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Viscosity of Oceanic Asthenosphere Inferred
from Remote Triggering of Earthquakes

Fred F. Pollitz, Roland Bürgmann, Barbara Romanowicz

A sequence of large interplate earthquakes from 1952 to 1965 along the Aleutian arc and
Kurile-Kamchatka trench released accumulated stresses along nearly the entire northern
portion of the Pacific Plate boundary. The postseismic stress evolution across the
northern Pacific and Arctic basins, calculated from a viscoelastic coupling model with
an asthenospheric viscosity of 5 3 1017 pascal seconds, is consistent with triggering of
oceanic intraplate earthquakes, temporal patterns in seismicity at remote plate bound-
aries, and space-based geodetic measurements of anomalous velocity over an area 7000
by 7000 kilometers square during the 30-year period after the sequence.

Stress pulses travelling away from an earth-
quake source area effectively transmit the
local stress changes associated with the
earthquake to a much larger area as the
ductile sublithospheric channel gradually
yields with time (1–4). Several studies have
applied such a model to the continental
lithosphere, where predictions may be
readily compared with geodetic observa-
tions [for example, see (3–7)]. There have
also been a few applications suggestive of
stress diffusion through the ocean basins (1,
2, 8). Here we evaluate postseismic stress
evolution driven by large subduction events
that occurred along the Aleutian and
Kurile-Kamchatka trenches from 1952 to
1965 (Fig. 1A) and use the inferred corre-
lation with seismicity to estimate the vis-
cosity of the oceanic asthenosphere. The
subduction earthquakes have total seismic
moment exceeding 1000 3 1020 Nzm and
are by far the largest involving the Pacific
Plate to have occurred during the period
1950–1970 (9). Moreover, each of them
occurred on subduction interfaces that had
experienced smaller events on time scales of
20 to 90 years but no comparable large

ruptures for at least the past 200 years (10).
Because these events involve only the Pa-
cific–North America plate boundary, stress
changes may be evaluated without any sig-
nificant complications over the entire Pa-
cific basin as well as the Arctic basin (on
the North American Plate). We specified
the elastic deformation associated with
these earthquakes in terms of the fault
planes and slip directions shown in Fig. 1A
and source parameters from (11). We also
included a few smaller but significant
events with total seismic moment of ;
150 3 1020 Nzm: thrust events along the
Kurile/Bonin arc in 1958, 1963, 1968, 1969,
1972, 1973, and 1978, and the 1986
Andreanof Islands earthquake along the
Aluetian arc (12).

We constructed a rheology appropriate
for the oceanic lithosphere from the seismic
structure determined by Gaherty et al. (13)
and then calculated postseismic gravita-
tional-viscoelastic relaxation on a grid cov-
ering the northern Pacific and Artic basins
(4). The model implies that for an astheno-
spheric viscosity of h 5 5 3 1017 Pazs, the
leading edge of the stress pulse passed by the
Juan de Fuca plate in 1975 and California
in 1985 (the southward-propagating blue
region in Fig. 1). The dispersive character
of the propagating stress pulse is such that

F. F. Pollitz and R. Bürgmann, Department of Geology,
University of California, Davis, Davis, CA 95616, USA.
B. Romanowicz, University of California Seismological
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regions along the advancing front at a given
time experience locally high horizontal ve-
locities (3, 4). Thus, the fronts of spatially
maximal strain rate and temporally maxi-
mal velocity nearly coincide. Although the
former is most useful for demonstrating the
pulselike behavior of the stress diffusion
process, the latter provides a physical con-
nection between stress diffusion within the
oceanic plate and induced strains at or
across adjacent plate boundaries.

Passage of the predicted velocity front is
correlated with spatiotemporal patterns in
seismicity in western North America over
the past four decades, provided that asthe-
nospheric viscosity is close to 5 3 1017 Pazs.
Seismic activity may be adequately repre-
sented as simply a function of time and
latitude. From a suitable catalogue (14)
spanning the time period 1963–1996 at
magnitudes above body wave magnitude
(Mb) 5 5.3, let teq (i) and lateq (i) be the
time of occurrence and latitude, respective-
ly, of the ith earthquake. Similarly, we de-
fine latvel (t) as the latitude of areas just
adjacent to the Pacific margin off western

