far above the level of the tops of the large roughness
elements. The case of low roughness Reynolds numbers is of less
interest here, because then the elements are embedded in a
viscous sublayer, but in that case also a deficit in fluid
momentum is created downstream of each element even though the
flow doesn't separate, and this deficit is ironed out downstream
by viscous shear until the original viscosity-dominated velocity
profile is reestablished.

[

If the roughness elements are sufficiently far apart (Figure
5.20A) each has a long wake extending downstream, but the flow is
able to return to normal before it encounters the next roughness
element. This is called isolated-roughness flow (Morris, 1955).
The velocity profile measured above a given point on the bed
depends on the position of that point relative to the wakes
behind the elements. You'd have to measure a large number of
profiles and average them spatially to obtain a profile that
represents the entire flow. Compared with the original
smooth- flow profile before emplacement of any roughness elements,
the spatially averaged profile shows a deficit of velocity within
one or two roughness heights of the bed.
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Figure 5.20 Changes in flow structure as roughness spacing
decreases relative to roughness height.

The spatially averaged boundary shear stress Tg is still
dominantly viscous, as in the absence of roughness elements, but
the contribution of pressure drag to 7o increases with the
roughness density. The flow could now be termed transitionally
rough, although in a rather different sense from the use of that
term in flow over close-packed roughness in earlier sections.
Note also that the original flow, before emplacement of roughness
elements, can itself be dynamically rough, if the bottom is
covered with close-packed roughness that's much smaller than the
large, isolated roughness we're adding. Then tgy is dominated by
pressure drag from the start, but this pressure drag is of two
parts: a spatially uniform part produced by the underlying small
and close-packed roughness, and a spatially nonuniform part
produced by the large and isolated roughness. It takes only a
low density of large roughness elements for their contribution to
the pressure drag to outweigh that of the close~packed elements.

As we continue to add large roughness elements a point is
reached where the wakes shed by the elements do not relax
completely before encountering another roughness element
downstream, and with some further increase in density most points
in the near-bed flow are within wakes in various stages of
relaxation (Figure 5.20B). Now there's no point on the bed that
shows the relatively simple velocity profile of the original
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.-ooth flow without roughness elements. This kind of flow is
;Alled wake-interference flow {(Morris, 1955). Again you would
.ive to take a large number of local velocity profiles and
-satially average them to get a profile representative of the
.ntire bed. Because most of the area of the bed is overlain by
_sattached and relaxing wakes, the spatially averaged profile
;nows two distinct segments: one, adjacent to the bed and
sxrending upward for some fraction of the roughness height,
-spresents the spatial average of the local wall-law profiles in
+he relaxing wakes, and the other, starting well above the tops
5f the large roughness elements and extending far above,
represents the wall law above the zone in which the
ipward-diffusing wake turbulence blends into a spatially uniform
tayer--the case we treated at length in the earlier part of this
shapter. These two distinctive parts of the profile tend to plot
ss semilog straight lines with a transition at heights somewhat
~elow to somewhat above the tops of the roughness elements. GSee
vowell and Church (1979} for a good example. As the roughness
spacing decreases, the height of the y = 0 level for the overall
wall-law profile above the tops of the roughness elements rises
nigher and higher above the planar bottom.

With increasing roughness density, eventually most of the
area of the bed between roughness elements is overlain by the
narts of the wakes that lie upstream rather than downstream of
reattachment (Figure 5.20C,D); this condition sets in when the
ratio of roughness spacing to roughness height is of the order of
ten or less. Well before this stage the lower straight-line
segment of the spatially averaged velocity profile loses its
distinctive character. The turbulent shear layers downstream of
loci of separation then impinge mostly upon the surfaces of
roughness elements downstream rather than on the planar pottom:
viscous shear stresses on the planar bottom are almost
nonexistent, and the geometry of the bottom in the areas between
the roughness elements is irrelevant to the dynamics of the flow.
For three-—dimensional granular roughness this condition is
maintained with no qualitative change as the elements become sO
closely spaced that their bases are touching--a good
approximation to the condition of a loose granular bed treated in
detail earlier. If the roughness consists of transverse ridges,
however, the ratio of spacing to height can continue to decrease

; toward zero, and as it becomes smaller than about one the flow

i skims across the crests of the ridges and drives a circulation of
stable vortices located in the deep and narrow troughs between
the ridges:; this is called skimming flow (Morris, 1955), and is
not as important for our sedimentological purposes as the other
kinds of flow.

