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Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations

Steven R. Pride*
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For the purpose of understanding the acoustic attenuation of double-porosity composites, the key macro-
scopic equations are those controlling the fluid transport. Two types of fluid transport are present in double-
porosity dual-permeability materials:~1! a scalar transport that occurs entirely within each averaging volume
and that accounts for the rate at which fluid is exchanged between porous phase 1 and porous phase 2 when
there is a difference in the average fluid pressure between the two phases and~2! a vector transport that
accounts for fluid flux across an averaging region when there are macroscopic fluid-pressure gradients present.
The scalar transport that occurs between the two phases can produce large amounts of wave-induced attenu-
ation. The scalar transport equation is derived using volume-averaging arguments and the frequency depen-
dence of the transport coefficient is obtained. The dual-permeability vector Darcy law that is obtained allows
for fluid flux across each phase individually and is shown to have a symmetric permeability matrix. The nature
of the cross coupling between the flow in each phase is also discussed.
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I. INTRODUCTION

This is the second of two papers dedicated to obtain
macroscopic governing equations for double-porosity du
permeability composite materials. In the first paper~Paper I!,
the governing equations were derived. The frequency dep
dence of the acoustic attenuation predicted from these e
tions depends strongly on the internal mesoscopic flow
tween the constituents. Thus, in this paper~Paper II!, the
fluid transport laws governing wave-induced fluid flow a
studied in greater detail. The Biot theory of porous-me
acoustics@1,2# ignores all wave-induced flow at mesoscop
scales. It is well known that Biot’s theory is not capable
explaining the measured level of acoustic attenuation in
rous rocks@3#. The theory developed in the present two p
pers provides one approach for doing so.

In Paper I @4#, it was established in particular that th
macroscopic governing equations controlling the linear
sponse of isotropic double-porosity composites, when
e2 ivt time dependence is assumed, take the form

“• t̄ D2“ p̄c52 iv~rv1r fq11r fq2!2rg, ~1!

Fq1

q2
G52

1

h Fk11 k12

k12 k22
GF“ p̄f 12r f~ ivv1g!

“ p̄f 22r f~ ivv1g!
G , ~2!

1

iv F “•v

“•q1

“•q2

G5F a11 a12 a13

a12 a22 a23

a13 a23 a33

GF p̄c

p̄f 1

p̄f 2

G1F 0

z int

2z int

G , ~3!
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2 ivz int5g~v!~ p̄f 12 p̄f 2!, ~4!

2 iv t̄ D5@G2 ivF#F“v1~“v!T2
2

3
“•vI G . ~5!

See Paper I for the definition of the various fields. Wh
needs to be established further in the present paper is
detailed nature of transport coefficients in Eqs.~2! and ~4!.

As demonstrated in Paper I, only two aspects of the m
roscopic fluid pressure response are driving fluid transpor
this theory:~1! the difference between the average fluid pre
sures in each phasep̄f 12 p̄f 2 is responsible for the scala
transportż int internal toV; and~2! the average drop in fluid
pressure from one side of a constituent averaging regio
the other¹ p̄f 1 and¹ p̄f 2 is responsible for the vector trans
port qi acrossV i . For the isotropic composites being treat
here, there is no coupling between the tensorial orders of
flow @5#. Due to the linearity of the physics, we choose
resolve the fluid transport into a scalar part defined w
p̄f iÞ0 and “ p̄f i50, for i 51,2, that defines the interna
transfer between the constituents, and into a vector par
which p̄f i50 and “ p̄f iÞ0 that defines the macroscop
~Darcy! flow within each constituent. The sum of these tw
contributions gives the total fluid transport within~and
across! each averaging volumeV.

Section II presents the analysis of the internal fluid tra
port in the composite double-porosity medium. Section
presents the macroscopic flow laws. Our conclusions
summarized in the final section. A technical appendix d
scribes a specific model calculation used to motivate som
the conclusions in Sec. III.

II. INTERNAL FLUID TRANSFER

In what follows, the internal fluid transferż int is shown to
obey a transport law of the form
©2003 The American Physical Society04-1
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ż int5E
0

`

dt8G~ t8!@ p̄f 1~ t2t8!2 p̄f 2~ t2t8!#, ~6!

as has already been anticipated from the statement of
energy-dissipation rate given in Eq.~42! of Paper I. The
relaxation functionG(t) can be expressed as

G~ t !5
1

2pE2`

`

dvg~v!e2 ivt, ~7!

so that in the frequency domain this transport law takes
form @Eq. ~71! of Paper I#

2 ivz int~v!5g~v!@ p̄f 1~v!2 p̄f 2~v!#, ~8!

i.e., such internal transport occurs to the extent that the
erage fluid pressures in each phase are different.

