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Elasticity, Equation of Motion and Wave 
Solutions II
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Helmholtz Decomposition
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φ, Ω, χ, are scalar displacement potential functions. Application of the 
above relationships to the vector wave equation results in three
separated scalar wave equations for P, SV and SH waves
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Substitution of 2 into 1
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S-waves
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P-waves
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• Why go to such trouble?
– Solutions to scalar wave equations are 

simpler.
• What has been assumed?

– Homogeneous media leading to 1D boundary 
value problems

• How is vector motion found?
– Solve each scalar wave equation separately 

and then combine using Helmholtz equation
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Actual records 
too seem to be 
organized in 
this way

Different Coordinate Systems
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Cartesian Geometry

General solutions
Specific solutions are harmonic functions
This geometry is used for local to regional

scale 3D wave propagation problems

Cylindrical Geometry

General Solution
Specific solutions are Bessel

functions

This geometry is often used for
1D wave propagation problems

It is useful to think of f(t-R/α) as 
f(t)*δ(t-R/α)
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Different Coordinate Systems
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− Spherical Geometry

General Solution
Specific solutions are Legendre polynomials

This coordinate system is used for whole Earth scale problems

Solutions to Scalar Wave Equations 
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Green’s Function Solution
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Behavior of Plane Wave Solutions
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Solutions found by substitution, Fourier 
Transforms, separation of variables

Substitution into scalar wave 
equation yields dispersion relation

Vector displacement motions are obtained
from the Helmholtz equation
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Exercise

• How can we define an experiment making 
use of plane wave theory to determine the 
velocity of the Earth’s surface?
– Assume a teleseismic (greater than 3000 km) 

plane wave arrival.
– What can we measure?
– How can we determine α?
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How can we determine i ?
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Three-Components in Geographic Coordinate 
System

Three-Components in Rotated Coordinate System
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