
IDA System Interface (ISI)

Last modified: June 20, 2007

Introduction
The IDA System Interface is being developed as the standard for communication between IDA seismic
stations, data collection hubs, and TCP/IP enabled digitizers. It uses the IDA Authenticated
Communication Protocol (IACP) as the underlying transport. An ISI session consists of establishing an
IACP connection with the ISI server and then sending ISI frames and reading server responses as ISI
frames. The simplest session would be one where the client connects to the ISI server, issues a state of
health, configuration, or disk loop summary report, receives the reply, processes it (e.g., displays it or writes
it to disk) and then closes the connection. Waveform sessions are slightly more involved. They require that
the client send a series of frames that constitutes the waveform request, then read a series of waveform
frames in reply. This document discusses the format of the IACP payloads that are used to conduct all
such sessions.

The ISI implementation presently supports state of health, configuration, and waveform transfer between
IDA/NRTS computers. Client side source code is available for pickup at

ftp://idahub.ucsd.edu/pub/pickup/ISI_Toolkit.tgz

This software includes library routines for conducting dialogs with an ISI server and sample programs that
demonstrate the use of those routines.

ISI Payload Types
IACP payload identifiers 1000 through 1999 have been assigned for use by ISI. To date, 14 types have
been defined:
#define ISI_IACP_REQ_SOH 1001 /* state of health request */
#define ISI_IACP_REQ_CNF 1002 /* configuration request */
#define ISI_IACP_REQ_WFDISC 1003 /* wfdisc request */
#define ISI_IACP_REQ_FORMAT 1004 /* format part of data request */
#define ISI_IACP_REQ_COMPRESS 1005 /* compress part of data request */
#define ISI_IACP_REQ_POLICY 1006 /* policy part of data request */
#define ISI_IACP_REQ_TWIND 1007 /* time window part of data request */
#define ISI_IACP_SYSTEM_SOH 1008 /* system SOH data */
#define ISI_IACP_STREAM_SOH 1009 /* stream SOH data */
#define ISI_IACP_WFDISC 1010 /* wfdisc record */
#define ISI_IACP_STREAM_CNF 1011 /* configuration data */
#define ISI_IACP_GENERIC_TS 1012 /* ISI generic time series packet */
#define ISI_IACP_RAW_PKT 1013 /* raw digitizer packet of arbitrary type */
#define ISI_IACP_REQ_SEQNO 1014 /* sequence number part of a data request */

ISI Data Types
The discussion of the payload formats that follows will refer to the fundamental data types given in the
following table.

Name Length Description

INT8 1 signed byte

UINT8 1 unsigned byte

INT16 2 signed 16-bit integer, network byte order

UINT16 2 unsigned 16-bit integer, network byte order

INT32 4 signed 32-bit integer, network byte order

UINT32 4 unsigned 32-bit integer, network byte order

INT64 8 signed 64-bit integer, network byte order

UINT64 8 unsigned 32-bit integer, network byte order

REAL32 4 32-bit IEEE floating point, network byte order (cast as UINT32)

REAL64 8 64-bit IEEE floating point, network byte order (cast as UINT64)

CHAR 1 ASCII character

These fundamental data types are used to build more complicated data types.

ISI_STREAM_NAME
An ISI_STREAM_NAME is a 12 byte data structure with the following format:

Offset Data Type Length Description

0 CHAR 7 station name

7 CHAR 3 channel name

10 CHAR 2 location code

ISI_TIME_STAMP
An ISI_TIME_STAMP is a 10 byte data structure used to specify an epoch time:

Offset Data Type Length Description

0 REAL64 8 Seconds since January 1, 1970

8 UINT16 2 Clock status

ISI_SRATE
An ISI_SRATE is a 4 byte data structure to describe a sample rate.

Offset Data Type Length Description

0 INT16 2 Sample rate factor

2 INT16 2 Sample rate modifier

The sample rate factor and modifier fields follow the same convention as used in the SEED specification.
If the sample rate factor is positive, it represents samples per second otherwise it represents seconds per
sample. In either case, the value is modified by the sample rate modifier field. If the modifier is positive,
the factor is multiplied by the modifier otherwise it is divided by the modifier.