We determine the transport coefficientg(v) by treating
the particular situation in which a sealed sample of the co
posite is immersed in a reservoir whose pressure may
controlled. Such an isolated sealed sample will have no
macroscopic fluid flux across either phase (qi50), which is
equivalent to the desired macroscopic conditions of“ p̄f i
50. The approach taken to determineg(v) is essentially
that of Johnsonet al. @6#. The idea is to determine the natu
of ż int in the limit of both low and high frequencies and the
to connect the frequency dependence in these two limits
simple postulated function of frequency satisfying causa
constraints. Johnson@7# has also recently applied very sim
lar ideas to the problem of patchy saturation in porous me

Assuming that a sealed sampleV of the double-porosity
composite is immersed in a fluid reservoir whose press
varies in time asDPe2 ivt, the local fluid pressurespf i in
each phasei 51,2 are determined from the following diffu
sion problem@obtained from Eqs.~1!–~4! of Paper I with
definitions of the various local fields as given there#:

ki

h
¹2pf i1 iv

a i

KiBi
pf i5 iv

a i

Ki
pci , ~9!

subject to the sealed-sample boundary condition

n•“pf i50 on ]V i , ~10!

and to the continuity conditions

@pf i #50

and

@kin•“pf i #50 on ]V12. ~11!

The square brackets in the continuity conditions mean
evaluate the jump in the stated quantity across the interf
As in Paper I, the sample volume is being partitioned in
phase 1 and phase 2 portionsV5V11V2 as is the externa
surface of the sample]V5]V11]V2. The internal surface
separating the two phases are again denoted by]V12.

In general, when the two phases have arbitrary geom
and elastic properties, the local confining pressure chan
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pci acting as the source term in Eq.~9! need not be uniform
throughout their respective regions. To determine thepci ,
the following equations are therefore required:

“•t i
D5“pci , ~12!

t i
D5Gi@“ui1“ui

T2 2
3“•ui I #, ~13!

pci52Ki“•ui1a i pf i , ~14!

subject to the boundary conditions

n•~t i
D2pciI !52nDP on ]V i , ~15!

@ui #50

and

@n•~t i
D2pciI !#50 on ]V12. ~16!

This set of differential equations@Eqs.~9!–~16!# is what con-
trols the local internal fluid transfer.

A. Low-frequency limit

In the limit asv→0, the above fields may be develope
as perturbation expansions in2 iv,

pf i5pf i
(0)2 ivpf i

(1)1O~v2!, ~17!

pci5pci
(0)2 ivpci

(1)1O~v2!, ~18!

and equivalently forui andt i
D . Note, however, that the tota

confining pressurep̄c5v1p̄c11v2p̄c25DP is independent
of frequency.

The zero-order fluid pressure response is governed by

¹2pf i
(0)50, ~19!

n•“pf i
(0)50 on ]V i , ~20!

@kin•“pf i
(0)#50

and

@pf i #50 on ]V12. ~21!

This boundary-value problem has the unique solutionpf 1
(0)

5pf 2
(0)5BoDP ~a uniform constant!.

To determineBo ~the zero-frequency or ‘‘single porosity’
Skempton’s coefficient@8# of the composite!, the second and
third lines of Eq. ~3! are added under sealed conditio
(“•qi50) to obtain

05~a121a13! p̄c1~a221a23! p̄f 11~a231a33! p̄f 2 ,

~22!

where ai j are given by Eqs.~64!–~69! of Paper I. If the
perturbation expansions for the fluid pressures are introdu
and if terms are grouped by common factors of2 iv, one
obtains
4-2
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p̄f i
(0)

DP
[Bo52

a121a13

a2212a231a33
, ~23!

p̄f 2
(1)

p̄f 1
(1)

52
a221a23

a331a23
. ~24!

However, Eq.~24! will not be needed in what follows.
The leading-order correction to uniform fluid pressure

thus governed by the Poisson problem

ki

h
¹2pf i

(1)5
a i

Ki
Fpci

(0)2
Bo

Bi
DPG , ~25!

subject to the previously stated no-flow condition on]V i and
continuity conditions on]V12. The zero-order confining
pressure that acts as the source term is given by

pci
(0)52Ki“•ui

(0)1a iBoDP. ~26!

The displacement fieldsui
(0) are now scaled as

ui
(0)~r !52

12a iBo

Ki
DPsi~r !, ~27!

where si are applied-pressure-independent displacem
fields satisfying the well-posed problem

m i¹
2si1S 11

m i

3 D““•si50 in V i , ~28!

subject to the boundary conditions on]V i

m in•S“si1“si
T2

2

3
“•sID1~12a iBo!“•sin

5~12a iBo!n, ~29!

and to the two continuity conditions across]V12

Fm in•S“si1“si
T2

2

3
“•sID1~12a iBo!“•sin1a iBonG

50, ~30!

F12a iBo

Ki
si G50. ~31!

A dimensionless shear modulusm i[(12a iBo)Gi /Ki has
been introduced. Such scaling of the displacements resul
u“•si u'O(1), as isseen in Eqs.~28! and ~29!.

Having established these results, we can now addres
low-frequency behavior ofż int . As v→0, the definition of
ż int @Eq. ~27! of Paper I# along with the fact that“pf i

(0)50,
so that to leading order in2 iv we have n•q12

5 ivk1n•“pf 1
(1)/h5 ivk2n•“pf 2

(1)/h on ]V12, defines the
integral

2 ivz int5
iv

V

k1

h E
]V12

n•“pf 1
(1)dS1O~v2!. ~32!
03660
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This integral is obtained by integrating Eq.~25! over all of
V1 and applying the divergence theorem

k1

h

1

VE]V12

n•“pf 1
(1)dS5

a1

K1
v1S p̄c1

(0)2
Bo

B1
DPD . ~33!