Field Measurements

There have been few detailed studies of velocity and
+urbulence in large-scale natural flows, though innumerable
routine determinations of velocity have been made in rivers in

159




5-64

order to establish the local relationship between stage (depth)
and discharge. Most routine measurements are made using a
propeller current meter lowered from a boat or a bridge. Each
determination of velocity represents a value averaged over about
10-30 s, and the entire profile is measured over a period of a few
minutes. Such data are not the most suiltable to compare with
measurements made under much more highly controlled conditions in
the laboratory, and so there have been few attempts to test the
supposition that results obtained in the laboratory with depths in
the decimeter range can be extrapolated to flows in nature with
depths in the range of meters or tens of meters.

One exception is a study made by the U.S. Geological Survey
in the Columbia River (Savini and Bodhaine, 1971). 1In this study
an array of ten equally spaced current meters on a rigid frame was
used to make an accurate determination of the velocity profile at
several sections of the river, and determinations were made at a
single profiling point for periods of up to 66 minutes, with
readings taken simultaneously from all ten current meters every
minute. In the reaches studied, the flow was controlled by dams
and was steady and nearly uniform. The bed was composed of lag
gravel that was not moving when the measurements were made. There
were therefore few complications in the f£low attributable to bed
forms, moving bed load, or high concentrations of suspended
sediment. As far as is possible in the natural environment,
therefore, conditions were ideal for comparison of natural
velocity profiles with profiles determined over fixed rough bedsg
in the laboratory. The only major deficiencies in the data are
that measurements could not be made closer than 0.5 feet above the
bed, and it was difficult to determine accurately the height of
the lowest current meter above the bed. But neither of these is
really a problem: as for the first point, 0.5 feet is of the
same order as the diameter of the bed gravel, and as for the
second, we should expect to have to juggle the origin up or down
anyway to obtain the best straight-line semilog profile.

Results for the 66 minute profile are shown in Figures 5.21
and 5.22. If the depth-velocity data are plotted as reported,
there is a definite departure from a logarithmic profile, but the
data can be made to conform to a logarithmic velocity profile by
adjusting the zero level to 16 cm below the bed level as recorded
in the field. It is these adjusted data that are shown in Figure
5.21. The velocity data averaged over 66 minutes do conform very
closely to the predicted logarithmic distribution.

This is not true, however, for any profile averaged over only

one minute. Individual profiles show large deviations from
logarithmic, and the deviations persist from one reading to the
next for periods of several minutes. Such deviations are

characteristic of field measurements made in deep rivers {for
another example, see a study of the Mississippi River by Scott and
Stephens, 1966) and are generally attributed to a combination of
imprecision in positioning of the current meter, influence of
large bed forms, and the effects of large-scale turbulence. In
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Figure 5.21 Velocity profile measured using an array of ten
current meters in the Columbia River. Data from Savini
and Bodhaine (1971). See text for discussion.

the case of the Columbia River measurements, however, it is clear
that large-scale turbulence oOr eddies are the only reasonable
explanation. The average velocity at this profile was about

1.0 m/s, and the depth and width of the river were 6.4 m and about
300 m, respectively. It can therefore be calculated that the
largest eddies rotating about horizontal axes would move past a
given current meter in about 5-10 seconds, and that the largest
eddies rotating about vertical axes would move past in about 5-10
minutes. Thus this series of measurements points to the existence
in wide rivers of eddies that rotate about vertical axes and have
dimensions of the same order as the width of the river. 1In a
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Figure 5.22 Fluctuation in velocity with time at four
different depths measured at a single station in the
Columbia River. From Savini and Bodhaine (1971, p.
F20) .

fiume 1 m wide, operating at average velocities of the order of
0.5 m/s, precise measurements of the average velocity at a station
can be obtained by averaging velocities observed for a period of
about five seconds, but in a large river or tidal channel, for
equivalent precision observations would have to be extended over a
period of ten minutes or more--which is generally completely
impractical.