ISI_COORDS
An ISI_COORDS is a 16 byte data structure to specify a location.

Offset Data Type Length Description

0 REAL32 4 latitude, decimal degrees

4 REAL32 4 longitude, decimal degrees

8 REAL32 4 surface elevation, meters

12 REAL32 4 depth of burial, meters

ISI_INST
An ISI_INST is a 23 byte data structure with basic information about a particular data stream.

Offset Data Type Length Description

0 REAL32 4 CSS 3.0 “calib”

4 REAL32 4 CSS 3.0 “calper”

8 REAL32 4 CSS 3.0 “hang”

12 REAL32 4 CSS 3.0 “vang”

16 CHAR 7 CSS 3.0 “instype”

ISI_CD_STATUS
An ISI_CD_STATUS s a 16 byte data structure with CD1.1 channel status (format 1) parameters.

Offset Data type Length Description

0 UNIT8 1 CD1.1 data status

1 UINT8 1 CD1.1 security

2 UINT8 1 CD1.1 miscellaneous status

3 UINT8 1 CD1.1 voltage status

4 REAL64 8 time of last GPS synchronization

12 UINT32 4 clock differential in microseconds

ISI_DATUM_DESC
An ISI_DATUM_DESC is a 4 byte data structure that describes the contents of the data portion of a
waveform packet..

Offset Data type Length Description

0 UNIT8 1 Compression

1 = none

2 = IDA first difference

3 = Steim1

4 = Steim2

5 = gzip

1 UINT8 1 Uncompressed data type

1 = INT8

2 = INT16

3 = INT32

4 = INT64

5 = REAL32

6 = REAL64

11 = native IDA rev 8 raw digitizer packet

12 = native IDA rev 10 raw digitizer packet

13 – native IDA rev 6 raw digitizer packet

14 – native IDA rev 7 raw digitizer packet

15 – native IDA rev 9 raw digitizer packet

16 – native IDA rev 5 raw digitizer packet

17 – QDPLUS (wrapped Quanterra Q330 QDP packet)

18 – miniSEED

2 UINT8 1 Byte Order (types 1-6)

0 = little endian byte order

1 = big endian byte order

3 UINT8 1 Uncompressed sample size in bytes

The byte order field is not applicable for those packets whose type is greater than 10. For those packets
the compression should be 1 or 5 and the uncompressed sample size should be 1. In other words, they are
an opaque collection of bytes as far as the ISI protocols are concerned.

ISI State of Health Request
An ISI state of health report describes the status of the disk loop at the server. This report is obtained by
sending a zero length IACP frame with a payload identifier of 1001. The server will reply with a series of
frames with IACP payload identifier of 1009. Each type 1009 frame contains state of health information
for one data stream. After the final type 1009 frame has been sent, the server will send an IACP NULL
frame (payload identifier 0). A type 1009 payload consists of 38 bytes with the following layout:

Offset Data Type Length Description

0 ISI_STREAM_NAME 2 stream name

12 ISI_TIME_STAMP 10 time of oldest datum available on server

22 ISI_TIME_STAMP 10 time of youngest datum available on server

32 REAL64 8 elapsed time since server received data for this stream

40 UINT32 4 number of data segments for this stream

44 UINT32 4 number of data records received by server for this stream

ISI Configuration Request
An ISI configuration report describes the data streams that are available from the server. This report is
obtained by sending a zero length IACP frame with payload identifier 1002. The server will reply with a
series of frames with IACP payload identifier of 1011. Each type 1011 frame contains configuration
information for one data stream. After the final type 1011 frame has been sent, the server will send an
IACP NULL frame (payload identifier 0). A type 1011 payload consists of 55 bytes with the following
layout:

Offset Data Type Length Description

0 SI_STREAM_NAME 12 stream name

12 ISI_SRATE 4 sample rate

16 ISI_COORDS 16 coordinates

32 ISI_INST 23 instrument parameters

ISI Disk Loop Summary Request
An ISI disk loop summary is a collection of CSS 3.0 wfdiscs that describes the current state of data in the
disk loop. This report is obtained by sending a zero length IACP frame with payload identifier 1003. The
server will reply with a series of frames with IACP payload identifier of 1010. Each type 1010 frame
contains configuration information for one data stream. After the final type 1010 frame has been sent, the
server will send an IACP NULL frame (payload identifier 0). A type 1010 payload consists of 283 bytes
with the following layout:

Offset Data Type Length Description

0 CHAR 283 CSS 3.0 wfdisc string

ISI Data Requests
Two types of ISI data requests are supported. In one, the client defines the boundaries of the request by
specifying start and end times. In the other, the boundaries are specified using sequence numbers. In
either case, the waveform request is made by sending a sequence of of frames which specify the details of
the request, terminated by an IACP NULL frame.