If Eq. ~55! of Paper I is used forp̄c1
(0) along with the facts that

p̄c5DP and p̄f 1
(0)5 p̄f 2

(0)5BoDP, the exact low-frequency
limit is obtained as

2 ivz int52 iv@a121Bo~a221a23!#DP1O~v2!. ~34!

It has been verified algebraically that this result is unchan
if throughout Eq.~33!, the index 1 is replaced by 2 andn is
replaced by2n.

The next step needed in order to define the transport
efficient g(v) requires us to replace2 ivDP by p̄f 12 p̄f 2.
An average of Eq.~17! gives

p̄f 12 p̄f 252 iv~ p̄f 1
(1)2 p̄f 2

(1)!1O~v2!. ~35!

Because Eqs.~25!–~31! governing the responsepf i
(1) are lin-

ear inDP, we can define aDP independent material prop
erty Y as

Y5
p̄f 1

(1)2 p̄f 2
(1)

DP
. ~36!

Thus, in the transport law2 ivz int5go@ p̄f 12 p̄f 2#1O(v2),
we can identify the low-frequency transport coefficientgo
5 lim

v→0
g(v) as

go5@a121Bo~a221a23!#/Y. ~37!

However, for the theory to be useful, the material prope
dependencies ofY need to be specified. To do so analytica
requires approximations to be invoked.

In practice, phase 2 is envisioned to be either small po
ets embedded within a larger body of phase 1 material o
be in the form of thin through-going joints. In the idealiz
tion that either the pockets can be modeled as ellipsoid
that the joints are planar~and have intersection volumes th
can be considered negligible!, Eqs.~28!–~31! are solved ex-
actly by the deformation tensor“si5I /3, with “•si51,
which corresponds to uniform confining pressure through
both phases. Using this approximation, the equations gov
ing pf i

(1) can be written as

k1

h
¹2pf 1

(1)5S 12
Bo

B1
D a1

K1
DP in V1 , ~38!

k1

h
¹2pf 2

(1)5
k1

k2
S 12

Bo

B2
D a2

K2
DP in V2 , ~39!

with the boundary conditions

n•“pf i
(1)50 on ]V i , ~40!
4-3
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n•“pf 2
(1)5

k1

k2
n•“pf 1

(1) on ]V12, ~41!

pf 1
(1)5pf 2

(1) on ]V12, ~42!

where the right-hand sides of Eqs.~38! and ~39! are now
spatially uniform constants.

To simplify further, we now use the fact that the perm
ability ratio k1 /k2 can be considered a small number in
most any application where a dual-permeability model
likely to be necessary. In thek1 /k2→0 limit, the phase 2
responsepf 2

(1)(r )5 p̄f 2
(1) becomes a spatial constant. The pha

1 response can then be written as

pf 1
(1)~r !5 p̄f 2

(1)2
h

k1
S 12

Bo

B1
D a1

K1
DPF1~r !, ~43!

where the potentialF1(r ) has units of length squared an
satisfies the purely geometric problem

¹2F1521 in V1 , ~44!

n•“F150 on ]V1 , ~45!

F150 on ]V12. ~46!

In analogy to Johnson’s treatment@7# of patchy saturation,
sinceF1 has units of length squared, a lengthL1 is intro-
duced by defining

L1
2[

1

V1
E

V1

F1dV5
1

V1
E

V1

“F1•“F1dV. ~47!

Multiplying both sides of Eq.~44! with F1 and then integrat-
ing easily demonstrates the equality of the integrals in
~47!. The lengthL1 defines the average distance over wh
the fluid-pressure gradient still exists in phase 1 in the fi
stages of equilibration. With these results,Y can be written
as

Y52
h

k1
S 12

Bo

B1
D a1

K1
L1

2 ~48!

to leading order ink1 /k2.
The same geometric approximation“•si51 that yielded

Eq. ~48! for Y, also requires the composite’s drained bu
modulus to be the harmonic mean 1/K5v1 /K11v2 /K2 in
which caseQ15Q251. Because of this, the numerator
go5@a121Bo(a221a23)#/Y can be further reduced allowin
go to be expressed in the final form

go5
v1k1

hL1
2

. ~49!

The dependence on the mesoscopic geometry of the
phases enters throughL1.

In the special case in which phase 2 is a small spher
radius r 5a surrounded by a spherical shell of phase 1,
that the composite sphere has a total radius ofr 5R ~i.e.,
03660
-

s

e

.

l

o
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o

phase 1 lies withina,r ,R), we can determineF1 by in-
tegrating the Laplace equation Green function over phas
The Green functionc satisfying¹2c52d(r2ro) and the
boundary conditions of]c/]r 50 on r 5R and c50 on r
5a can be built up exactly from the infinite-space Gre
functionc`5(4pur2rou)21 using a standard cascade of im
ages of the source pointro . Upon further averaging of the
resultingF1 throughout phase 1, we obtain to leading ord
in a/R ~only the first two images of the infinite sequence a
retained to this order!,

L1
25

9

14
R2F12

7

6

a

R
1O~a3/R3!G . ~50!

