

























Haskell Source Model assumes  
- constant dislocation rise time  
- uniform fault growth  
Start with the far-field solution  

$$u(r, t) = \frac{2R_{SH}}{4\pi\rho\beta^{3}r} \dot{m}(t-r/\beta)$$
  
 $m(t) = \begin{cases} 0 \ t \ge r/\beta \\ - > m_0 \ t = 0 \end{cases}$   
 $M_0 = \int \dot{m}(t) dt$ 

First break Mits into 2 terms that  
depend on time.  
1) slip rate 
$$\dot{D}(t)$$
 where  $\overline{D} = \int_{0}^{\infty} \dot{D}(t) dt$ .  
2 Fault Length  $L(t) = \int_{0}^{L} S(t - \frac{1}{V_{T}}) dx$   
then  $\dot{M}(t) = \frac{1}{V_{T}} VVL(t) + \dot{D}(t)$   
with a change of variable  $\overline{z} = t - \frac{1}{V_{T}} dx$   
the L integral simplifies





So the Huskell solution is the convolution  
of two boxcars, 
$$B(T_r)$$
 and  $B(\frac{1}{V_r})$   
If  $T_r = T_d$  the convolution yields a  
triangle  
If  $T_r \neq T_d$  the convolution yields a  
trapezoid (see Box 9.2)  
How reasonable can  
this be?

































![](_page_18_Figure_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)