North America that experience a velocity
maximum at time t. In order to test how
consistent this catalogue is with the south-
ward progression of the velocity front, we
construct the correlation function in lati-
tude-time space

f(lat,t) 5
1

A(lat,t) Oi
Mb(i) (1)

where the summation is for events i that
satisfy

latvel(teq(i)) 1 lat 2 latvel(t) 2 3.0°

, lateq (i) , latvel (teq (i))

1 lat 2 latvel (t) 1 3.0° (2)

The inequality condition in Eq. 2 effective-
ly sweeps out a latitude band 6° in width
that is parallel to the latvel (t) versus t curve
and sums the magnitude of earthquakes oc-
curring within that band. The normaliza-
tion factor A(lat,t) is proportional to the
area swept out by this band and corrects for
the fact that bands near the corners of the
latitude-time window are smaller than

those near the middle diagonal. This corre-
lation function enforces a strictly banded
structure parallel to latvel (t). An alternative
definition of Eq. 1 could involve either
number of events or seismic moment rather
than Mb, but results are similar in all cases.
As shown in Fig. 2, the observed seismicity
is correlated with passage of the velocity
front generated by the great Aleutian and
Kurile-Kamchatka events of 1952 to 1965.
The structure of f (lat,t) is asymmetric about
its maximum central band, implying, if our
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model is correct, that passage of the front
generally initiated vigorous seismic activity
in a given region, and seismic activity con-
tinued for a number of years. This analysis
cannot discriminate between continued ac-
tivity triggered directly by the velocity front
and secondary activity triggered by stress
changes generated by the initial activity,
but it does suggest that accumulated tran-
sient displacement (time-integrated tran-
sient velocity) along a particular plate mar-
gin plays an important role.

Ultimately, of course, it is accumulated
stress changes that probably trigger earth-
quakes. At a neighboring mid-ocean ridge
system such as the Juan de Fuca ridge sys-
tem, lithospheric thickness shallows to less
than 5 km, and partially molten material

distributed in magma chambers and dikes is
present. It seems likely that an increase in
velocity of one of the bounding oceanic
plates would lead to rapid stress concentra-
tion in the axial rift zone and subsequent
seismic or aseismic failure of the rift seg-
ments at anomalously high rates. Increased
seismicity rates on short offset transform
faults such as the Blanco and Mendocino
fracture zones may similarly result from
intense stress concentration in the weak
transform fault zone, compounded by load-
ing from the more rapidly opening rift
zones that bound them. Finally, near an
ocean-continent boundary such as just
west of the San Andreas Fault (SAF), the
upper crust is likely to be weaker than the
oceanic lithosphere with which it is in

contact, and the lower crust is also weak.
In this case, strains induced on the conti-
nental side should depend predominantly
on the local displacement of the oceanic
side, although the mechanism of strain
accumulation within the continental crust
is uncertain.

Predicted postseismic North American
plate velocity has generally been directed
away from both the eastern Arctic and
Juan de Fuca spreading systems, promoting
rifting, and reached peaks in the late
1970s in both regions. If the background
North America–to–Eurasia separation
rate is prescribed by the model NUVEL-
1A (15) and postseismic velocity is pre-
sumed to represent transient North Amer-
ican velocity with respect to a fixed Eur-
asia, then the background and transient
velocities may be superimposed to obtain a
time-dependent separation rate. The tran-
sient component is predicted to have been
up to 1 cm year21 in the eastern Arctic
basin, where the background component
varies from 0.4 to 1.2 cm year21. Seismic-
ity patterns of all eastern Arctic events
with Mb $ 5.0 [since 1955, from which
date the catalogue is believed to be com-
plete for Mb $ 5.0 (16)] exhibit a good
correlation with the summed velocity pat-
tern (Fig. 3A). Seismicity rates along the
entire eastern Arctic ridge system exhibit
an increase from one time period to the
next, and the part of the oceanic rift
system nearest the Asian continent under-
went the largest velocity increase and larg-
est increase in seismicity rate, as measured
by moment release.