This estimate ofL1 will be used in the numerical results o
the final section. Note that all reference toR may be elimi-
nated using the phase 2 volume fractionv25(a/R)3 or R
5av2

21/3. In this case,

L1
25 9

14 a2v2
22/3@12 7

6 v2
1/31O~v2!#. ~51!

B. High-frequency limit

If the applied confining pressure is changing at su
ciently high frequencies, the fluid pressure from the const
ent with the higher average fluid pressure has time to inv
only a small distance into the lower-pressure phase. In
limit v→`, the fluid-pressure penetration can always
modeled as a locally one-dimensional process in the vicin
of ]V12.

To study this limit, we employ a set of curvilinear coo
dinates (x,y,z) having metrical coefficientshx ,hy ,hz in
which the surfacex50 defines the interface]V12 and where
x.0 corresponds locally to phase 1. We assume that asuxu
→0 from either side, the metrical coefficients become ind
pendent ofx; i.e., sufficiently close tox50, the curvilinear
coordinates become a set of ‘‘normal coordinates’’ in whi
x/hx is a simple coordinate of linear distance even thougy
and z remain curvilinear. Asv→`, the solution of Eq.~9!
takes the form~cf. Ref. @7#!

pf 1~x,y,z!5pf 1
out~x,y,z!1C1~y,z!eiAiv/D1x/hx, ~52!

pf 2~x,y,z!5pf 2
out~x,y,z!1C2~y,z!e2 iAiv/D2x/hx, ~53!

where the diffusivitiesDi are defined as

Di5
ki

h

BiKi

a i
for i 51,2, ~54!

and where the outer fluid-pressure fields that hold eve
where except in a vanishingly small neighborhoodADi /v of
the interface]V12 are defined as the undrained respon
pf i

out5Bipci
out. The constantsC1 and C2 will be determined

presently from the continuity conditions onx50.
Upon introducingpf i

out5Bipci
out and the scaled displace

ments ui
`(r )52(12a iBi)DPsi

`(r )/Ki into Eq. ~14!, the
outer confining pressures may be written as
4-4
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pci
out5DP“•si

` , ~55!

pf i
out5BiDP“•si

` . ~56!

The applied-force-independent displacementssi
` satisfy

m i
`¹2si

`1S 11
m i

`

3 D““•si
`50, ~57!

subject to the boundary condition on]V i

m i
`n•~“si

`1“si
`T2 2

3“•si
`I !1“•si

`n5n, ~58!

and to the continuity conditions on]V12

@m i
`n•~“si

`1“si
`T2 2

3“•si
`I !1“•si

`n#50, ~59!

Fm i
`

Gi
si
`G50. ~60!

The parameterm i
`[(12a iBi)Gi /Ki is the dimensionless

shear coefficient appropriate at high frequencies. As at l
frequencies, even though each porous constituent is unif
throughout the averaging volume, the local frame dilatatio
“•si

` need not be uniform in general.
To determine the coefficientsC1(y,z) and C2(y,z), we

employ the fluid-flow continuity conditions of Eq.~21! on
]V12

Fkihx

]pf i
out

]x
1 i 3/2Av

ki

ADi

Ci G50, ~61!

@pf i
out1Ci #50. ~62!

In the limit v→`, the terms proportional to]pf i
out/]x are

negligible so that

C152
k2 /AD2

k1 /AD11k2 /AD2

@pf 1
out2pf 2

out#, ~63!

C25
k1 /AD1

k1 /AD11k2 /AD2

@pf 1
out2pf 2

out#, ~64!

where the outer pressure fields are being evaluated alox

50. Using the definition ofż int @Eq. ~27! of Paper I# then
gives that asv→`,

2 ivz int;
i 3/2Av

h

~k1 /AD1!~k2 /AD2!

k1 /AD11k2 /AD2

3
S

V
@^pf 1

out&s2^pf 2
out&s#, ~65!

where ^ &s denotes an average over the interface reg
]V12, and whereS is the total area of]V12 contained within
the averaging region of volumeV.

There is no reason, in general, why the surface aver

^pf i
out&s must be equal to the volume averagep̄f i

out for small
03660
-
m
s

n

ge

volumes~but for large volumes it is expected that the tw
values will converge!. Thus, we usepf i

out5BiDP“•si
` to de-

fine the dimensionless material property

u5
^pf 1

out&s2^pf 2
out&s

p̄f 1
out2 p̄f 2

out
~66!

5
S21*]V12

~B1“•s1
`2B2“•s2

`!dS

V1
21*V1

B1“•s1
`dV2V2

21*V2
B2“•s2

`dV
. ~67!

With this definition, we again obtain the transport la
2 ivz int5g(v)@ p̄f 12 p̄f 2# of interest but now with an
asymptotic frequency dependence given by

g~v!;
i 3/2Av

h

~k1 /AD1!~k2 /AD2!

k1 /AD11k2 /AD2

S

V
u ~68!

asv→`. Thus, the fluid volumez int exchanged between th
two phases tends to zero as 1/Av in the limit asv→`.