ISI Waveform (Time Window) Data Request
A time based ISI waveform request is initiated by sending a sequence of three types of frames

 1004 (ISI_IACP_TYPE_REQ_FORMAT) for specifying the delivery format of the data packets

 1005 (ISI_IACP_TYPE_REQ_COMPRESS) for specifying the data compression to apply, if any

 1007 (ISI_IACP_TYPE_REQ_STREAM) to specify the desired time window for a particular data
stream or streams. As many instances of the type 1007 frame should be sent as necessary in order
to completely specify the list of desired streams.

ISI_IACP_REQ_FORMAT (type 1004)
This is an IACP frame with payload identifier 1004. The payload is a single UINT32.

Offset Data Type Length Description

0 UINT32 4 0 for generic format

1 for native digitizer packet format

Generic format eliminates any digitizer specific encoding while native format is the raw digitizer packet. In
either case, the data are returned in the data field of the generic time series packet (type 1012) described
later in this document.

ISI_IACP_REQ_COMPRESS (type 1005)
This is an IACP frame with payload identifier 1005. The payload is a single UINT32.

Offset Data Type Length Description

0 UINT32 4 1 for uncompressed

2 for IDA first difference

3 for Steim 1

4 for Steim 2

5 for gzip

This value specifies how the server will compress the waveform data before sending it over the network (at
present only uncompressed or IDA first difference and gzip are implemented. If the client desires a native
packet format which is already compressed (eg, MiniSEED) then it should specify uncompressed here.

ISI_IACP_REQ_STREAM (type 1007)
This is an IACP frame with payload identifier 1007. The payload is a 28 byte structure with the following
layout:

Offset Data Type Length Description

0 ISI_STREAM_NAME 12 stream name, possibly with wild cards

12 REAL64 8 time of first datum

20 REAL64 8 time of final datum

The stream name is the (sta, chan, loc) triple used to name the particular data stream. Limited wildcarding
is permitted, as follows. If any of the 3 components of the name is given as an asterisk, the server
interprets it to mean all values applicable to that server. For example, a triple ("*", "*", "*") would be
interpreted to mean all streams available on the server, ("ABC", "*", "*") would mean all streams from
station ABC, while ("*", "BHZ", "00") would mean all BHZ00 streams from all stations.

The time of first datum is the epoch time (seconds since January 1, 1970) for the desired first sample and
the time of final datum is the epoch time of the desired final sample. The server will select the waveform
packets that contain the desired times, but will not split or otherwise modify the original time span of the
packets as they reside on the server. This means that, in practice, the client can expect the first waveform
packet to begin slightly before the requested start time and the final packet can extend to slightly beyond
the requested time. Note that since epoch time is specified as seconds since January 1, 1970 and it is now
past that date, all epoch times will be positive numbers. We take advantage of this fact to define three
wildcard times that are the negative values given below.

Value Interpretation

-2.0 oldest packet available

-3.0 most recent packet available

-4.0 continuous data feed

The values of -2 and -3 can be used to specify either or both of the time boundaries. The -4 value is only
valid for specifying the time of final datum. Any waveform request that does not specify -4 as the time of
final datum is a segment request. Such a request spans a specific time interval. Any request which specifies
-4 as the time of final datum is a continuous data request. In such a case the server will keep the
connection alive indefinitely (with IACP heartbeats if necessary). As new data are acquired the server will
forward them to the client.

For example a (begin, end) time pair of (-2, -3) would mean that the client wants to see all the data
currently available at the server, while (-2, -4) would mean that the client wants all the data currently
available on the server and all additional data the server would obtain in the future. Likewise, (-3, -4) would
mean the client has no interest in any old data which are available but wants to get any data acquired since
the request was made.