A more significant matter in practice than the determination
of the average velocity at a particular depth is the determination
of the average velocity for the entire section, and the
determination of the shear velocity ux from the measured velocity
profile. For the measured section of the Columbia River the
average velocity determined from all 66 profiles is 1.006 m/s.
Average velocities determined from individual measured profiles
varies from 0.851 m/s to 1.138 m/s (standard deviation 0.052).

The coefficient of variation of about 5% is guite acceptable for
field measurements. Shear velocities determined from individual
profiles by linear regression of velocity on the logarithm of
depth, however, show a much greater range of variation. The shear
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Lelocity determined from the 66-minute average is 8.45 cm/s, but
.ne shear velocity determined from individual profiles varies from
+ om/s to more than 12 cm/s. The coefficient of variation is
.wout 15%. The moral is that even under ideal field conditions it
;3 much easier to obtain an accurate determination of average
.elocity than of shear velocity. In rivers, determination of
snear velocity averaged over a reach is generally made from the
verage depth and slope (using Equation 1.17), but accurate
jetermination of slope is also difficult, and the method cannot be

.sed for other natural flows like tidal currents.

The hydraulic roughness can be determined from a measured
velocity profile by making use of Equation (5.20). Because the
qumerical constants in this equation are those experimentally
destermined for sand grains glued to the wall of the channel, the
yvalue of kg determined is unlikely to correspond closely to size
»f gravel (or height of bed forms) on the bed of a natural river
channel. A number of authors have tried to use the available data
on natural gravel-bed rivers to develop a form of Equation {5.20)
that is more directly related to observed natural roughness. One
such equation, that of Leopold and Wolman {see Leopold et al.,
1964, p. 160), can be written

= 6 log 5%2 + 5 (5.52)

*;:|;:1

Leopold and Wolman found that the roughness was mainly related to
the size of the larger gravel clasts, SO in Equation (5.52) the
roughness is measured by Dig. the diameter exceeded by only 16% of
the clasts.

Comparing the applicaticn of Equations (5.20) and {5.52) to
the Columbia River data, we £find that the eguivalent sand
roughness (from Equation 5.20) is 0.69 m, whereas the Djg value
{ from Equatiocn 5.52) is 0.16 m. In fact, gavini and Bodhaine
(1971) record that at this section of the Columbia River the
measured maximum and mean sizes of the gravel on the bed were
0.28 m and 0.09 m, respectively, indicating an excellent agreement
with the prediction from the formula given by Leopold and Wolman.

Once again it must be pointed out that determination of the
hydraulic roughness from a single measured velocity profile in a
large natural flow is likely to give highly inaccurate results.
For example, the average of many individual determinations of
equivalent sand roughness for the Columbia River data is 1.4 m,
rwice the value based upon the long-time-average velocity profile,
and the coefficient of variation of values determined from single
profiles is 60%.
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~4APTER 6. DYNAMICS OF SEDIMENT MOVEMENT

INTRODUCTION

Now that we have investigated the nature of fluid motions
-lose to a solid boundary we can go on to consider how these
-s>tions affect a boundary composed of movable grains of sediment.
“he simplest case to investigate is the beginning of sediment
sovement--at this point, Jjust before sediment has started to move,
there is no reason why the concepts of "rigid-boundary hydraulics”
should not be applied. This case is also important geologically,
pecause it defines the flow conditions necessary to just move the
largest grains present in a given deposit. Of course, the flow
may actually have been stronger than that necessary to move the .
1argest grains present, because other factors (e.g., availability)
may limit the largest size of grains present--but at least we
should pe able to determine a minimum strength of flow required
for a given clastic sediment. '

As soon as sediment starts to move over the bed, everything
becomes much more complicated. Grains may be moved not only by
the fluid motion but also by being struck by other grains. When a
large number of grains are moving, the nature of fluid motion
ciose to the bed may be significantly altered. There may he
important interactions between moving grains. Grains are locally
riled up and scoured, to form bed configurations that further
interact with the flow to change the pattern of sediment movement

(Chapter 7).

