

Suppose that d or B are spatially varying
functions
We have the general equation of motion
(1)
$$\frac{1}{5x_j}((ijke U_{k,e}) + F_i = P \frac{5U_i}{5t+1})$$

considering the simplified case of a fluid
Cijke U_{k,e} = KU_{k,k}
and (3) can be written as
 $\frac{1}{5x_j}\frac{5U_k}{5x_k} + K \frac{1}{5x_j}\frac{5U_k}{5x_j} = P \frac{5U_i}{5t+2}$
 $\frac{1}{5t+2}$

considering volumetric motrons the divergence is taken

$$\Gamma \cdot (\frac{dK}{dx_j}\Theta + K\frac{d\Theta}{dx_j}) = \nabla \cdot (P\frac{d^3k}{dt^2})$$

 $K\frac{dE}{dx_j}\Theta + K\frac{d\Theta}{dt^2}) = \nabla \cdot (P\frac{d^3k}{dt^2})$
 $K\frac{dE}{dx_j} - P\frac{d^3D}{dt^2} = \frac{dPdH_j}{dt^2} - 2\frac{dKd\Theta}{dx_j} - \frac{dK}{dx_j}\Theta$
 $- chere not = \frac{dKd\Theta}{dt^2} reduce to work equation
which is easy to solve
 $- need to solve hy$
1. Brut force - finite differences /fincte elem.
2. Roy theory approximations$

Classical Ray Theory
Beginning with a displacement potential solution of
the scalar work equation with zero initial phase

$$i(K_0S(x_0)-wt) = K_0 = \frac{w}{v_0} \text{ where } v_0 \text{ is velocity}$$

$$\Phi = A e = Scki) \text{ is an equation for}$$

$$Scki) \text{ is an equation for}$$

$$wave \text{ fronts}$$

• Consider the wave front at two different times in the
initial region
$$f = K_0 S_1 - W t_1 = K_0 S_2 - W t_2$$

 $\frac{dS}{dt} = \frac{W}{K_0} = V_0$
- in another region $\frac{AS}{dt} = \frac{W}{K} = V$ S_2

•
$$\xi = K_0 Scrip - wt$$

for a work front of constant phase the total
derivative is zero
 $\frac{dg}{dt} = \frac{dg}{dt} + v_i \frac{dg}{dx_i} = C$
 $\frac{dg}{dt} = -v_i \frac{dg}{dx_i} = -v_i \frac{dg}{dx_i}$
 $-w = -v \frac{dg}{dx_i} = -v_i \frac{dg}{dx_i}$
 $w = -v \frac{dg}{dx_i} = -v_i \frac{dg}{dx_i}$

L

• Applying the Helmholtz equation
$$(\nabla^2 + K^2) \oplus = 0$$

to the specific form of \oplus
 $k = \sqrt[3]{V} = k_0 \sqrt[3]{V}$
 $(\nabla^2 + (K_0 \sqrt{2})) \oplus = \nabla \cdot \nabla(\oplus) + K_0^{-\omega/V} \oplus (K_0 \sqrt{2}) \oplus (K_0 \sqrt{2})) \oplus (K_0 \sqrt{2}) \oplus (K_0 \sqrt{2})$

This gives the normal equations

$$\frac{45(\vec{x})}{4x_1} = n \frac{4x_1}{4x}$$

 $\frac{45(\vec{x})}{4x_2} = n \frac{4x_2}{4x}$
 $\frac{45(\vec{x})}{4x_2} = n \frac{4x_2}{4x}$
 $\frac{45(\vec{x})}{4x_2} = n \frac{4x_2}{4x}$
 $\frac{15(\vec{x})}{4x_2} = n \frac{4x_2}{4x}$

Evaluating the change of the normal equations
along the ray path

$$\frac{d}{ds} \left(\frac{dS(z)}{dx_{i}}\right) = \frac{d}{ds} \left(n \frac{dx_{i}}{ds}\right)$$
since $v_{1} = cosi = \frac{dx_{1}}{ds}$, etc. from previous drayrows
 $\frac{d}{ds} = \frac{dv_{i}}{dx_{i}} = \frac{d}{dx_{i}} \frac{dv_{j}}{ds}$
the left hand side becomes
 $\frac{d}{ds} \left(\frac{dS(z)}{dx_{i}}\right) = \frac{d}{dx_{i}} \left[\frac{dx_{i}}{dx_{i}} + \frac{dS(z)}{dx_{i}}\right] = \frac{d}{dx_{i}} \left[n \left(\frac{dx_{i}}{ds}\right)^{2}\right]$
 $= \frac{dn}{dx_{i}}$
 $\frac{dn}{dx_{i}} = \frac{d}{ds} \left(n \frac{dx_{i}}{ds}\right)$ is the ray path equations
given 1) initial direction of wome, $\frac{dw_{i}}{ds} = \frac{dv_{i}}{dx_{i-s}}$ in Vo
the wome con be tracked in metanal of changing V

Example
Suppose
$$V(\vec{x})$$
 is a function of x_3 , $V(x_3)$
and $n = n(x_3)$ then $\frac{dn}{dx_1} = \frac{dn}{dx_2} = 0$
implying $n \frac{dx_1}{dx_3} = constant$
 $n \frac{dx_2}{dx_3} = constant$
 $\frac{dn}{dx_3} = \frac{d}{ds} (n \frac{dx_3}{ds})$
 $\frac{dn}{dx_3} = \frac{d}{ds} (n \frac{dx_3}{ds})$
 $n \frac{dx_3}{dx_3} = \frac{d}{ds} (n \frac{dx_3}{ds})$
 $n \frac{dx_3}{dx_3} = \frac{d}{ds} (n \frac{dx_3}{ds})$

$$\frac{\sin i}{v} = P$$
 for a given roy there
is a constant heritantial
slowness or ray parameter
This is Snell's Law
Now for the vertical behavior
 $\frac{dm}{dx_3} = \frac{d}{ds} (m \frac{dx_3}{ds}) = \frac{d}{ds} (m \cos i)$
 $= -n \sin i \frac{di}{ds} + \cos i \frac{dx_3}{dx_3} \frac{dx_3}{ds}$
 $= -n \sin i \frac{di}{ds} + \cos i \frac{dx_3}{dx_3} \frac{dx_3}{ds}$