ISI Time Based Waveform Protocol
The client initiates a waveform request by sending an IACP NULL terminated series of request frames as
described above. The server acknowledges the waveform request by returning the same IACP NULL
terminated series of request frames, however it will expand any wild carded ISI_IACP_REQ_STREAM
frames into multiple frames with explicit values for the (sta, chan, loc).

After the server has acknowledged the waveform request, it starts sending out generic time series frames
(type 1012) that contain the requested data. If the waveform request was a segment request then once the
final waveform frame has been sent the server will send an IACP Alert frame (payload identifier 100) with
a cause code of 2, indicating that the request has been fully satisfied. Note that this does not mean that all
the requested data were actually delivered, it only means that all the data that the server is capable of
providing has been delivered.

In the case of a continuous waveform request, the connection will persist indefinitely. A continuous
connection will terminate only from I/O errors, internal implementation errors (i.e. bugs in the client or
server code) or external intervention (e.g. server reboot, etc).

While it is not uncommon for a continuous connection to persist for months or longer, it will eventually
fail from one of these causes. When it does fail, the server will close its connection and destroy any state
associated with the connection. It is up to the client to decide to reconnect, and if so, what streams and
start times should be requested. The ISI Toolkit referred to at the start of this document includes an API
that takes care of the bookkeeping and other client side drudgery associated with reestablishing a failed
connection. This allows the high level application to loop around calls to a function which reads the next
packet from the server and not concern itself with handling transient I/O errors.

ISI_GENERIC_TS (type 1012)
The waveform data are delivered as ISI_GENERIC_TS frames, which are IACP frames with payload
identifier 1012. This is a variable length frame with a fixed length 64- byte header followed by a variable
amount of data, as show below.

Offset Data type Length Description

0 ISI_STREAM_NAME 12 stream name

12 ISI_SRATE 4 nominal sample rate

16 ISI_TSTAMP 10 time of first datum

26 ISI_TSTAMP 10 time of last datum

36 ISI_CD_STATUS 16 CD 1.1 channel status

52 UNIT32 4 number of samples

56 UINT3 4 number of bytes, N

60 ISI_DATUM_DESC 4 datum descriptor

64 UINT8 N data

If the type field of the datum descriptor is greater than 10, then the data field is the entire raw digitizer
packet (with its own header and data fields), otherwise it is the waveform data.

ISI Sequence Number Based Packet Request
For strict data communication purposes, requesting data based on time stamps is not always the best
means of specifying what data should be sent. For instance, if the clock is bad then it may not even be
possible to determine the time of a particular packet. IDA addresses this problem by treating the packets
as an opaque collection of bytes, each with a unique sequence number. The client specifies the range of its
request using these sequence numbes and, as with the time based requests, we allow special "wildcard"
values that allow the user to request the oldest or youngest data available or to maintain a continuous data
feed.

A critical requirement is that the data source assigns unique numbers to the packets it produces. This
sequence number is a "creation sequence number", meaning that it reflects the order the packets were
created by the data source. No relationship between a particular data stream and sequence number can be
inferred. Furthermore, no relationship between the numerical value of a set of sequence numbers and data
continuity should be inferred. This is because the same sequence number generator is used for all data
streams. Since packets for the various streams appear at different intervals it will almost always be the case
that the sequence numbers for two consecutive packets from the same stream will not increment by one.
The only thing that can be inferred from sequence number is that the last sample in a packet with a higher
sequence number contains data that is at a time later than (or possibly equal to) that of the last sample in a
packet with an earlier sequence number. One may also conclude that a collection of packets with no gaps
in the sequence number is complete.

Sequence numbers, once assigned, never change as they move from the digitizer to the station computer,
to the regional hub, to the data center. This non-volatile nature of sequence numbers means that it is
necessary to ensure that they never get reset at the data source. The way IDA have implemented this is by
defining a 12 byte sequence number as follows.