In central California (35° to 39°N), the
transient Pacific plate motion is predicted
to have reached a maximum 2.6 mm year21,
toward N40°W in 1980–1985 (parallel to
the SAF); and in southern California south
of the Big Bend region (32° to 35°N), the
transient motion is predicted to have
reached a maximum of 1.7 mm year21 to-
ward N39°W in 1985–1990 (25° to 30°
oblique to the SAF, increasing compres-
sional stress across the fault system near the
Big Bend) (Fig. 3B). The direction of tran-
sient motion in both regions is nearly par-
allel to the background motion prescribed
by NUVEL-1A. In northern California, the
transient velocity increase, as manifested by
the accumulated transient displacement, is
well correlated with the observed increase
in predominantly strike-slip activity. In
southern California, the temporal increase
in observed seismicity since the 1971 San
Fernando earthquake also closely follows
accumulated displacement. Although the
overall seismicity rate in southern Califor-
nia was approximately constant from 1969
to 1992 (17), between latitudes 34°N and
35°N the rate of occurrence of non-SAF–
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mechanism solution is available. Heavy arrows plotted for 1955–1963 indicate background motion of
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derived from all regional earthquakes within the boxed region of Fig. 1B of magnitude $ 5.0 (14) and the
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event) or the tension axis with azimuth S2°W (the 1991 event).
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type events has been particularly high since
1986 (18). This increase in non-SAF–type
events has been attributed (18) to a tran-
sient increase in the component of Pacific–
to–North America (P-NA) relative plate
velocity that is normal to the SAF in south-
ern California, and our model provides a
mechanism for this transient increase.

Although there may be a correlation of
plate-boundary seismicity over the entire
western North America margin with the
predicted stress pulse propagation in the
adjacent Pacific oceanic lithosphere, it
does not imply a causal mechanism for
every earthquake but rather a causal rela-
tionship with transient oceanic velocity in
a statistical sense. Our analysis therefore
suggests, but does not require, a major role
for external triggering of California earth-
quakes since about 1979. This idea con-
nects well with the hypothesis that north-
ern California emerged from the stress
shadow created by the 1906 San Francisco
earthquake in the 1980s (19), making the
region particularly susceptible to external
triggering. The triggering of California
earthquakes at a relatively high threshold
(Mb $ 5.0 to 5.3), as implied by our
analysis, suggests that a transient velocity
increase applied to the edge of a continen-
tal shear zone may concentrate transient
stresses deep within the seismogenic layer
(15 to 20 km depth) where larger events
are typically initiated. Efforts to identify
the predicted accelerations (about 2 mm

year21 over the period 1965/1970–1980/
1985) are inconclusive. Accurate space-
based geodetic data have been available
since 1983 in California, at which time
most of the acceleration had already taken
place. Repeated geodolite measurements
made since the early 1970s within several
southern California networks (20) may
have potential for resolving a transient
acceleration, but the small signal that we
predict is likely to be at the limit of de-
tectability of these networks.

Two intraplate oceanic earthquakes may
have been triggered by the postseismic
stress diffusion. These are the Mb 5 5.5
event on 28 April 1968 in the northern
Pacific basin, which has a thrust mecha-
nism (21), and the Mb 5 6.8 Bering Sea
earthquake on 21 February 1991, charac-
terized as a combined strike-slip and rift-
ing event (22). By calculating the geo-
graphic distribution of strain rate ėxx,
where x is oriented parallel to either the
pressure axis (the 1968 event) or tension
axis (the 1991 event), we find that each
event is located in a region where local
strain rates promoting triggering were
strong at their time of occurrence (Fig.
3C). The associated accumulated postseis-
mic stress change sxx is calculated at 0.3 and
0.8 bars for the 1968 and 1991 events, re-
spectively. Such a stress change is often
sufficient to trigger comparable continental
seismicity (23), especially considering that
the respective source areas were probably