For those special cases considered earlier in which
strains“•si

` are uniform throughout the composite~e.g.,
whenG15G2 or for certain conformally layered composite
including rectangular networks of thin joints! we find that
u51, and thatu also approaches unity in general when t
volume becomes very large.

C. Full model for g„v…

To connect the low- and high-frequency behavior
g(v), we use the simple function

g~v!5goA12 i
v

vc
, ~69!

where the relaxation frequencyvc is defined as

vc5FhSAD1

k1
1

AD2

k2
D V

S

go

u G2

~70!

5
hB1K1

k1a1
S V

S

go

u D 2S 11Ak1B2K2a1

k2B1K1a2
D 2

. ~71!

Equations~69! and~71!, along with Eq.~49! for go , are the
results of interest here. As required for a causal response,
zeros or singularities of eitherg(v) or 1/g(v) must lie in
the lower half of the complex-v plane when there is an as
sumede2 ivt time dependence; i.e., bothg(v) and 1/g(v)
must be analytic everywhere in the upper-halfv plane in-
cluding the entire realv axis. The above model forg(v)
satisfies these important constraints since the only singula
is a branch point atv52 ivc . Finally, since the inverse
transform ofg(v) must be the real functionG(t), we must
haveg(v)* 5g(2v* ), which is also seen to be satisfied b
formula ~69!.

In practice, the square-root term in Eq.~71! can be ne-
glected relative to unity in any situation where a doub
porosity theory is likely to be necessary~both k1 /k2 and
4-5
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K2 /K1 are small!. We will normally assume thatu'1 as
well, with go given by Eq.~49!.

III. MACROSCOPIC FLOW LAWS

A. Problem statement

We imagine an averaging volume in the form of a circu
disk with sealed boundary conditions on the outer circum
ential face and fluid-pressure boundary conditions applie
the two flat faces. The axis of this disk is defined as
z direction so that the two flat faces reside atz52H
andz5H.

We consider two applied forcing states, the sum of wh
gives the total flux. In the first state, denoted with a sup
script a, a pressure drop is applied across phase 1, w
maintaining no pressure drop across phase 2:

pf 1
a ~r !5H DP1 , z5H

2DP1 , z52H,
pf 2

a ~r !5H 0, z5H

0, z52H.
~72!

In the second state, denoted with a superscriptb, the pressure
drop is applied to phase 2:

pf 1
b ~r !5H 0, z5H

0, z52H,
pf 2

b ~r !5H DP2 , z5H

2DP2 , z52H.
~73!

In writing these conditions, we have takenp̄f 1,2
a,b 50. As is

fairly straightforward to demonstrate~e.g., Ref. @9#!, the
boundary conditions of Eqs.~72! and ~73! are equivalent to
the presence of uniform force densities in each phase of
form (DP1,2/H) ẑ. The frame of reference for the relativ
flow is the framework of grains that, in the presence
waves, is accelerating asv̇. Thus, in identifying the pressur
dropsDPi , the uniform inertial forcer f( v̇2g) must be in-
cluded to give

DPi

H
5 ẑ•@“ p̄f i1r f~ v̇2g!#. ~74!

As per the treatment of Pride and Flekkoy@9#, the identifi-
cation in Eq.~74! is independent of both the average flu
pressure in each phasep̄f i and the presence of volume
fraction gradients“v i . The only requirement is that the vo
ume fractionsv i be well approximated by the area fractio
determined on the two flat faces

v i5
Ai~z51H !1Ai~z52H !

2A
, ~75!

whereA is the area of one of the two flat faces and whe
Ai(z56H) is the area of each flat face that is occupied
phasei. See Pride and Flekkoy@9# for a discussion of the
conditions required for Eq.~75! to be a good approximation

Further comment is in order when the applied press
drops are changing in time ase2 ivt. For the problem of
linear wave propagation through the composite, the fl
03660
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pressure gradients are created by compression of the fra
work of grains on time scales dictated by the compressio
wave speed. So long as the wavelengths of the comp
sional wave remain large relative toH, the identification of
Eq. ~74! remains valid~i.e., the macroscopic fluid pressur
gradients are created essentially instantaneously relativ
the time 1/v). Other than for the overall pressure dropDPi
across each phase associated with the wavelength-s
variations of the fluid pressure, our modeling ofż int has al-
ready accounted for all aspects of the heterogeneous
pressure response in the composite. Thus, the local D
flow induced by the wave may properly be taken to be so
noidal (“•Qi50) in the present section.

However, if laboratory measurements are performed
applying time harmonic pressures to fluid reservoirs t
connect to the facesz56H, then to use the present descri
tion for interpreting the measurements, the time (2H)2/Di
required to establish the macroscopic pressure grad
@where Di is the fluid-pressure diffusivity defined in Eq
~54!# must be much smaller than 2p/v. If 2H is taken to be
the smallest length that contains within it the pertinent m
soscopic variation of the two constituents, then the maxim
applied frequencyf that can be treated isf max5Di /(8pH2).