To avoid some of these complications we will consider first
some experimental results for a highly oversimplified case: the
movement of a single grain over a bed composed of grains that have
been fastened to the bed. These experiments provide some insight
into the nature of particle movement, and what flow conditions are
necessary, for example, to change particle motion from rolling or
hopping close to the bed, to longer flights in which the particle
is held up by fluid turbulence. We go on toO consider some other
important effects in the movement of grains near the bed,
especially saltation.

We end this chapter with some considerations on the theory of
sediment in suspension, and the complications that arise in trying
to apply this theory to natural flows. and finally, we enguire
whether the insights gained can be applied to the interpretation
of sedimentary textures, particularly to the vexed guestion of
grain-size distributions.

FORCES ACTING ON A PARTICLE IN THE BED

Introduction

We begin by considering the forces acting on a single grain
located at the bed surface. Assuming that the sediment is
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cohesionless, the forces are of two opposed kKinds: those tending
to hold the grain in place (the submerged weight of the grain),
and those tending to lift, roll, or slide the grain out of its
position in the bed (forces of fluid 1ift and drag). We note at
once that both types of forces are highly variable, even in the
simplest case observed in nature: steady uniform flow over a flat
ped composed of well sorted grains.

The different kinds of fluid forces {1ift and drag) combine
to produce a resultant that acts downstream and at some angle to
¢+he ped. This resultant force can move the grain in one of three
ways: (i) by 1i fting the grain off the grains beneath it, (ii)} by
sliding the grain along some path of "easiest movement" over the
grains (i.e., downstream of it), or (iii} by rotating the grain
about some "pivot" formed by one Or two of the grains in the bed
(Figure 6.1). In the firgst case the grain must rise up rather
steeply from the bed, sO 1ift forces must be at least as important
as drag forces. 1In the second case the balance is between the
component of fluid force acting upwards in the direction of
easiest movement, on the one hand, and the component of gravity
and the frictional force, acting in the opposite direction. In
the third case the balance is between the moments of fiuid forces
tending to rotate the grain in the downflow direction, and the
moment of gravity force tending to hold the grain in place in the
ped. This third case has generally been considered to be the most
realistic one, but analysis of either the second or third case
leads to approximately the same conclusions, except for the
different coefficients.

The gravity force acts through the center of gravity (C.G. in
Fig. 6.1), but the position of the pivot and the direction of
easiest movement vary greatly from grain to grain because of
differences in size and shape of the grains and in local packing
of the grains. The fluid force does not necessarily act through
the center of gravity of the grain: in fact it may be expected to
act through some polnt above the center of gravity, because the
upper part of the grain is more exposed to fluid forces than the
lower part. Furthermore, the fluid forces vary from grain to
grain, being strongest for the most exposed grains, and they also
fluctuate with time because of turbulent motions even within the
viecous sublayer of a flow with steady time-average velocity. 50O
it should be clear that any criterion that we can establish for
the beginning of sediment movement will not be completely
deterministic, but will be stochastic (statistical). Experimental
investigations must be carefully designed to take this fact into
account: in particular, by a careful statistical definition of
exactly what is meant DYy the beginning of sediment movement.
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Forces Acl:i.ng on a Grain
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Figure 6.1 (A) Forces acting on a grain resting on a bed
of similar grains. (B) Analysis of moments acting
on a grain at the beginning of grain movement.
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Gravity Force

The total gravity force acting on a grain is the volume times
the submerged specific weight Yg-w. 1f Dp is the nominal
diameter, the volume is (n/6)Dp°. so the total gravity force Fa
is