 ISI_SEQNO

Offset Data Type Length Description

0 UINT32 4 signature of sequence number generator

4 UINT64 8 counter

The signature is simply a number that is guaranteed to be larger than all previous signatures ever used by
that particular data source. By convention, we make the signature to be the current UTC time in seconds
since 1/1/1970 when the sequence number generator was initialized. By initialized we mean that the 64-
bit counter is reset to 0, either because we have never counted before or because we lost the original
counter for one of many possible reasons. As long as the system has a way of determining current UTC
time with some reasonable accuracy, this will ensure that even replacement systems will never issue
sequence numbers that are smaller than what has been issued before at a particular site. This practice is
guaranteed to fail in 2106 when the unsigned 32 bit signature wraps around to zero. It also requires that
the computer assigning the sequence numbers has a way to determine current time with "reasonable"
accuracy at the time the sequence number generator is initialized, but that is not difficult for anyone
wearing a watch.

A sequence number request begins with the same type 1004 (ISI_IACP_TYPE_REQ_FORMAT) and
1005 (ISI_IACP_TYPE_REQ_COMPRESS) frames described in the previous section, however instead of
type 1007 time window request frames the client should send 1014 (ISI_IACP_TYPE_REQ_SEQNO)
frames to specify the sequence number boundaries of the data request. As many instances of the type 1014
frame should be sent as necessary in order to completely specify the list of desired streams, followed by a
IACP_NULL frame.

ISI_IACP_REQ_SEQNO (type 1014)
This is an IACP frame with payload identifier 1014. The payload is a 31 byte structure with the following
layout:

Offset Data Type Length Description

0 CHAR 7 site name, possibly with wild cards

7 ISI_SEQNO 12 sequence number of first packet

19 ISI_SEQNO 12 sequence number of final packet

The site name is the name associated with the disk loop that contains the sequence numbered packets,
which by IDA convention is the name of the station. One may use an asterisk to signify all data available
to the server. The beginning and ending sequence numbers can be the absolute numbers refering to
specific packets, or they can be one of three “wildcard” numbers. The wildcard sequence numbers are
used to refer to the oldest packet currently in the disk loop, the youngest packet currently in the disk loop,
and to define a continuous data feed. The wildcards are specified in the signature field. If one of the
following signatures is used then the counter field is ignored and the following interpretation is applied:

Value (hex) Interpretation

FFFFFFFF oldest packet available

FFFFFFFE most recent packet available

FFFFFFFD continuous data feed

ISI Sequence Number Based Packet Protocol
The client initiates a packet request by sending an IACP NULL terminated series of request frames as
described above. The server acknowledges the waveform request by returning the same IACP NULL
terminated series of request frames, however it will expand any wild carded ISI_IACP_REQ_SEQNO
frames into multiple frames with explicit values for the site field.

The protcol allows for ISI_IACP_REQ_COMPRESS (type 1005) frames to be included in the request.
Although various compression algorithms can be specified in this frame, only types 1 (no compression)
and 5 (gzip compression) are applicable. This is because the server treats these packets as fully opaque. If
a client requests a compression other than gzip, then it is ignored and gzip compression is used instead.

After the server has acknowledged the packet request, it starts sending out raw packet frames (type 1013)
that contain the requested data. If the packet request was a segment request then once the final packet has
been sent the server will send an IACP Alert frame (payload identifier 100) with a cause code of 2,
indicating that the request has been fully satisfied. Note that this does not mean that all the requested
packets were actually delivered, it only means that all the data that the server is capable of providing has
been delivered.

In the case of a continuous request, the connection will persist indefinitely. A continuous connection will
terminate only from I/O errors, internal implementation errors (i.e. bugs in the client or server code) or
external intervention (e.g. server reboot, etc).

While it is not uncommon for a continuous connection to persist for months or longer, it will eventually
fail from one of these causes. When it does fail, the server will close its connection and destroy any state
associated with the connection. It is up to the client to decide to reconnect, and if so, what sites and
sequence numbers should be requested. The ISI Toolkit referred to at the start of this document includes
an API that takes care of the bookkeeping and other client side drudgery associated with reestablishing a
failed connection. This allows the high level application to loop around calls to a function which reads the
next packet from the server and not concern itself with handling transient I/O errors.