The governing equations that complement the ab
boundary conditions on the external surface are thus

¹2pf i
a,b50 in V i , ~76!

pf 1
a,b5pf 2

a,b on ]V12, ~77!

n•“pf 2
a,b5en•“pf 1

a,b on ]V12, ~78!

wheree(v)[k1(v)/k2(v) is the ratio of the intrinsic per-
meabilities. The frequency dependence in the intrinsic p
meabilities is again that due to the development of visc
boundary layers in the pores~a proper model having bee
given previously by Johnsonet al. @6#!. The elliptic problem
presented by Eqs.~76!–~78! exhibits no frequency relaxation
other than whatever is contained withine(v).

Our averaging disk has a total volume ofV52AH. The
definition of the macroscopic fluxqi

a,b @Eq. ~22! of Paper I#
that corresponds to the above problem is then

q2
a,b52

k2

h

ẑ

2A F E
z51H

ẑ•“pf 2
a,bdS1E

z52H
ẑ•“pf 2

a,bdSG ,
~79!

q1
a,b52

k2e

h

ẑ

2A F E
z51H

ẑ•“pf 1
a,bdS1E

z52H
ẑ•“pf 1

a,bdSG .
~80!

From the linearity of the physics as well as the assum
isotropy of the double-porosity composite, we can imme
ately write the macroscopic Darcy law as

Fq1

q2
G5Fq1

a1q1
b

q2
a1q2

bG ~81!
4-6
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5
21

h Fk11 k12

k21 k22
G F“ p̄f 11r f~ v̇2g!

“ p̄f 21r f~ v̇2g!
G . ~82!

In terms of our above statement of the boundary-value pr
lem, the four permeability coefficients are defined by

k11

h
5

uẑ•q1
au

DP1 /H
,

k12

h
5

uẑ•q1
bu

DP2 /H
,

k21

h
5

uẑ•q2
au

DP1 /H
,

k22

h
5

uẑ•q2
bu

DP2 /H
. ~83!

B. Reciprocity

Using all of these results, the reciprocity conditionk12
5k21 will now be proven. We first form the products

pf 1
b @¹2pf 1

a # and pf 1
a @¹2pf 1

b #, ~84!

both of which vanish from Eq.~76!. Equivalent expression
~replace 1 with 2! hold for phase 2. Taking the difference o
these expressions gives

“•@pf 1
b
“pf 1

a 2pf 1
a
“pf 1

b #50, ~85!

which upon integrating overV1, dividing by V52AH, and
appealing to the divergence theorem and the boundary
ditions of Eqs.~72! and ~73! yields

DP1

H

1

2A F E
z51H

ẑ•“pf 1
b dS1E

z52H
ẑ•“pf 1

b dSG
52

1

VEV12

n•@pf 1
b
“pf 1

a 2pf 1
a
“pf 1

b #dS. ~86!

Using Eq. ~80! for the definition of the macroscopic flu
along with the above definition ofk12 allows us to write

DP1DP2

H2

h

k2
k1252

e

VEV12

n•@pf 1
b
“pf 1

a 2pf 1
a
“pf 1

b #dS.

~87!

Identical manipulations for phase 2 gives

DP1DP2

H2

h

k2
k215

1

VEV12

n•@pf 2
a
“pf 2

b 2pf 2
b
“pf 2

a #dS.

~88!

If these two equations are subtracted and the continuity c
ditions of Eqs.~77! and~78! employed, one indeed finds tha
k125k21. Such a simple proof of the reciprocity is not forth
coming if the volume-averaged flow fieldsv iQ̄i are used in
place of the mean fluxesqi .

C. Permeability matrix

In order to obtain a model for thek i j that has separabl
contributions from the mesoscopic geometry of the const
ents and from the underlying material properties@which are
03660
b-

n-

n-

-

here entirely contained ine(v), as defined after Eq.~78!#, it
is assumed that in practice,e is a small number. The need t
use a double-porosity theory is apparent precisely whene is
a small number.

We are now able to develop the fluid pressures as

pf i
a 5@w i

a1ep i
a1O~e2!#DP1 /H, ~89!

pf i
b 5@w i

b1ep i
b1O~e2!#DP2 /H, ~90!

where the applied-force-independent potentialsw i
a,b andp i

a,b

have units of length, and are dependent only on the me
copic geometry of the two porous constituents. Because
local Darcy flow in phase 1 goes asQ152ek2“pf 1 /h, the
leading-order flow ine is independent of the potentialsp1

a,b .
The leading-order potentials are all solutions of Laplac
equation in their respective phases and from Eqs.~76!–~78!
satisfy the following boundary conditions:

n•“w2
a50 on ]V12, w2

a5H 0, z5H

0, z52H;

w1
a50 on ]V12, w1

a5H H, z5H

2H, z52H;

n•“w2
b50 on ]V12, w2

b5H H, z5H

2H, z52H;

n•“p2
a,b5n•“w1

a,b on ]V12, p2
a,b5H 0, z5H

0, z52H;

w1
b5w2

b on ]V12, w1
b5H 0, z5H

0, z52H.
~91!