Fg = (n/6) Dng(Ys“Y) (6.1)

The part of this force that opposes sliding of the grain in the
direction of easiest movement is Fgsine, where o is the angle that
ihe direction of easiest movement makes with the horizontal '
(Figure 6.1). When sliding begins, this angle is determined not
only by the geometry of the grains but also by their frictional
characteristics. :

Frictional Forces

in most published theoretical analyses of grain motion,
friction between grains is not considered explicitly, but its
effect is considered to be accounted for by the value chosen for
a. The problem is analogous to that of the angle of repose of '
sands (for a review, see Statham, 1977): the surface of a sand
slope can be puilt up.only to a certain limiting angle, called the
angle of initial yield. Beyond this angle, the downslope
component of gravity forces acting on a surface layer of sand
exceeds the resistance offered by a combination of frictional
forces and “upslope" components of gravity that result from the
interaction of the weight and geometry of the grains.

it is generally assumed that the angle a is the same as the
angle of initial yield of a sand slope immersed in water, which
for a typical sand is about 35° (it is less for spheres, more for
highly angular materials; Carrigy. 1970). Miller and Byrne (1966)
pointed out that the angle of repose for a single grain on a fixed
beda composed of other grains is not necessarily (or generally) the
same as the mass angle of repose assumed by a pile of grains. The
angle for a single grain on a £fixed bed of similar grains is
larger, being in the range of 45° %o 70° depending on sphericity
and roundness (smaller values for more spherical and more rounded
grains) and on sorting (smaller values for better sorted grains) .
That these larger values are in fact applicable to the beginning
of grain movement has been confirmed experimentally by Fernandez
Lugue (1974: see alsoO Abbott and Francis, 1977). For grains
smaller than the average size in the (fixed) ped the angle is
larger, and for grains larger than those in the bed the angle is
smaller. The 1low value for grains lardger +han the average for the
bed suggests the possibility that larger—~than-average grains may
actually be the easiest to move.
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Fluid Forces

Fluid forces acting on a grain resting on the bed are of two
kinds: (i) those due to viscous drag, acting mainly on the upper,
exposed surface of the grain; and (ii) those due to the unequal
distribution of dynamic pressure on the grain surface. Viscous
forces are likely to be important at low boundary Reynolds
numbers, uxD/v < 5 {(Figure 6.2). '

It is convenient to distinguish two components of the fluid
force, whatever its ultimate origin: drag (in the strict sense)
acting parallel to the flow, and therefore parallel to the bed,
and lift acting normal to the bed.

The drag force is relatively easy to understand: the
principle is the same as for the drag forces considered in our
discussion of settling in Chapter 2 and flow resistance in
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Figure 6.2 Forces acting on a grain at low boundary Reynolds
numbers. The grain is enclosed in the viscous subiayer,
and the velocities are locally small enough that there
is no turbulent wake. Viscous drag is an important
component of the total drag. Lift forces due to unequal
pressure distribution are probably smaller than at
larger Reynolds numbers. The resultant force acts along
a line well above the center of gravity (C.G.). Plus
and minus signs schematically indicate higher and lower
pressures, respectively {not the actual sign of the
pressure) .
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Chapter 5, except that there is the complication that not all
parts of the cross section of the grain are equally exposed to the
flow, because the lower part is somewhat shielded by the grains
upstream. There are the further complications that the flow near
the bed is characterized by a strong velocity gradient, and that
flat grains may take up an imbricated orientation oblique to the
£flow. Thus, if we try to apply the usual drag equation (Equation
1.8),

Fp = CplpoU2/2})A

we have the problem that we do not know exactly what to choose as
the drag coefficient Cp, as the "characteristic” velocity U, or as
the "exposed" cross-sectional area A. Nevertheless, we expect
that the same type of equation will hold, that the drag
coefficient wiTll De proportional to the conventional coefficient
and will vary with Reynolds number in about the same way; Coleman
(1967) has shown that this is in fact the case for a sphere
resting on a bed of spheres. We also expect that the

- characteristic velocity will be some velocity close to the bed,
which might perhaps be proportional to the shear velocity, and
that the "exposed" area will be less than, but proportional to,
the total cross-sectional area of the particle.