preexisting zones of weakness (22, 24).
The correlations with the oceanic in-

traplate events in Fig. 3C are found to break
down for h , 3 3 1017 Pazs, whereas h .
8 3 1017 Pazs still produces correlations but
involves stress changes one order of magni-
tude lower. The obtained correlations with
western North American seismicity imply
that if h 5 8 3 1017 Pazs, then most of the
acceleration in seismic activity would take
place long before passage of the velocity
front, and if h 5 3 3 1017 Pazs, most seismic
activity would occur long after it; the no-
tion that transient rates are relatively high
for h 5 3 3 1017 Pazs would further aggra-
vate this problem. A similar argument ap-
plies to east Arctic ridge seismicity. Finally,
to produce the same diffusion behavior with
a thicker lithosphere would require greater
asthenospheric viscosity. Given our choice
for the lithospheric thickness, our preferred
value is h 5 5 3 1017 Pazs, which is com-
patible with the data in the Arctic and
north Pacific basins. The overall viscosity
structure we infer (13) agrees well with the
viscosity structure beneath a mid-ocean
ridge, based on the physical properties of
wet olivine aggregates (25). Our results im-
ply that the evolution of off-ridge-axis oce-
anic mantle preserves the essential features
of the ridge-axis viscosity structure. Small-
scale convection, which may act to “flat-
ten” age-depth and age-heat flow relation-
ships for the oceanic lithosphere (26), may
produce a similar flattening of the off-ridge
viscosity structure.

Detectable transient velocities are pre-
dicted even very far (;4000 km) from the
Aleutian trench in the mid-Pacific, where
Global Positioning System (GPS) and
Very Long Baseline Interferometry (VLBI)
data can be evaluated. Figure 4A shows
P-NA anomalous horizontal velocity at
several Pacific geodetic sites, with relative
motion model NUVEL-1A serving as the
reference model (27). The predictions of
the viscoelastic coupling model are super-
imposed. The general agreement between
the internal Pacific strain patterns pre-
scribed by our model and the geodetic
observations is best demonstrated by refer-
ring the anomalous velocities obtained in
Fig. 4A to a different P-NA angular ve-
locity vector v which we derive (28). The
anomalous velocities relative to the de-
rived v are shown in Fig. 4B. An objective
measure of the internal deformation of the
Pacific plate based on these geodetic mea-
surements is

s2 5
1

12 O
i 5 1

12

~gi!
2 1 ~bi!

2 (3)

where {gi} and {bi} represent the set of all
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Fig. 4. (A) Anomalous GPS
(light arrows) and VLBI
(heavy arrows) velocities
with respect to the P-NA
velocity predicted from
model NUVEL-1A. VLBI ve-
locity plotted at KOKB has
been averaged over three
Hawaiian VLBI sites. These
anomalous velocities have
been derived from GPS and
VLBI velocities at Pacific
and selected North Ameri-
can sites. Observed anom-
alous velocities are shown
with the corresponding 1s error ellipses. Dashed
arrows show the transient velocity predicted
from our viscoelastic coupling model. Observa-
tions and predictions correspond to the time
periods 1984–1988 (VLBI site KWAJAL26),
1988–1992 (VLBI site MARCUS), 1991–1997
(GPS site KOKB), 1992–1997 (GPS site PAMA),
and 1984/1993–1996 (VLBI Hawaiian sites). (B)
Anomalous GPS and VLBI velocities with re-
spect to the velocity predicted from our derived
P-NA angular velocity vector. (C) Distribution of
s2 (Eq. 3) resulting from 10,000 realizations of a
data perturbation procedure described by (35),
designed to test the likelihood that the low s2

obtained after accounting for our calculated
transient effects could be due to chance.
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angle changes and relative arc length
changes among all four spherical triangles
that can be constructed from the four mid-
Pacific geodetic sites. This measure is in-
variant with respect to a rigid rotation of
the velocity field and contains information
on mean shear strain and dilatation within
this broad network. The mean observed s2

is 1.06 (1029 rad)2, and after correction for
transient velocities this measure decreases
to 0.27 (1029 rad)2; that is, a reduction of
75%. A numerical perturbation simulation
using the error distribution of the data
shows that the probability that this reduc-
tion could be explained with observation
error alone is 0.7% (Fig. 4C).

Although geodetic observations made
near plate boundaries are often acknowl-
edged as being susceptible to the transient
effects of earthquakes, our analysis sug-
gests that even areas well within a plate
interior may be susceptible to substantial
and tangible transient effects from plate
boundary earthquakes. Our model makes
concrete predictions regarding transient
Pacific Plate velocity that are testable
with present and future space-based geo-
detic data. From the results obtained here,
it appears likely that the Pacific litho-
sphere has been subjected to substantial
spatially and temporally varying velocity
fluctuations over the past four decades,
and that the assumption of rigid behavior
of the oceanic lithosphere, which has been
so successful in explaining global plate
motions averaged over very long time pe-
riods, may be of questionable validity on a
time scale of years to decades.
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