Sincew2
a satisfies homogeneous boundary conditions, it

the unique solution thatw2
a50 everywhere, and this is why

w1
a5w2

a50 on ]V12.
Thus, using these potentials in the definitions of Eqs.~79!,

~80!, and~83!, it is a straightforward excercise~integrate, use
the divergence theorem, appeal to the boundary conditio!
to write thek i j in the following forms to leading order:

k11/k25e^“w1
a
•“w1

a&, ~92!

k12/k25e^“w1
a
•“w1

b&, ~93!

k22/k25^“w2
b
•“w2

b&1e^“F2
b
•“p2

b&, ~94!

where the brackets indicate a volume average over the e
averaging volume. These averages are dimensionless o
unity functions of the mesoscopic geometry of the const
ents. In the second term ofk22, the potentialF2

b is a solution
to Laplace’s equation in phase 2 satisfyingF2

b50 on ]V12

andF2
b56H on z56H.

Even for the simple ‘‘plane-parallel-joint’’ geometry de
picted in Fig. 1 for the case of forcing-statea, the dimen-
sionless field“w1

a is not just the unit vectorẑ. Indeed, rather
4-7
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nontrivial flow develops as indicated qualitatively by the a
rows. Because there is a macroscopic pressure grad
across phase 1 and none across phase 2, there are
pressure variations in thex direction that drive flow laterally
either into or out of phase 2 as shown. The only trivial p
tential in this geometry isw2

b , which does correspond t
“w2

b5 ẑ.
To understand this flow better, we solve in the Appen

the asymptotic~leading order ine) flow problem correspond
ing to forcing statea, i.e., we determine the pressure fiel
pf 1

a 5w1
a and pf 2

a 5ep2
a that contribute to the leading-orde

Darcy flow. The results are plotted in Fig. 2. We see inde
that there is considerable cross flow between the ph
~which averages to zero throughout the entire sample so
ż int50 always!. At the entrance of the sample~taken asz
54 in the figure!, we see that fluid is flowing out of phase
while at the exit (z50), fluid is flowing into phase 2;
i.e., such flow is in the opposite direction to the avera
phase-1 flow.

The permeability matrix is finally written in a slightly
different form. The phase-1 potentialw1

a , that satisfies Di-
richlet conditions on]V12, is rewritten asw1

a5c1
a1dw1

a ,
where c1

a satisfies the Neumann conditionn•“c1
a50 on

]V12 andc1
a56H on z56H and where the difference po

tential dw1
a therefore satisfiesdw1

a52c1
a on ]V12 anddw1

a

50 on z56H. Similarly, the phase-2 potentialF2
b satisfy-

ing Dirichlet conditions on]V12 is rewritten asF2
b5w2

b

1dw2
b so that the difference potential satisfiesdw2

b52w2
b on

]V12 anddw2
b50 onz56H. Using these potentials in Eqs

~92!–~94!, the permeability matrix takes the form

k i j 5k2F e~1/F11x11! 2ex12

2ex12 1/F21ex22
G , ~95!

FIG. 1. An idealized unsealed double-porosity sample has
same average fluid pressure in both phases, but there is a m

scopic pressure gradient in the vertical directionẑ across phase 1
driving a flow in phase 1~the large arrows! while we impose the
boundary condition that no pressure gradient can develop ac
phase 2. Nonetheless, there is induced in phase 2 secondary
flow including flow across the internal surface]V12 as indicated by
the small arrows. The analytically determined fluid pressure dis
bution for this situation is shown in Fig. 2.
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where Fi are the formation factors of each phase defin
using the Neumann potentials as

1/F15^“c1
a
•“c1

a&

and

1/F25^“w2
b
•“w2

b& ~96!

and where the parametersx i j are defined as

x115^“dw1
a
•“dw1

a&, ~97!

2x125^“dw1
a
•“w1

b&, ~98!

x225^“dw2
b
•“p2

b&. ~99!

One of the principal reasons for writing the permeability m
trix in this form is that in any plane-parallel joint model, th
two Neumann potentials are equal along the internal in
face, i.e.,c1

a5w2
b on ]V12. Using this fact, it is straightfor-

ward to use the boundary conditions on]V12 along with
Eqs. ~97!–~99! to show that x115x125x22[x for such
models.

Flow in plane-parallel joint models thus has the intere
ing property that the total flowq11q2 is unaffected by the
cross-coupling coefficient x. However, the energy-
dissipation rates due to the Darcy flow,

e
ro-

ss
cal

i-

FIG. 2. A plot of the normalized fluid pressurep for the geom-
etry depicted in Fig. 1 in whichd51, a54, andH52. The inter-
face ]V12 between the two phases is located atx50 ~and atx
54), while the planex521 is at the midpoint of the joint phas
and the planex52 is at the midpoint of the matrix phase. Th
permeability ratioe has been taken to be 0.1. The pressure grad
has a singularity in thex direction at the points (x50,z50) and
(x50,z52H54).
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s5
e~1/F11x!

h
“ p̄f 1•“ p̄f 12

2ex

h
“ p̄f 1•“ p̄f 2

1
~1/F21ex!

h
“ p̄f 2•“ p̄f 2 , ~100!

is seen to be affected byx when “ p̄f 1Þ“ p̄f 2. In other-
words, the extra influx and outflux of fluid, as seen in Figs
and 2, at the entrance and exit faces isdissipating energy
even if it is not contributing to the total flow.