Qur experience with settling further leads us to expect that
it may be useful to distinguish between two different regimes:
one characterized by relatively low boundary Reynolds numbers
{usD/v < 5), and therefore by grains entirely enclosed by
essentially laminar flow in the viscous sublayer, with little or
no flow separation behind the grains (Figure 6.2), and the other
éharacterized by relatively high boundary Reynolds numbers, and
therefore by grains that project up into the turbulent flow and
produce a turbulent wake themselves (Figure 6.3). In the first
case the drag coefficient and therefore the drag might be
proportional to the boundary Reynolds number, and in the second
case it might be almost independent of the boundary Reynolds
number, especially in the range uxD/v > 60.

We saw in Chapter 4 that the lift force arises because of the
asymmetry of flow around a grain resting on the bed. Because
higher fluid velocities are developed over the top of the grain
than underneath it, there is also an asymmetrical pressure
distribution, with higher pressures on the lower surface of the
grain (acting upward) than on the upper surface of the grain
{acting downward): this results in a net upward lift force. We
expect therefore that lift forces cannot act on grains that are
freely suspended in a fluid, because flow around such particles is
symmetrical about the line of flow, or almost so.
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Figure 6.3 Forces acting on a grain at transitional

boundary Reynolds numbers. The grain is still
partly enclosed in the viscous sublayer, but local
velocities are large enough to produce a turbulent
wake behind the more exposed grains. Viscous drag
and pressure distribution around the front of the
grain differ little from those found at low Reynolds
numbers, but viscous drag is very small in the
turbulent wake. Lift forces approach 0.8 times the
magnitude of the drag forces. The resultant force
acts through, or close to, the center of gravity
(C.G.). Significance of plus and minus signs is the
same as in Figure 6.2.

The existence of the 1lift force and the fact that it
decreases very rapidly as a grain rises up above the bed was
verified experimentally by Chepil (1961) and by Willetts and
Murray (1981). Chepil used a wind tunnel to measure the
pressure distribution over the surface of spheres 0.3 to 5.1
cm in diameter embedded in, or suspended at, various heights
over a gravel surface. The gravel surface was dynamically
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fully rough, and flow over the surface produced a logarithmic
velocity distribution with shear velocities ranging from 75 to 188
cm/s. A graphical summary of the results is shown in Figure 6.4.
At zero height above the bed, lift was equal to about 80% of drag,
but it decreased rapidly with height and disappeared virtually
completely when the sphere was raised just a few sphere heights
above the bed.

Willetts and Murray (1981) measured forces acting on a sphere
in a wind and water tunnel using strain gauges. They observed
large lift forces when the sphere was in contact with the wall,
and when the gap was between 0.1 and 0.2 diameters wide. But
negative 1lift forces (i.e., directed towards the wall) were
observed at both smaller and larger gaps. '

The 1ift force can be calculated for a few highly simplified
cases. For example, a solution was obtained by Jeffreys (1929)
for the case of irrotational inviscid flow around a cylinder lying
on a plane surface with the axis normal to the flow. Figure 4.9
shows the calculated streamlines and pressure distribution for
this case. The flow is symmetrical about the vertical plane
{there is no flow separation because there 1is no viscosity) so
theoretically there is no drag component in this case. It might
be thought that this is so far removed from reality that the
analysis can have no possible application to real fluids and
grains, but this is not so. Although real fluids have viscosity,
the inviscid-flow solution may be quite close to the truth for the
case of very rapid fluid acceleration--as, for example, is
produced by a turbulent eddy striking the bed.

The equation given by Jeffreys for the lift force (per unit
length of the cylinder) is shown in Figure 4.9. We expect that
for a given spherical grain the lift force will be given by an
equation of the same general form as for the drag force:

Fi, = Cp(pUZ/2)A

(In the case of unit len