ISI_RAW_PACKET (type 1013)
The ISI_RAW_PACKET frame has a variable structure, with each field tagged with an 8-byte preamble
that describes the contents, as follows:

Offset Data Type Length Description

0 UINT32 4 field identifier

4 UINT32 4 field length in bytes

This was done so as to allow extensions to the contents of this packet without affecting any exsiting clients.
If a client does not recognize a particular field identifier it can just skip over the indicated number of bytes
and continue.

The following field identifiers are currently defined:
#define ISI_TAG_EOF 0 /* used to denote the end of the list */
#define ISI_TAG_SITE_NAME 1 /* site name */
#define ISI_TAG_SEQNO 2 /* packet sequence number */
#define ISI_TAG_DATA_DESC 3 /* packet description */
#define ISI_TAG_LEN_USED 4 /* number of bytes in packet, as sent */
#define ISI_TAG_LEN_NATIVE 5 /* number of bytes in packet, after decompression */
#define ISI_TAG_PAYLOAD 6 /* the raw packet, described above */
#define ISI_TAG_RAW_STATUS 7 /* status flag applied to packet by data source */

The type 1013 packet consists of a concatenation of sequences of preamble followed by data. The
sequence is terminated by a field identifier of 0 (ISI_TAG_EOF). Note that this inidicates the end of the
sequence and is not a preamble with identifier 0 (in other words, there is no 4-byte field length following
the ISI_TAG_EOF). The next section describes the layout of the payloads described by the preambles
with one of the indentifiers from above.

ISI_TAG_SITE_NAME (1)

Offset Data Type Length Description

0 CHAR 7 site name

This is the name of the data source. By IDA convention, this is usually the station name, however it need
not be. The actual station name would normally be found in the raw digitizer packet that would be
included elsewhere in the ISI_RAW_PACKET.

ISI_TAG_SEQNO (2)

Offset Data Type Length Description

0 ISI_SEQNO 31 sequence number that identifies this digitizer packet

ISI_TAG_DATA_DESC (3)

Offset Data Type Length Description

0 ISI_DATUM_DESC 4 digitizer packet description

Note that while this item has the same format as the data description that is in the type 1012 packets, it
refers to the digitizer packet and not the waveform data which the packet may or may not contain.

ISI_TAG_LEN_USED (4)

Offset Data Type Length Description

0 UINT32 4 Number of bytes in the payload field of this type 1013 packet
(see ISI_TAG_PAYLOAD). This is the number of bytes of
the packet as sent over the network. If compression was
enabled then this will be less than the original size (which is
given as the ISI_TAG_LEN_NATIVE) item, below.

ISI_TAG_LEN_NATIVE (5)

Offset Data Type Length Description

0 UINT32 4 Number of bytes in the digitizer packet after decompression.

ISI_TAG_PAYLOAD (6)

Offset Data Type Length Description

0 UINT8 variable This is the digitizer packet, possibly compressed (as described
by the ISI_TAG_DATA_DESC item). It consists of the
number of bytes given by the ISI_TAG_LEN_USED item
and decompressions to the number of bytes given by
ISI_TAG_NATIVE.

ISI_TAG_STATUS (7)

Offset Data Type Length Description

0 UINT32 4 0 = packet deemed normal by data source

1 = packet deemed suspect by data source

	ISI_STREAM_NAME
	ISI_TIME_STAMP
	ISI_SRATE
	ISI_COORDS
	ISI_INST
	ISI_CD_STATUS
	ISI_DATUM_DESC
	ISI State of Health Request
	ISI Configuration Request
	ISI Disk Loop Summary Request
	ISI Data Requests
	ISI_IACP_REQ_FORMAT (type 1004)
	ISI_IACP_REQ_COMPRESS (type 1005)
	ISI_IACP_REQ_STREAM (type 1007)
	ISI Time Based Waveform Protocol
	ISI_GENERIC_TS (type 1012)
	ISI_IACP_REQ_SEQNO (type 1014)
	ISI Sequence Number Based Packet Protocol
	ISI_RAW_PACKET (type 1013)
	ISI_TAG_SITE_NAME (1)
	ISI_TAG_SEQNO (2)
	ISI_TAG_DATA_DESC (3)
	ISI_TAG_LEN_USED (4)
	ISI_TAG_LEN_NATIVE (5)
	ISI_TAG_PAYLOAD (6)
	ISI_TAG_STATUS (7)