Using the results from the Appendix for flow in the two
dimensional~2D! geometry of Fig. 1, and taking a square
material in which 2H5a12d, we find Eq.~95! with 1/Fi

5v i and withx115x125x225(2/p)(n51
` tanh(npv1)/n. Un-

fortunately, this series is logarithmically divergent, whi
can be seen in the limitn→`, where it becomes the ha
monic series(n1/n, which is well known to diverge. This
divergence is entirely due to those points where the inte
surface]V12 and the two flat facesz56H meet ~e.g., the
pointsx50, z50 andx50, z54 in Fig. 2!. At such points,
there is a discontinuous jump in the fluid-pressure bound
conditions, resulting in locally divergent flow. This non
physical artifact can be removed by requiring the potent
on the boundaries to vary smoothly at those points where
internal surface intersects the flat faces. The smoothing
tance can be made arbitarily small relative to the joint thi
nessd but, so long as it remains finite, the permeability m
trix retains the form of Eq.~95! and has a finitex.
Elaboration of this rather involved demonstration is left
the interested reader.

IV. CONCLUSIONS

The main result of the present paper is the frequency
material-property dependencies of the internal transport
efficient g(v), as expressed in Eqs.~69!–~71!. The coeffi-
cient g(v) controls the mesoscopic fluid-pressure equilib
tion between the two porous constituent phases. We h
also established that the dual-permeability Darcy law is sy
metric. The cross coupling in the Darcy law was shown to
due to the existence of local fluid-pressure gradients
drive flow from one porous phase to the other.
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APPENDIX: 2D FLOW THROUGH A PLANAR SLAB
GEOMETRY

We now obtain the fluid pressure distribution for th
simple 2D flow geometry presented in Fig. 1. The pressu
are obtained to leading order ine5k1 /k2 as
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pf 1
a 5~w1

a1ep1
a!DP1 /H,

pf 2
a 5ep2

aDP1 /H,

pf 1
b 5~w1

b1ep1
b!DP2 /H,

pf 2
b 5~z1ep2

b!DP2 /H.

Since the pressure gradient in phase 1 gets multiplied
another factor ofe when determining the flow, we need on
determine the four potentialsw1

a , p2
a , w1

b , and p2
b if our

interest is to understand the pressure field giving rise to
leading-order flow. These potentials are all solutions
Laplace’s equation and satisfy the boundary conditions gi
in Eq. ~91!. Phase 1 is taken to lie between 0<x<a and
phase 2 between22d<x<0.

The solution of the Laplace equation in 2D is the sum
products of the form@sinax,cosbx#3@sinhcz,coshdz#. For
example,w1

a has a solution of the form

w1
a~x,z!5 (

n51

`

An sinS pnx

a D
3

$sinh@pn~z1H !/a#1sinh@pn~z2H !/a#%

sinh@pn2H/a#
,

satisfying the required Dirichlet conditions atx50 and x
5a. The constantsAn are selected so that the nonhomog
neous conditions atz56H are satisfied and this is done i
the usual manner by exploiting the completeness relation
the sine basis functions. We find~cf. Morse and Feshbach
@10#, p. 708!.

w1
a5

4H

p (
n odd

`
1

n
sinS pnx

a D
3

$sinh@pn~z1H !/a#1sinh@pn~z2H !/a#%

sinh@pn2H/a#
.

~A1!

The other potentials are similarly found to be

p2
a5

22H

p (
n51

`
~21!n

n
sinS pnz

H D tanhS pna

2H D
3

$cosh@pn~x12d!/H#1cosh@pnx/H#%

sinh@pn2d/H#
, ~A2!

w1
b5

22H

p (
n51

`
~21!n

n
sinS pnz

H D
3

$sinh@pn~a2x!/H#1sinh@pnx/H#%

sinh@pna/H#
, ~A3!

and
4-9
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p2
b5

22H

p (
n51

`
~21!n

n
sinS pnz

H D12cosh~pna/H !

sinh@pna/H#

3
$cosh@pn~x12d!/H#1cosh@pnx/H#%

sinh@pn2d/H#
. ~A4!

These potentials are those contributing to the pressure d
bution in Fig. 2.

The quantities needed for estimating the permeabili
are the integrals of thez derivatives of these potentials on th
external surface. One finds that

E
0

a

dx
]w1

a

]z
5a1x, ~A5!
ci

s

03660
ri-

s

E
22d

0

dx
]p2

a

]z
52E

22d

0

dx
]p2

b

]z
5E

0

a

dx
]w1

b

]z
52x,

~A6!

where the parameterx is defined as

x5
4H

p (
n51

`
1

n
tanhS pna

2H D . ~A7!

This series is logarithmically divergent for reasons discus
in the text, but finite results are obtained by introducing
physically motivated smoothing distance.
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